K-nearest neighbors:

We read in input.scone.csv, which is our file modified (and renamed) from the get.marker.names() function. The K-nearest neighbor generation is derived from the Fast Nearest Neighbors (FNN) R package, within our function Fnn(), which takes as input the “input markers” to be used, along with the concatenated data previously generated, and the desired k. We advise the default selection to the total number of cells in the dataset divided by 100, as has been optimized on existing mass cytometry datasets. The output of this function is a matrix of each cell and the identity of its k-nearest neighbors, in terms of its row number in the dataset used here as input.

library(Sconify)
# Markers from the user-generated excel file
marker.file <- system.file('extdata', 'markers.csv', package = "Sconify")
markers <- ParseMarkers(marker.file)

# How to convert your excel sheet into vector of static and functional markers
markers
## $input
##  [1] "CD3(Cd110)Di"           "CD3(Cd111)Di"           "CD3(Cd112)Di"          
##  [4] "CD235-61-7-15(In113)Di" "CD3(Cd114)Di"           "CD45(In115)Di"         
##  [7] "CD19(Nd142)Di"          "CD22(Nd143)Di"          "IgD(Nd145)Di"          
## [10] "CD79b(Nd146)Di"         "CD20(Sm147)Di"          "CD34(Nd148)Di"         
## [13] "CD179a(Sm149)Di"        "CD72(Eu151)Di"          "IgM(Eu153)Di"          
## [16] "Kappa(Sm154)Di"         "CD10(Gd156)Di"          "Lambda(Gd157)Di"       
## [19] "CD24(Dy161)Di"          "TdT(Dy163)Di"           "Rag1(Dy164)Di"         
## [22] "PreBCR(Ho165)Di"        "CD43(Er167)Di"          "CD38(Er168)Di"         
## [25] "CD40(Er170)Di"          "CD33(Yb173)Di"          "HLA-DR(Yb174)Di"       
## 
## $functional
##  [1] "pCrkL(Lu175)Di"  "pCREB(Yb176)Di"  "pBTK(Yb171)Di"   "pS6(Yb172)Di"   
##  [5] "cPARP(La139)Di"  "pPLCg2(Pr141)Di" "pSrc(Nd144)Di"   "Ki67(Sm152)Di"  
##  [9] "pErk12(Gd155)Di" "pSTAT3(Gd158)Di" "pAKT(Tb159)Di"   "pBLNK(Gd160)Di" 
## [13] "pP38(Tm169)Di"   "pSTAT5(Nd150)Di" "pSyk(Dy162)Di"   "tIkBa(Er166)Di"
# Get the particular markers to be used as knn and knn statistics input
input.markers <- markers[[1]]
funct.markers <- markers[[2]]

# Selection of the k. See "Finding Ideal K" vignette
k <- 30

# The built-in scone functions
wand.nn <- Fnn(cell.df = wand.combined, input.markers = input.markers, k = k)
# Cell identity is in rows, k-nearest neighbors are columns
# List of 2 includes the cell identity of each nn, 
#   and the euclidean distance between
#   itself and the cell of interest

# Indices
str(wand.nn[[1]])
##  int [1:1000, 1:30] 132 237 225 152 567 977 500 615 340 14 ...
wand.nn[[1]][1:20, 1:10]
##       [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
##  [1,]  132  553  455  593  546  993  477  979  603   548
##  [2,]  237  156  870  515  643  114  229  567  907   577
##  [3,]  225   73  758  917  654  309   71  450  368   139
##  [4,]  152  210  492  736  552  688  479   81  194   109
##  [5,]  567  716  924  489  854  734  733  503  870   377
##  [6,]  977  258  330  838  565  102  694  646  897   481
##  [7,]  500  563  409  497  685  687  117  245  996   483
##  [8,]  615  136   70  509  507  762  839  508  396   540
##  [9,]  340  972  627  125  901  667  306  587  742   351
## [10,]   14  337  913  755  501  947  687  122  892   641
## [11,]  580  450  257  655  978  768  249  968   73   758
## [12,]  680  732  524  460  332  392  377  291  912   854
## [13,]  698  632  864  564  540  226  654  728  978    55
## [14,]  190   10  906  501  684  913  293  436  892   473
## [15,]  846  977  299  496  431  699  682  108  569   467
## [16,]  873  939   76   60  369   85  954  478  196   311
## [17,]  554   45   25  466  479  925  813  480   81   560
## [18,]  665  612  916  785   21  752  205  238  361   812
## [19,]  564  450  917  986   79  550   73  760  768   543
## [20,]  861  466  815   65  479  677  278  813  240   717
# Distance
str(wand.nn[[2]])
##  num [1:1000, 1:30] 2.9 3.12 3.59 2.61 3.24 ...
wand.nn[[2]][1:20, 1:10]
##           [,1]     [,2]     [,3]     [,4]     [,5]     [,6]     [,7]     [,8]
##  [1,] 2.902729 2.917114 3.557851 3.601325 3.722776 3.807435 4.155591 4.203474
##  [2,] 3.119796 3.128173 3.157952 3.235178 3.327577 3.334009 3.368453 3.397645
##  [3,] 3.586859 4.177142 4.293058 4.378505 4.512164 4.573769 4.601587 4.625823
##  [4,] 2.610518 3.045004 3.228404 3.275969 3.400690 3.466070 3.476170 3.481313
##  [5,] 3.238448 3.531683 3.654889 3.856978 3.864263 3.899068 3.904249 3.929473
##  [6,] 3.297419 3.340251 3.457041 3.484926 3.732310 3.902945 3.921310 3.970990
##  [7,] 3.149844 3.181980 3.259314 3.280480 3.345491 3.474107 3.538963 3.548727
##  [8,] 3.685918 3.896625 3.922677 3.939024 3.963700 3.975300 3.975664 3.986317
##  [9,] 3.428157 4.057365 4.189505 4.387221 4.499547 4.536892 4.615946 4.710349
## [10,] 4.140878 4.408850 4.455586 4.468671 4.496290 4.564612 4.596109 4.599705
## [11,] 2.676100 2.741691 2.895198 3.002550 3.076873 3.173130 3.193548 3.250339
## [12,] 4.346599 4.442967 4.600549 4.623144 4.835635 4.877127 4.889187 4.916895
## [13,] 3.378475 3.423775 3.435403 3.571199 3.611080 3.622770 3.661394 3.777268
## [14,] 4.135165 4.140878 4.146091 4.198442 4.430188 4.720072 4.735282 4.761297
## [15,] 3.037817 3.323634 3.640663 3.687496 3.761022 3.820059 4.009023 4.021804
## [16,] 3.720459 4.049438 4.105591 4.154391 4.258111 4.401926 4.444575 4.539583
## [17,] 2.914838 3.036909 3.067011 3.259954 3.328766 3.344920 3.418359 3.468081
## [18,] 4.033836 4.244262 4.267418 4.375252 4.587822 4.676960 4.717137 4.722959
## [19,] 2.827524 3.004994 3.075816 3.079853 3.150315 3.363991 3.394503 3.411818
## [20,] 3.221538 3.651744 3.857558 3.914426 3.969115 4.034457 4.039353 4.080222
##           [,9]    [,10]
##  [1,] 4.251814 4.322580
##  [2,] 3.476889 3.486682
##  [3,] 4.662360 4.681746
##  [4,] 3.528192 3.540702
##  [5,] 3.952657 3.954240
##  [6,] 4.044705 4.072332
##  [7,] 3.555555 3.562237
##  [8,] 3.995078 4.130790
##  [9,] 4.721329 4.776526
## [10,] 4.722035 4.740512
## [11,] 3.258761 3.263031
## [12,] 4.920839 4.969283
## [13,] 3.886309 3.898330
## [14,] 4.817959 4.843023
## [15,] 4.052655 4.098345
## [16,] 4.603931 4.650348
## [17,] 3.522563 3.609720
## [18,] 4.848288 4.872995
## [19,] 3.413131 3.440729
## [20,] 4.192146 4.197303

Finding scone values:

This function iterates through each KNN, and performs a series of calculations. The first is fold change values for each maker per KNN, where the user chooses whether this will be based on medians or means. The second is a statistical test, where the user chooses t test or Mann-Whitney U test. I prefer the latter, because it does not assume any properties of the distributions. Of note, the p values are adjusted for false discovery rate, and therefore are called q values in the output of this function. The user also inputs a threshold parameter (default 0.05), where the fold change values will only be shown if the corresponding statistical test returns a q value below said threshold. Finally, the “multiple.donor.compare” option, if set to TRUE will perform a t test based on the mean per-marker values of each donor. This is to allow the user to make comparisons across replicates or multiple donors if that is relevant to the user’s biological questions. This function returns a matrix of cells by computed values (change and statistical test results, labeled either marker.change or marker.qvalue). This matrix is intermediate, as it gets concatenated with the original input matrix in the post-processing step (see the relevant vignette). We show the code and the output below. See the post-processing vignette, where we show how this gets combined with the input data, and additional analysis is performed.

wand.scone <- SconeValues(nn.matrix = wand.nn, 
                      cell.data = wand.combined, 
                      scone.markers = funct.markers, 
                      unstim = "basal")

wand.scone
## # A tibble: 1,000 × 34
##    `pCrkL(Lu175)Di.IL7.qvalue` pCREB(Yb176)Di.IL7.qvalu…¹ pBTK(Yb171)Di.IL7.qv…²
##                          <dbl>                      <dbl>                  <dbl>
##  1                       0.916                      0.920                  0.997
##  2                       0.983                      0.755                  0.901
##  3                       0.917                      0.610                  0.910
##  4                       0.963                      0.947                  0.901
##  5                       0.798                      0.739                  0.847
##  6                       0.829                      0.610                  0.972
##  7                       0.985                      0.962                  0.947
##  8                       0.945                      0.921                  0.910
##  9                       0.983                      0.858                  0.910
## 10                       0.916                      0.755                  0.816
## # ℹ 990 more rows
## # ℹ abbreviated names: ¹​`pCREB(Yb176)Di.IL7.qvalue`,
## #   ²​`pBTK(Yb171)Di.IL7.qvalue`
## # ℹ 31 more variables: `pS6(Yb172)Di.IL7.qvalue` <dbl>,
## #   `cPARP(La139)Di.IL7.qvalue` <dbl>, `pPLCg2(Pr141)Di.IL7.qvalue` <dbl>,
## #   `pSrc(Nd144)Di.IL7.qvalue` <dbl>, `Ki67(Sm152)Di.IL7.qvalue` <dbl>,
## #   `pErk12(Gd155)Di.IL7.qvalue` <dbl>, `pSTAT3(Gd158)Di.IL7.qvalue` <dbl>, …

For programmers: performing additional per-KNN statistics

If one wants to export KNN data to perform other statistics not available in this package, then I provide a function that produces a list of each cell identity in the original input data matrix, and a matrix of all cells x features of its KNN.

I also provide a function to find the KNN density estimation independently of the rest of the “scone.values” analysis, to save time if density is all the user wants. With this density estimation, one can perform interesting analysis, ranging from understanding phenotypic density changes along a developmental progression (see post-processing vignette for an example), to trying out density-based binning methods (eg. X-shift). Of note, this density is specifically one divided by the aveage distance to k-nearest neighbors. This specific measure is related to the Shannon Entropy estimate of that point on the manifold (https://hal.archives-ouvertes.fr/hal-01068081/document).

I use this metric to avoid the unusual properties of the volume of a sphere as it increases in dimensions (https://en.wikipedia.org/wiki/Volume_of_an_n-ball). This being said, one can modify this vector to be such a density estimation (example http://www.cs.haifa.ac.il/~rita/ml_course/lectures_old/KNN.pdf), by treating the distance to knn as the radius of a n-dimensional sphere and incoroprating said volume accordingly.

An individual with basic programming skills can iterate through these elements to perform the statistics of one’s choosing. Examples would include per-KNN regression and classification, or feature imputation. The additional functionality is shown below, with the example knn.list in the package being the first ten instances:

# Constructs KNN list, computes KNN density estimation
wand.knn.list <- MakeKnnList(cell.data = wand.combined, nn.matrix = wand.nn)
wand.knn.list[[8]]
## # A tibble: 30 × 51
##    `CD3(Cd110)Di` `CD3(Cd111)Di` `CD3(Cd112)Di` `CD235-61-7-15(In113)Di`
##             <dbl>          <dbl>          <dbl>                    <dbl>
##  1        -0.0255         -0.414         -0.415                  -0.484 
##  2        -0.361          -0.360         -2.28                    0.0225
##  3        -1.08           -1.02          -2.00                   -2.00  
##  4        -0.313          -0.360         -0.402                  -1.07  
##  5        -0.299          -0.862         -0.699                  -0.587 
##  6        -0.734          -0.420         -0.964                  -0.402 
##  7        -0.143          -0.207         -0.184                  -0.790 
##  8        -1.42           -0.883         -1.43                   -1.02  
##  9        -0.697           1.24          -1.26                   -3.13  
## 10        -0.413          -0.431         -0.697                  -1.26  
## # ℹ 20 more rows
## # ℹ 47 more variables: `CD3(Cd114)Di` <dbl>, `CD45(In115)Di` <dbl>,
## #   `CD19(Nd142)Di` <dbl>, `CD22(Nd143)Di` <dbl>, `IgD(Nd145)Di` <dbl>,
## #   `CD79b(Nd146)Di` <dbl>, `CD20(Sm147)Di` <dbl>, `CD34(Nd148)Di` <dbl>,
## #   `CD179a(Sm149)Di` <dbl>, `CD72(Eu151)Di` <dbl>, `IgM(Eu153)Di` <dbl>,
## #   `Kappa(Sm154)Di` <dbl>, `CD10(Gd156)Di` <dbl>, `Lambda(Gd157)Di` <dbl>,
## #   `CD24(Dy161)Di` <dbl>, `TdT(Dy163)Di` <dbl>, `Rag1(Dy164)Di` <dbl>, …
# Finds the KNN density estimation for each cell, ordered by column, in the 
# original data matrix
wand.knn.density <- GetKnnDe(nn.matrix = wand.nn)
str(wand.knn.density)
##  num [1:1000] 0.231 0.282 0.21 0.277 0.25 ...