## ----setup, include=FALSE----------------------------------------------------- knitr::opts_chunk$set(echo = TRUE) ## ----style, echo=FALSE, results='asis'---------------------------------------- BiocStyle::markdown() ## ----install, eval=FALSE------------------------------------------------------ # if (!requireNamespace("BiocManager", quietly = TRUE)) # install.packages("BiocManager") # BiocManager::install("SmartPhos") ## ----initialize, warning=FALSE, message=FALSE--------------------------------- library(MultiAssayExperiment) library(SmartPhos) ## ----------------------------------------------------------------------------- data("dia_example") dia_example ## ----------------------------------------------------------------------------- se <- dia_example[["Phosphoproteome"]] colData(se) <- colData(dia_example) se ## ----message=FALSE------------------------------------------------------------ newSE <- preprocessPhos(seData = se, transform = "log2", normalize = TRUE, impute = "QRILC") ## ----------------------------------------------------------------------------- plotIntensity(newSE, colorByCol = "replicate") ## ----------------------------------------------------------------------------- plotMissing(newSE) ## ----------------------------------------------------------------------------- # perform PCA pca <- stats::prcomp(t(assays(newSE)[["imputed"]]), center = TRUE, scale. = TRUE) # call the plotting function p <- plotPCA(pca = pca, se = newSE, color = "replicate") p ## ----------------------------------------------------------------------------- plotHeatmap(type = "Top variant", newSE, top = 10, annotationCol = c("replicate", "treatment")) ## ----message=FALSE------------------------------------------------------------ dea <- performDifferentialExp(se = newSE, assay = "imputed", method = "limma", condition = "treatment", reference = "EGF", target = "1stCrtl") ## ----------------------------------------------------------------------------- dea$seSub dea$resDE ## ----------------------------------------------------------------------------- plotVolcano(dea$resDE) ## ----------------------------------------------------------------------------- intensityBoxPlot(se = dea$seSub, id = 's447', symbol = "WASL") ## ----------------------------------------------------------------------------- # call addZeroTime function to add zero timepoint to EGF treatment newSEzero <- addZeroTime(newSE, condition = "treatment", treat = "EGF", zeroTreat = "1stCrtl", timeRange = c("10min","100min", "24h")) # extract the assay exprMat <- SummarizedExperiment::assay(newSEzero) # call the clustering function tsc <- clusterTS(x = exprMat, k = 5) ## ----------------------------------------------------------------------------- tsc$cluster tsc$plot ## ----------------------------------------------------------------------------- timerange <- unique(newSEzero$timepoint) plotTimeSeries(newSEzero, type = "expression", geneID = "s40", symbol = "RBM47_T519", condition = "treatment", treatment = "EGF", timerange = timerange) ## ----message=FALSE------------------------------------------------------------ # Load the gene set genesetPath <- system.file("shiny-app/geneset", package = "SmartPhos") inGMT <- piano::loadGSC(paste0(genesetPath,"/Cancer_Hallmark.gmt"), type="gmt") # Call the function resTab <- enrichDifferential(dea = dea$resDE, type = "Pathway enrichment", gsaMethod = "PAGE", geneSet = inGMT, statType = "stat", nPerm = 200, sigLevel = 0.05, ifFDR = FALSE) resTab ## ----message=FALSE------------------------------------------------------------ # Load the gene set genesetPath <- system.file("shiny-app/geneset", package = "SmartPhos") inGMT <- piano::loadGSC(paste0(genesetPath, "/Chemical_and_Genetic_Perturbations.gmt"), type="gmt") # Call the function clustEnr <- clusterEnrich(clusterTab = tsc$cluster, se = newSE, inputSet = inGMT, filterP = 0.05, ifFDR = FALSE) clustEnr ## ----message=FALSE------------------------------------------------------------ # Load the ptm set ptmsetPath <- system.file("shiny-app/ptmset", package = "SmartPhos") load(paste0(ptmsetPath, "/human_PTM.rda")) # Call the function clustEnr <- clusterEnrich(clusterTab = tsc$cluster, se = newSE, inputSet = ptmSetDb, ptm = TRUE, filterP = 0.05, ifFDR = FALSE) clustEnr ## ----eval=FALSE--------------------------------------------------------------- # netw <- getDecouplerNetwork("Homo sapiens") # scoreTab <- calcKinaseScore(dea$resDE, netw, statType = "stat", nPerm = 500) ## ----------------------------------------------------------------------------- sessionInfo()