## ----setup, echo=FALSE, results="hide"---------------------------------------- knitr::opts_chunk$set(tidy=FALSE, cache=FALSE, dev="png", message=FALSE, error=FALSE, warning=TRUE) ## ----quickStart, eval=FALSE--------------------------------------------------- # bs <- BSseq(chr = chr, pos = pos, # M = M, Cov = Cov, # sampleNames = sampleNames) # pData(bs)$Condition <- trt # # regions <- dmrseq(bs=bs, testCovariate="Condition") ## ----bismarkinput------------------------------------------------------------- library(dmrseq) infile <- system.file("extdata/test_data.fastq_bismark.bismark.cov.gz", package = 'bsseq') bismarkBSseq <- read.bismark(files = infile, rmZeroCov = TRUE, strandCollapse = FALSE, verbose = TRUE) bismarkBSseq ## ----dissect, results="hide", echo=FALSE-------------------------------------- data("BS.chr21") M <- getCoverage(BS.chr21, type="M") Cov <- getCoverage(BS.chr21, type="Cov") chr <- as.character(seqnames(BS.chr21)) pos <- start(BS.chr21) celltype <- pData(BS.chr21)$CellType sampleNames <- sampleNames(BS.chr21) ## ----fromScratch-------------------------------------------------------------- head(M) head(Cov) head(chr) head(pos) dim(M) dim(Cov) length(chr) length(pos) print(sampleNames) print(celltype) bs <- BSseq(chr = chr, pos = pos, M = M, Cov = Cov, sampleNames = sampleNames) show(bs) ## ----cleanup, results="hide", echo=FALSE-------------------------------------- rm(M, Cov, pos, chr, bismarkBSseq) ## ----meta--------------------------------------------------------------------- pData(bs)$CellType <- celltype pData(bs)$Replicate <- substr(sampleNames, nchar(sampleNames), nchar(sampleNames)) pData(bs) ## ----filter------------------------------------------------------------------- # which loci and sample indices to keep loci.idx <- which(DelayedMatrixStats::rowSums2(getCoverage(bs, type="Cov")==0) == 0) sample.idx <- which(pData(bs)$CellType %in% c("imr90", "h1")) bs.filtered <- bs[loci.idx, sample.idx] ## ----results="hide", echo=FALSE----------------------------------------------- rm(bs.filtered) ## ----mainfunction, message=TRUE, warning=TRUE--------------------------------- testCovariate <- "CellType" regions <- dmrseq(bs=bs[240001:260000,], cutoff = 0.05, testCovariate=testCovariate) ## ----showresults-------------------------------------------------------------- show(regions) ## ----parallel, eval=FALSE----------------------------------------------------- # library("BiocParallel") # register(MulticoreParam(4)) ## ----blocks, message=TRUE, warning=TRUE--------------------------------------- testCovariate <- "CellType" blocks <- dmrseq(bs=bs[120001:125000,], cutoff = 0.05, testCovariate=testCovariate, block = TRUE, minInSpan = 500, bpSpan = 5e4, maxGapSmooth = 1e6, maxGap = 5e3) head(blocks) ## ----------------------------------------------------------------------------- sum(regions$qval < 0.05) # select just the regions below FDR 0.05 and place in a new data.frame sigRegions <- regions[regions$qval < 0.05,] ## ----hyper-------------------------------------------------------------------- sum(sigRegions$stat > 0) / length(sigRegions) ## ----plot, out.width='\\textwidth', fig.height = 2.5, warning=FALSE----------- # get annotations for hg18 annoTrack <- getAnnot("hg18") plotDMRs(bs, regions=regions[1,], testCovariate="CellType", annoTrack=annoTrack) ## ----plotblock, out.width='\\textwidth', fig.height = 2.5, warning=FALSE------ plotDMRs(bs, regions=blocks[1,], testCovariate="CellType", annoTrack=annoTrack) ## ----plot2, fig.height=3------------------------------------------------------ plotEmpiricalDistribution(bs, testCovariate="CellType") ## ----plot3, fig.height=3------------------------------------------------------ plotEmpiricalDistribution(bs, testCovariate="CellType", type="Cov", bySample=TRUE) ## ----export, eval=FALSE------------------------------------------------------- # write.csv(as.data.frame(regions), # file="h1_imr90_results.csv") ## ----meandiff----------------------------------------------------------------- rawDiff <- meanDiff(bs, dmrs=sigRegions, testCovariate="CellType") str(rawDiff) ## ----sim---------------------------------------------------------------------- data(BS.chr21) # reorder samples to create a null comparison BS.null <- BS.chr21[1:20000,c(1,3,2,4)] # add 100 DMRs BS.chr21.sim <- simDMRs(bs=BS.null, num.dmrs=100) # bsseq object with original null + simulated DMRs show(BS.chr21.sim$bs) # coordinates of spiked-in DMRs show(BS.chr21.sim$gr.dmrs) # effect sizes head(BS.chr21.sim$delta) ## ----sessionInfo-------------------------------------------------------------- sessionInfo()