Parameter Estimation for Stable Distributions and Their Mixtures


[Up] [Top]

Documentation for package ‘MixStable’ version 0.1.0

Help Pages

A B C D E F G I K L M N P Q R S T U V W

-- A --

aic Akaike Information Criterion (AIC)
analyse_stable_distribution Perform full stability analysis and export results

-- B --

bayesian_mixture_model Bayesian mixture model using normal components (simplified)
bic Bayesian Information Criterion (BIC)
build_mcculloch_interpolators Build interpolation functions from McCulloch table

-- C --

calculate_log_likelihood Calculate simplified log-likelihood
CDF Estimate stable distribution parameters using classical ECF regression
clip Clip values between lower and upper bounds
compare_em_vs_em_gibbs Compare standard EM and EM with Gibbs sampling using kernel ECF
compare_estimators_on_simulations Compare MLE, ECF, and McCulloch estimators on simulated data
compare_methods_across_configs Compare McCulloch, ECF, and MLE methods across parameter configurations
compare_methods_with_gibbs Compare estimation methods with and without Gibbs sampling
compute_model_metrics Compute log-likelihood, AIC, and BIC for alpha-stable model
compute_quantile_ratios Compute McCulloch quantile ratios from sample data
compute_serial_interval Compute serial interval from CSV file
cosine_exp_ralpha Cosine exponential function
cosine_log_weighted_exp_ralpha Cosine-log-weighted exponential with r^(-alpha) term

-- D --

DONNEE_with_serial_interval Example serial interval data

-- E --

ecf_components Extract magnitude and phase components from ECF
ecf_empirical Compute empirical characteristic function
ecf_estimate_all Estimate all stable parameters from empirical characteristic function
ecf_fn Empirical Characteristic Function
ecf_regression Estimate stable parameters using weighted ECF regression
empirical_r0 Empirical R0 estimation using growth model
em_alpha_stable EM algorithm for alpha-stable mixture
em_estimate_stable_from_cdf EM algorithm for mixture of alpha-stable distributions using CDF-based ECF
em_estimate_stable_from_cdf_with_gibbs EM algorithm for alpha-stable mixture using CDF-based ECF and Gibbs M-step
em_estimate_stable_kernel_ecf EM algorithm for mixture of alpha-stable distributions using kernel ECF
em_estimate_stable_kernel_ecf_with_gibbs EM algorithm for alpha-stable mixture using kernel ECF and Gibbs M-step
em_estimate_stable_recursive_ecf EM algorithm for mixture of alpha-stable distributions using recursive ECF
em_estimate_stable_recursive_ecf_with_gibbs EM algorithm for alpha-stable mixture using recursive ECF and Gibbs M-step
em_estimate_stable_weighted_ols EM algorithm for mixture of alpha-stable distributions using weighted OLS
em_estimate_stable_weighted_ols_with_gibbs EM algorithm for alpha-stable mixture using weighted OLS and Gibbs M-step
em_estimation_mixture EM algorithm for two-component Gaussian mixture
em_fit_alpha_stable_mixture EM algorithm for two-component alpha-stable mixture using MLE
em_stable_mixture EM algorithm for alpha-stable mixture using a custom estimator
ensure_positive_scale Ensure positive scale parameter
estimate_alpha_gamma Estimate alpha and gamma from ECF modulus
estimate_beta_delta Estimate beta and delta from ECF phase
estimate_mixture_params Estimate mixture of two stable distributions
estimate_stable_from_cdf Estimate stable parameters using CDF-based ECF regression
estimate_stable_kernel_ecf Estimate stable parameters using kernel-based ECF method
estimate_stable_params Estimate single stable distribution parameters
estimate_stable_r Estimate stable parameters using method of moments
estimate_stable_recursive_ecf Estimate stable parameters using recursive ECF method
estimate_stable_weighted_ols Estimate stable parameters using weighted OLS on recursive ECF
est_r0_ml Estimate R0 using maximum likelihood
est_r0_mle MLE estimation of R0 using generation time
eta0 Helper function for eta0 computation
eta_func General eta function
evaluate_estimation_method Evaluate estimation method using MSE over multiple trials
evaluate_fit Evaluate fit quality using RMSE and log-likelihood
export_analysis_report Export analysis report to JSON and Excel

-- F --

false_position_update False position method update step
fast_integrate Fast numerical integration using trapezoidal rule
fit_alpha_stable_mle Fit Alpha-Stable Distribution using MLE (L-BFGS-B)
fit_mle_mixture Fit MLE Mixture of Two Stable Distributions
fit_stable_ecf Estimate stable parameters using filtered and weighted ECF regression

-- G --

generate_alpha_stable_mixture Generate samples from a predefined alpha-stable mixture
generate_mcculloch_table Generate McCulloch lookup table from simulated stable samples
generate_mixture_data Simulates a mixture of alpha-stable distributions with randomly sampled parameters.
generate_synthetic_data Generate synthetic data from two alpha-stable components
gibbs_sampler Gibbs sampler for Gaussian mixture model
grad_loglik_alpha Log-likelihood gradient with respect to alpha
grad_loglik_beta Log-likelihood gradient with respect to beta
grad_loglik_delta Log-likelihood gradient with respect to delta (scale)
grad_loglik_omega Log-likelihood gradient with respect to omega (location)

-- I --

Im Imaginary part of the ECF integral
integrate_cosine Integrate cosine exponential
integrate_cosine_log_weighted Integrate cosine-log-weighted exponential
integrate_function Robust integration helper function
integrate_sine Integrate sin exponential
integrate_sine_log_weighted Integrate sine-log-weighted exponential
integrate_sine_r_weighted Integrate sine-r-weighted exponential
integrate_sine_weighted Integration wrappers for specific integrands
Int_Im Integrate imaginary component over \mathbb{R}
Int_Re Integrate real component over \mathbb{R}

-- K --

kde_bandwidth_plugin KDE bandwidth selection using plugin method

-- L --

log_likelihood_mixture Log-likelihood for mixture of stable distributions
L_stable Negative log-likelihood for stable distribution using dstable

-- M --

Max_vrai Maximum likelihood estimation using Nelder-Mead
mcculloch_lookup_estimate Estimate stable parameters using McCulloch lookup
mcculloch_quantile_init Initialization using McCulloch quantile method
metropolis_hastings Metropolis-Hastings MCMC for stable mixture clustering
mixture_stable_pdf Mixture of two stable PDFs
mle_estimate Simple MLE estimation with default starting values
mock_gibbs_sampling Mock Gibbs sampling for alpha-stable mixture estimation
mock_lookup_alpha_beta Mock lookup for alpha and beta (fallback)

-- N --

negative_log_likelihood Negative log-likelihood for single stable distribution
normalized_grad_alpha Normalized gradient for alpha parameter Computes the normalized gradient of the log-likelihood with respect to the alpha parameter over a set of observations. This is useful for optimization routines where scale-invariant updates are preferred.
normalized_objective_beta Normalized objective for beta parameter
normalized_objective_delta Normalized objective for delta parameter
normalized_objective_omega Normalized objective for omega parameter
N_epanechnikov Epanechnikov kernel
N_gaussian Gaussian kernel
N_uniform Uniform kernel

-- P --

plot_comparison Compare EM-estimated mixture with a non-optimized reference model
plot_distributions Plot histogram with normal and stable PDF overlays
plot_effective_reproduction_number Plot effective reproduction number (Re) over time
plot_final_mixture_fit Plot final fitted mixture of alpha-stable distributions
plot_fit_vs_true Plot true vs estimated mixture density
plot_fit_vs_true_methods Compare estimated mixture densities from two methods against the true density
plot_method_comparison Plot RMSE and Log-Likelihood comparison across methods
plot_mixture Plot mixture of two alpha-stable distributions
plot_mixture_fit Plot mixture fit with individual components
plot_real_mixture_fit Plot fitted mixture on real dataset
plot_results Plot posterior mixture density from MCMC samples
plot_trace Plot trace of a parameter across MCMC iterations
plot_vs_normal_stable Plot comparison between normal and stable distributions

-- Q --

qcv_stat QCV statistic for tail heaviness

-- R --

Re Real part of the ECF integral
recursive_weight Recursive weight function
robust_ecf_regression Estimate stable parameters using robust ECF regression
robust_mle_estimate Robust MLE estimation with multiple starting points
rstable Generate random samples from stable distribution
RT Compute effective reproduction number Rt
run_all_estimations Run all EM-based estimations without Gibbs sampling (CRAN-safe)
run_estimations_with_gibbs Run all EM-based estimations with Gibbs sampling (CRAN-safe)
r_stable_pdf Robust stable PDF computation

-- S --

safe_integrate Safe integration wrapper with multiple fallback strategies
simple_em_real Simple 2-component EM using ECF initialization
simulate_mixture Simulate mixture data from alpha-stable components
sine_exp_ralpha Sine exponential function
sine_log_weighted_exp_ralpha Sine-log-weighted exponential with r^(-alpha) term
sine_r_weighted_exp_ralpha Sine-r-weighted exponential function
sine_weighted_exp_ralpha Sine-weighted exponential with r^alpha term
skew_kurtosis Calculate skewness and kurtosis
stable_fit_init Initialize stable distribution parameters

-- T --

TableS2_serial_interval_mean_ Example transmission pair data with mean serial interval
test_normality Test normality using multiple statistical tests

-- U --

unpack_params Helper function to unpack parameters

-- V --

validate_params Validate and clip parameters for stable distribution

-- W --

wasserstein_distance_mixture Wasserstein distance between two mixture distributions