An implementation of Bayesian survival models with graph-structured selection priors for sparse identification of omics features predictive of survival (Madjar et al., 2021 <doi:10.1186/s12859-021-04483-z>) and its extension to use a fixed graph via a Markov Random Field (MRF) prior for capturing known structure of omics features, e.g. disease-specific pathways from the Kyoto Encyclopedia of Genes and Genomes database (Hermansen et al., 2025 <doi:10.48550/arXiv.2503.13078>).
| Version: | 0.1.0 | 
| Depends: | R (≥ 4.1.0) | 
| Imports: | Rcpp, ggplot2, GGally, mvtnorm, survival, riskRegression, utils, stats, methods | 
| LinkingTo: | Rcpp, RcppArmadillo, testthat | 
| Suggests: | knitr, testthat, Matrix | 
| Published: | 2025-03-25 | 
| DOI: | 10.32614/CRAN.package.BayesSurvive | 
| Author: | Zhi Zhao [aut, cre],
  Waldir Leoncio [aut],
  Katrin Madjar [aut],
  Tobias Østmo Hermansen [aut],
  Manuela Zucknick [ctb],
  Jörg Rahnenführer [ctb] | 
| Maintainer: | Zhi Zhao  <zhi.zhao at medisin.uio.no> | 
| BugReports: | https://github.com/ocbe-uio/BayesSurvive/issues | 
| License: | GPL-3 | 
| URL: | https://github.com/ocbe-uio/BayesSurvive | 
| NeedsCompilation: | yes | 
| Citation: | BayesSurvive citation info | 
| Materials: | README, NEWS | 
| In views: | Survival | 
| CRAN checks: | BayesSurvive results |