Package 'CEDA'

January 20, 2025

Tyme Destroya
Type Package
Title CRISPR Screen and Gene Expression Differential Analysis
Version 1.1.1
Description Provides analytical methods for analyzing CRISPR screen data at different levels of gene expression. Multi-component normal mixture models and EM algorithms are used for modeling.
Depends R(>= 3.5.0), limma
Imports stats, mixtools, ggplot2, dplyr, ggsci, ggridges, ggprism
Suggests knitr, rmarkdown
License Apache License (== 2.0)
Encoding UTF-8
LazyData true
RoxygenNote 7.2.1
VignetteBuilder knitr, rmarkdown
NeedsCompilation no
Author Lianbo Yu [aut, cre], Yue Zhao [aut], Kevin R. Coombes [aut], Lang Li [aut]
Maintainer Lianbo Yu <lianbo.yu@osumc.edu></lianbo.yu@osumc.edu>
Repository CRAN
Date/Publication 2024-02-27 06:10:02 UTC
Contents

alphaBeta	 	 	 	2
calculateGeneLFC	 	 	 	2
calculateGenePval	 	 	 	3
densityPlot	 	 	 	3
EMFit	 	 	 	4

calculateGeneLFC

makeRhoNull	4
mda231	5
medianNormalization	5
normalMM	6
permuteLimma	7
preparePlotData	7
ridgePlot	8
runLimma	9
scatterPlot	9
	11

Index

alphaBeta	Calculating a significance score of a gene based on the corresponding
	sgRNAs' p-values of the gene.

Description

Code was adapted from R package gscreend.

Usage

alphaBeta(pvec)

Arguments

pvec

A numeric vector of p-values.

Value

A min value of the kth smallest value based on the beta distribution B(k, n-k+1), where the n is the number of probabilite is in the vector. This min value is the significance score of the gene.

calculateGeneLFC Calculating gene-level log fold ratios

Description

Log fold ratios of all sgRNAs of a gene are averaged to obtain the gene level log fold ratio.

Usage

```
calculateGeneLFC(lfcs, genes)
```

Arguments

lfcs	A numeric vector containing log fold change of sgRNAs.
genes	A character string containing gene names corresponding to sgRNAs.

calculateGenePval

Value

A numeric vector containing log fold ratio of genes.

calculateGenePval	Calculating gene level p-values using modified robust rank aggrega-
	tion (alpha-RRA method) on sgRNAs' p-values

Description

Code was adapted from R package gscreend. The alpha-RRA method is adapted from MAGeCK.

Usage

```
calculateGenePval(pvec, genes, alpha, nperm = 20)
```

Arguments

pvec	A numeric vector containing p-values of sgRNAs.
genes	A character string containing gene names corresponding to sgRNAs.
alpha	A numeric number denoting the alpha cutoff (i.e. 0.05).
nperm	Number of permutations, default is 20

Value

A list with four elements: 1) a list of genes with their p-values; 2) a numeric matrix of rho null, each column corresponding to a different number of sgRNAs per gene; 3) a numeric vector of rho; 4) a numeric vector of number of sgRNAs per gene.

densityPlot	2D density contour plot of gene log2 fold ratios against gene expres-
	sion levels

Description

This function generates a scatter plot with 2D density contour of log2 fold ratios of sgRNAs against the corresponding gene expression levels.

Usage

densityPlot(data, ...)

Arguments

data	A data frame from the output of preparePlotData function
	Other graphical parameters

Value

No return value

EMFit	Fitting multi-component normal mixture models by R package mix-
	tools

Description

The function normalmixEM in R package mixtools is employed for fitting multi-component normal mixture models.

Usage

EMFit(x, k0, mean_constr, sd_constr, npara, d0)

Arguments

х	A numeric vector
k0	Number of components in the normal mixture model
mean_constr	A constrain on means of components
sd_constr	A constrain on standard deviations of components
npara	Number of parameters
d0	Number of times for fitting mixture model using different starting values

Value

Normal mixture model fit and BIC value of the log-likelihood

makeRhoNull	Generating the null distribution of the significance score of a gene.
-------------	---

Description

Code was adapted from R package gscreend.

Usage

makeRhoNull(n, p, nperm)

mda231

Arguments

n	An integer representing sgRNA number of a gene.
р	A numeric vector which contains the percentiles of the p-values that meet the cut-off (alpha).
nperm	Number of permutation runs.

Value

A numric vector which contains all the significance scores (rho) of genes generated by a permutation test where the sgRNAs are randomly assigned to genes.

mda231

CRISPR screen data of cell line MDA-MB-231.

Description

A dataset containing the expression data of sgRNAs in a CRISPR screen experiment of cell line MDA-MB-231.

Usage

mda231

Format

A data frame with a list of two elements:

sgRNA Raw Read counts of sgRNAs

negene A list of non-essential genes

medianNormalization Median normalization of sgRNA counts

Description

This function adjusts sgRNA counts by the median ratio method. The normalized sgRNA read counts are calculated as the raw read counts devided by a size factor. The size factor is calcuated as the median of all size factors caculated from negative control sgRNAs (eg., sgRNAs corresponding to non-targeting or non-essential genes).

Usage

medianNormalization(data, control)

Arguments

data	A numeric matrix containing raw read counts of sgRNAs with rows correspond- ing to sgRNAs and columns correspondings to samples.
control	A numeric matrix containing raw read counts of negative control sgRNAs with rows corresponding to sgRNAs and columns corresponding to samples. Sample ordering is the same as in data.

Value

A list with two elements: 1) size factors of all samples; 2) normalized counts of sgRNAs.

Examples

```
count <- matrix(rnbinom(5000 * 6, mu=500, size=3), ncol = 6)
colnames(count) = paste0("sample", 1:6)
rownames(count) = paste0("sgRNA", 1:5000)
control <- count[1:100,]
normalizedcount <- medianNormalization(count, control)</pre>
```

normalMM

Performing empirical Bayes modeling on limma results

Description

This function perform an empirical Bayes modeling on log fold ratios and return the posterior log fold ratios.

Usage

normalMM(data, theta0, n.b = 5, d = 10)

Arguments

data	A numeric matrix containing limma results and log2 gene expression levels that has a column nameed 'lfc' and a column named 'exp.level.log2'
theta0	Standard deviation of log2 fold changes under permutations
n.b	Number of bins, default is 5 bins
d	Number of times for fitting mixture model using different starting values, default
	is 10

Value

A numeric matrix containing limma results, RNA expression levels, posterior log2 fold ratio, log p-values, and estimates of mixture model

permuteLimma

Modeling CRISPR data with a permutation test between conditions by R package limma

Description

The lmFit function in R package limma is employed for group comparisons under permutations.

Usage

permuteLimma(data, design, contrast.matrix, nperm)

Arguments

data	A numeric matrix containing log2 expression level of sgRNAs with rows corre- sponding to sgRNAs and columns to samples.	
design	A design matrix with rows corresponding to samples and columns to coefficients to be estimated.	
contrast.matrix		
	A matrix with columns corresponding to contrasts.	
nperm	Number of permutations	

Value

A numeric matrix containing log2 fold changes with permutations

Examples

```
y <- matrix(rnorm(1000*6),1000,6)
condition <- gl(2,3,labels=c("Control","Baseline"))
design <- model.matrix(~ 0 + condition)
contrast.matrix <- makeContrasts("conditionControl-conditionBaseline",levels=design)
fit <- permuteLimma(y,design,contrast.matrix,20)</pre>
```

preparePlotData	Prepare	data for	density plo	t and ridge plot

Description

Input a data frame with each gene one row, and geneID, geneLFC, geneFDR as columns. This function will stratify genes into five groups based on their FDR levels: <=0.001, (0.001,0.01], (0.01,0.05], (0.05,0.5], (0.5,1]

Usage

```
preparePlotData(data, gene.fdr)
```

Arguments

data	A data frame containing each gene in one row, and at least three columns with geneID, geneLFC, and geneFDR.
gene.fdr	A numeric variable (column) in the data frame, corresponding to the gene level FDR

Value

A data frame based on the original data frame, with an additional column "group" indicating which FDR group this gene belongs to.

ridgePlot	Density ridgeline plot of gene expression levels for different FDR
	groups.

Description

This function generates a density ridgeline plot of gene expression levels for different FDR groups.

Usage

```
ridgePlot(data, ...)
```

Arguments

data	A data frame from the output of preparePlotData function
	Other graphical parameters

Value

No return value

runLimma

Description

The lmFit function in R package limma is employed for group comparisons.

Usage

```
runLimma(data, design, contrast.matrix)
```

Arguments

data	A numeric matrix containing log2 expression levels of sgRNAs with rows corresponding to sgRNAs and columns corresponding to samples.	
design	A design matrix with rows corresponding to samples and columns correspond- ing to coefficients to be estimated.	
contrast.matrix		
	A matrix with columns corresponding to contrasts.	

Value

A data frame with rows corresponding to sgRNAs and columns corresponding to limma results

Examples

```
y <- matrix(rnorm(1000*6),1000,6)
condition <- gl(2,3,labels=c("Treatment","Baseline"))
design <- model.matrix(~ 0 + condition)
contrast.matrix <- makeContrasts("conditionTreatment-conditionBaseline",levels=design)
limma.fit <- runLimma(y,design,contrast.matrix)</pre>
```

scatterPlot

Scatter plot of log2 fold ratios against gene expression levels

Description

This function generates a scatter plot of log2 fold ratios of sgRNAs against the corresponding gene expression levels.

Usage

scatterPlot(data, fdr, ...)

Arguments

data	A numeric matrix from the output of normalMM function
fdr	A level of false discovery rate
	Other graphical parameters

Value

No return value

Index

* datasets mda231, 5 alphaBeta, 2 calculateGeneLFC, 2 calculateGenePval, 3 densityPlot, 3 EMFit, 4 makeRhoNull, 4

mda231, 5 medianNormalization, 5

normalMM, 6

permuteLimma, 7
preparePlotData, 7

ridgePlot,8 runLimma,9

scatterPlot,9