Walkthrough for the CLVTools Package

Contents
1 Prerequisites: Setup the R environment

2 Apply the CLVTools Package
2.1 General workflowo
2.2 Load sample data provided in the packageo oL
2.3 [Initialize the CLV-Object e
2.4 Check the clvdata Object o .
2.5 Estimate Model Parameters Lo
2.6 Predict Customer Behavior
2.7 Plotting e e
2.8 Covariates
2.9 Add Correlation to the model
2.10 Advanced Options for Covariates

3 Customer Spending
3.1 Load sample data provided in the package L oL
3.2 Estimate Model Parameters L
3.3 Predict Customer Spending L L e
3.4 Plot Spendings

1 Prerequisites: Setup the R environment

Install the stable version from CRAN:

install.packages("CLVTools")

© ot s W NN NN

10
13
17
18

Install the development version from GitHub (using the devtools package (Wickham, Hester, and Chang

2019)):

install.packages("devtools")
devtools: :install_github("bachmannpatrick/CLVTools", ref = "development")

Load the package

library("CLVTools")

2 Apply the CLVTools Package

2.1 General workflow

Independent of the latent attrition model applied in CLVTools, the general workflow consists of three main
steps:

1. Create a clv.data object containing the dataset and required meta-information such as date formats
and column names in the dataset. After initializing the object, there is the option to add additional
information on covariates in a separate step.

2. Fit the model on the data provided.

3. Use the estimated model parameters to predict future customer purchase behavior.

CUSTNO ORDER_DATE PRICE
10000094635 2005-01-09 69.95
10000094635 2005-01-09 89.95
10000094635 2005-10-22 129.95

9999920974 20 0 Time-invariant information
9999920974 2 (e.g. demographics)
9999920974 20
/ ¢ Transactional Data V
[PR P Optional: Add additional data
N :::t:;::an\;i:':z = (e.g. more time-varying information,
v - V or other cohorts)
_W| setstaticCovariates(.) [~] Estimate the model
Create a clvdata Object ~ parameters Predict future customer
» »
clvdata (..) 77| prbd(.) -
[~ bgnbd(..) predict(..)
\ . . * ggomnbd (...)
Add time-varying - bgbb (...)
contextual factors

@ SetDynamicCovariates (..) @ @

O Time-varying information
S — (e.g. direct marketing)

optional
e T bty | -
f—————————— — — — I Summary i_i Plot :;_ _____________ P S
L e e e e e e e ! | D _-"
| summary (..) "_} plot(..) v b o
i |

Figure 1: Workflow for CLVTools

CLVTools provides two ways for evaluating latent attrition models: you can use of the provided formula
interface or you can use standard functions (non-formula interface). Both offer the same functionality,
however the formula interface is especially helpful when covariates are included in the model. Through out
this walkthrough, we will illustrate both options.

Reporting and plotting results is facilitated by the implementation of well-known generic methods such as
plot (), print() and summary(). These commands adapt their output according to the model state and
may be used at any point of the workflow.

2.2 Load sample data provided in the package

As Input data CLVTools requires customers’ transaction history. Every transaction record consists of a
purchase date and customer ID. Optionally, the price of the transaction may be included to allow for

prediction of future customer spending using an additional Gamma/Gamma model(Fader, Hardie, and Lee
2005b; Colombo and Jiang 1999). Using the full history of transaction data allows for comprehensive plots
and summary statistics, which allow the identification of possible issues prior to model estimation. Data
may be provided as data.frame or data.table (Dowle and Srinivasan 2019).

It is common practice to split time series data into two parts, an estimation and a holdout period. The
model is estimated based on the data from the estimation period while the data from the holdout period
allows to rigorously assess model performance. Once model performance is checked on known data one can
proceed to predict data without a holdout period. The length of the estimation period is heavily dependent
on the characteristics of the analyzed dataset. We recommend to choose an estimation period that contains
in minimum the length of the average inter-purchase time. Note that all customers in the dataset need to
purchase at least once during the estimation period, i.e. these models do not account for prospects who have
not yet a purchase record.

Some models included in CLVTools allow to model the impact of covariates. These covariates may explain
heterogeneity among the customers and therefore increase the predictive accuracy of the model. At the same
time, we may also identify and quantify the effects of these covariates on customer purchase and customer
attrition. CLVTools distinguishes between time-invariant and time-varying covariates. Time-invariant co-
variates include customer characteristics such as demographics that do not change over time. Time-varying
covariates are allowed to change over time. They include for example direct marketing information or
seasonal patterns.

For the following example, we use simulated data comparable to data from a retailer in the apparel industry.
The dataset contains transactional detail records for every customer consisting of customer id, date of
purchase and the total monetary value of the transaction. The apparel dataset is available in the CLVTools
package. Use the data(apparelTrans) to load it:

data("apparelTrans")

apparelTrans

#> Id Date Price
#> <char> <Date> <num>
#> 1: 1 2005-01-02 230.30
#> 2: 1 2005-09-06 84.39
#> 3: 1 2006-01-18 131.07
#> 4: 1 2006-04-05 86.43
#> 5 1 2006-07-02 11.49
#> -——

#> 3183: 600 2005-01-02 24.94
#> 3184 : 600 2005-04-17 54.97
#> 3185: 600 2005-06-30 66.84
#> 3186: 600 2005-10-27 22.54
#> 3187: 600 2006-01-09 12.97

2.3 Initialize the CLV-Object

Before we estimate a model, we are required to initialize a data object using the clvdata() command. The
data object contains the prepared transactional data and is later used as input for model fitting. Make sure
to store the generated object in a variable, e.g. in our example clv.apparel.

Be aware that probabilistic models such as the ones implemented in CLVTools are usually applied to specific
customer cohorts. That means, you analyze customer that have joined your company at the same time
(usually same day, week, month, or quarter). For more information on cohort analysis, see also here.
Consequently, the data apparelTrans in this example is not the full transaction records of a fashion retailer,
but rather only the customer cohort of 250 customers purchasing for the first time at this business on the
day of 2005-01-03. This has to be done before initializing a data object using the clvdata() command.

https://en.wikipedia.org/wiki/Cohort_analysis

Through the argument data.transactions a data.frame or data.table which contains the transaction
records, is specified. In our example this is data.transactions=apparelTrans. The argument date.format
is used to indicate the format of the date variable in the data used. The date format in the apparel dataset
is given as “year-month-day” (i.e., “2005-01-03"), therefore we set date.format="ymd". Other combinations
such as date.format="dmy" are possible. See the documentation of lubridate (Grolemund and Wickham
2011) for all details. time.unit is the scale used to measure time between two dates. For this dataset
and in most other cases The argument time.unit="week" is the preferred choice. Abbreviations may be
used (i.e. “w”). estimation.split indicates the length of the estimation period. Either the length of the
estimation period (in previous specified time units) or the date at which the estimation period ends can be
specified. If no value is provided, the whole dataset is used as estimation period (i.e. no holdout period).
In this example, we use an estimation period of 40 weeks. Finally, the three name arguments indicate
the column names for customer ID, date and price in the supplied dataset. Note that the price column is
optional.

clv.apparel <- clvdata(apparelTrans,
date.format="ymd",
time.unit = "week",
estimation.split = 104,
name.id = "Id",
name.date = "Date",
name.price = "Price")

2.4 Check the clvdata Object

To get details on the clvdata object, print it to the console.

clv.apparel
#> CLV Transaction Data

#>

#> Call:

#> clvdata(data. transactions = apparelTrans, date.format = "ymd",
#> time.unit = "week", estimation.split = 104, name.td = "Id",
#> name.date = "Date", nmame.price = "Price")

#>

#> Total # customers 600

#> Total # transactions 3183

#> Spending information TRUE

#>

#>

#> Time unit Weeks

#>

#> Estimation start 2005-01-02

#> Estimation end 2006-12-31

#> Estimation length 104.0000 Weeks

#>
#> Holdout start 2007-01-01
#> Holdout end 2010-12-20

#> Holdout length 207.0000 Weeks

Alternatively the summary() command provides full detailed summary statistics for the provided transac-
tional detail. summary () is available at any step in the process of estimating a probabilistic customer attrition
model with CLVTools. The result output is updated accordingly and additional information is added to the
summary statistics.nobs () extracts the number of observations. For the this particular dataset we observe

a total of 250 customers who made in total 2257 repeat purchases. Approximately 26% of the customers are
zero repeaters, which means that the only a minority of the customers do not return to the store after their

first purchase.

summary (clv.apparel)

#> CLV Transaction Data

#>

#> Time unit Weeks

#> Estimation length 104.0000 Weeks

#> Holdout length 207.0000 Weeks

#>

#> Transaction Data Summary

#> Estimation Holdout Total

#> Number of customers - - 600

#> First Transaction in period 2005-01-02 2007-01-01 2005-01-02
#> Last Transaction in period 2006-12-31 2010-12-20 2010-12-20
#> Total # Transactions 1866 1317 3183

#> Mean # Transactions per cust 3.110 5.557 5.305

#> (SD) 2.714 5.123 6.119

#> Mean Spending per Transaction 40.545 36.977 39.069

#> (SD) 73.362 55.356 66.519

#> Total Spending 75657. 730 48699. 170 124356.900
#> Total # zero repeaters 213 - -

#> Percentage of zero repeaters 35.500 - -

#> Mean Interpurchase time 24.823 30.604 37.817

#> (SD) 19.417 24.756 42.339

2.5 Estimate Model Parameters

After initializing the object, we can start estimating the first probabilistic latent attrition model. We start
with the standard Pareto/NBD model (Schmittlein, Morrison, and Colombo 1987) and therefore use the
command pnbd () to fit the model and estimate model parameters. clv.data specifies the initialized object
prepared in the last step. Optionally, starting values for the model parameters and control settings for
the optimization algorithm may be provided: The argument start.params.model allows to assign a vector
(e.g. c(alpha=1, beta=2, s=1, beta=2) in the case of the Pareto/NBD model) of starting values for the
optimization. This is useful if prior knowledge on the parameters of the distributions are available. By
default starting values are set to 1 for all parameters. The argument optimx.args provides an option to
control settings for the optimization routine. It passes a list of arguments to the optimizer. All options
known from the package optimx (Nash and Varadhan 2011; Nash 2014) may be used. This option enables
users to specify specific optimization algorithms, set upper and/or lower limits or enable tracing information
on the progress of the optimization. In the case of the standard Pareto/NBD model, CLVTools uses by
default the optimization method L-BFGS-G (Byrd et al. 1995). If the result of the optimization is in-feasible,
the optimization automatically switches to the more robust but often slower Nelder-Mead method (Nelder
and Mead 1965). verbose shows additional output.

To execute the model estimation you have the choice between a formula-based interface and a non-formula-
based interface. In the following we illustrate the two alternatives.

2.5.1 Estimating the model using formula interface:

est.pnbd <- latentAttrition(formula = , family = pnbd, data=c1v.appare1)
#> Starting estimation. ..

#> Estimation finished!

est.pnbd
#> Pareto/NBD Standard Model
#>
#> Call:
#> latentAttrition(family = pnbd, data = clv.apparel)
#>
#> Coefficients:
#> T alpha s beta

#> 1.4490 48.6361 0.5613 46.8844
#> KKT1: TRUE

#> KKT2: TRUE

#>

#> Used Options:

#> Correlation: FALSE

Using start parameters and other additional arguments for the optimzier:

est.pnbd <- latentAttrition(formula = , family = pnbd, data=clv.apparel,
optimx.args = list(control=list(trace=5),
method="Nelder-Mead"),
start.params.model=c(r=1, alpha=10, s=2, beta=8))

2.5.2 Estimating the model using non-formula interface:

est.pnbd <- pnbd(clv.data = clv.apparel)
est.pnbd

If we assign starting parameters and additional arguments for the optimizer we use:

est.pnbd <- pnbd(clv.data = clv.apparel,
start.params.model = c(r=1, alpha = 2, s = 1, beta = 2),
optimx.args = list(control=list(trace=5),
method="Nelder-Mead"
)

Parameter estimates may be reported by either printing the estimated object (i.e. est.pnbd) directly in
the console or by calling summary (est.pnbd) to get a more detailed report including the likelihood value
as well as AIC and BIC. Alternatively parameters may be directly extracted using coef (est.pnbd). Also
loglik (), confint () and vcov () are available to directly access the Loglikelihood value, confidence intervals
for the parameters and to calculate the Variance-Covariance Matrix for the fitted model. For the standard
Pareto/NBD model, we get 4 parameters r, o, s and . where r, & represent the shape and scale parameter
of the gamma distribution that determines the purchase rate and s, § of the attrition rate across individual
customers. 7/« can be interpreted as the mean purchase and s/ as the mean attrition rate. A significance
level is provided for each parameter estimates. In the case of the apparelTrans dataset we observe a an
average purchase rate of r/a = 0.147 transactions and an average attrition rate of s/ = 0.031 per customer
per week. KKT 1 and 2 indicate the Karush-Kuhn-Tucker optimality conditions of the first and second order
(Kuhn and Tucker 1951). If those criteria are not met, the optimizer has probably not arrived at an optimal
solution. If this is the case it is usually a good idea to rerun the estimation using alternative starting values.

#Full detailed summary of the parameter estimates
summary (est.pnbd)

#> Pareto/NBD Standard Model

#>

#> Call:

#> latentAttrition(family = pnbd, data = clv.apparel)
#>

#> Fitting period:

#> Estimation start 2005-01-02

#> Estimation end 2006-12-31

#> Estimation length 104.0000 Weeks

#>

#> Coefficients:

#> Estimate Std. Error z-val Pr(>/z/)

#> r 1.4490 0.2434 5.952 2.64e-09 ***
#> alpha 48.6361 7.4892 6.494 8.35e-11 **x*
#> s 0.5613 0.2710 2.071 0.0384 *
#> beta 46.8844 35.6114 1.317 0.1880

#> ——-

#> Signif. codes: 0 '#*¥x' 0.001 '¥x' 0.01 '¥' 0.05 '.' 0.1 ' ' 1
#>

#> Optimization info:

#> LL -5848.0978

#> AIC 11704 .1957
#> BIC 11721.7834
#> KKT 1 TRUE

#> KKT 2 TRUE

#> fewals 25.0000

#> Method L-BFGS-B
#>

#> Used Options:

#> Correlation FALSE

#Extract the coefficients only

coef (est.pnbd)

#> r alpha s beta
#> 1.4489768 48.6360845 0.5612598 /6.8843633
#Alternative: oefficients(est.pnbd.oby)

To extract only the coefficients, we can use coef (). To access the confidence intervals for all parameters
confint () is available.

#Extract the coefficients only

coef (est.pnbd)

#> T alpha s beta
#> 1.4489768 48.6360845 0.5612598 46.8843633
#Alternative: oefficients(est.pnbd.oby)

#Extract the confidence intervals
confint (est.pnbd)

#> 2.5 7 97.5 %
#> r 0.97186638 1.926087

#> alpha 33.95755827 63.314611

#> s 0.03001564 1.092504
#> beta -22.91272057 116.681447

In order to get the Likelihood value and the corresponding Variance-Covariance Matrix we use the following
commands:

LogLikelihood at maximum
logLik(est.pnbd)
#> 'log Lik.' -5848.098 (df=4)

Variance-Covariance Matriz at maximum
vcov(est.pnbd)

#> T alpha s beta
#> r 0.05925727 1.7049763 -0.01786467 -3.472616
#> alpha 1.70497626 56.0878415 -0.43375972 -82.963756
#> s =0.01786467 -0.4337597 0.07346698 9.366245

#> beta -3.47261643 -82.9637556 9.36624519 1268.172624

As an alternative to the Pareto/NBD model CLVTools features the BG/NBD model (Fader, Hardie, and Lee
2005a) and the GGomp/NBD (Bemmaor and Glady 2012). To use the alternative models replace pnbd () by
the corresponding model-command. Note that he naming and number of model parameters is dependent on
the model. Consult the manual for more details on the individual models. Beside probabilistic latent attrition
models, CLVTools also features the Gamma/Gamma model (Colombo and Jiang 1999; Fader, Hardie, and
Lee 2005a) which is used to predict customer spending. See section Customer Spending for details on the
spending model.

Command Model Covariates Type

pnbd() Pareto/NBD time-invariant & latent attrition
time-varying model

bgnbd() BG/NBD time-invariant latent attrition
model

gegomnbd() GGom/NBD time-invariant latent attrition
model

gg() Gamma/Gamma - spending model

To estimate the GGom/NBD model we apply the ggomnbd ()to the clv.apparel object. The GGom/NBD
model is more flexible than the Pareto/NBD model, however it sometimes is challenging to optimize. Note
that in this particular case providing start parameters is essential to arrive at an optimal solution (i.e. kkt1:
TRUE and kkt2: TRUE).

To execute the model estimation you have the choice between a formula-based interface and a non-formula-
based interface. In the following we illustrate the two alternatives.

2.5.3 Estimating the model using formula interface:

est.ggomnbd <- latentAttrition(formula = , family = ggomnbd, data=clv.apparel,
optimx.args = list(method="Nelder-Mead"),
start.params.model=c(r=0.7, alpha=5, b=0.005, s=0.02, beta=0.001))

2.5.4 Estimating the model using non-formula interface:

est.ggomnbd <- ggomnbd(clv.data = clv.apparel,
start.params.model = c(r=0.7, alpha=5, b=0.005, s=0.02, beta=0.001),
optimx.args = list(method="Nelder-Mead"))

2.6 Predict Customer Behavior

Once the model parameters are estimated, we are able to predict future customer behavior on an individual
level. To do so, we use predict() on the object with the estimated parameters (i.e. est.pnbd). The
prediction period may be varied by specifying prediction.end. It is possible to provide either an end-date
or a duration using the same time unit as specified when initializing the object (i.e prediction.end =
"2006-05-08" or prediction.end = 30). By default, the prediction is made until the end of the dataset
specified in the clvdata() command. The argument continuous.discount.factor allows to adjust the
discount rate used to estimated the discounted expected transactions (DERT). The default value is 0.1
(=10%). Make sure to convert your discount rate if you use annual/monthly/weekly discount rates. An
annual rate of (100 x d)\% equals a continuous rate delta = 1n(1+d). To account for time units which
are not annual, the continuous rate has to be further adjusted to delta=1n(1+d) /k, where k are the number of
time units in a year. Probabilistic customer attrition model predict in general three expected characteristics
for every customer:

o “conditional expected transactions” (CET), which is the number of transactions to expect form a
customer during the prediction period,

o “probability of a customer being alive” (PAlive) at the end of the estimation period and

o “discounted expected residual transactions” (DERT) for every customer, which is the total number of
transactions for the residual lifetime of a customer discounted to the end of the estimation period.

If spending information was provided when initializing the clvdata-object, CLVTools provides prediction
for

o predicted mean spending estimated by a Gamma/Gamma model (Colombo and Jiang 1999; Fader,
Hardie, and Lee 2005a) and
o the customer lifetime value (CLV). CLV is calculated as the product of DERT and predicted spending.

If a holdout period is available additionally the true numbers of transactions (“actual.x”) and true spending
(“actual.total.spending”) during the holdout period are reported.

To use the parameter estimates on new data (e.g., an other customer cohort), the argument newdata op-
tionally allows to provide a new clvdata object.

results <- predict(est.pnbd)

#> Predicting from 2007-01-01 until (incl.) 2010-12-20 (207.14 Weeks).
#> Estimating gg model to predict spending...

#> Starting estimation. ..

#> Estimation finished!

print(results)

#> Key: <Id>

#> Id period.first period.last period.length actual.zx
#> <char> <Date> <Date> <num> <tnt>
#> 1: 1 2007-01-01 2010-12-20 207. 1429 0
#> 2 10 2007-01-01 2010-12-20 207.1429 1

#> 3 100 2007-01-01 2010-12-20 207. 1429 9

#> 4 101 2007-01-01 2010-12-20 207.1429 0

#> 5: 102 2007-01-01 2010-12-20 207. 1429 0

-

#> 596: 95 2007-01-01 2010-12-20 207. 1429 4

#> 597: 96 2007-01-01 2010-12-20 207.1429 3

#> 598: 97 2007-01-01 2010-12-20 207.1429 0

#> 599: 98 2007-01-01 2010-12-20 207. 1429 0

#> 600: 99 2007-01-01 2010-12-20 207. 1429 0

#> actual.total.spending PAlive CET DERT

#> <num> <num> <num> <num>

1 0.00 0.9468478 7.3256573 0.46765602

2 14.37 0.9825606 3.5198114 0.22469806

#> 3: 333.35 0.2784686 0.4190901 0.02675392

#> 4 0.00 0.4739762 1.2056215 0.07696458

#> b 0.00 0.2784686 0.4190901 0.02675392

R

#> 596: 98.81 0.8978209 3.2162499 0.20531927

#> 597: 253.61 0.2784686 0.4190901 0.02675392

#> 598: 0.00 0.2784686 0.4190901 0.02675392

#> 599: 0.00 0.6024098 1.5323094 0.09781972

#> 600: 0.00 0.9416701 4.3513967 0.27778489

#> predicted.mean.spending predicted.total.spending predicted.CLV
#> <num> <num> <num>
#> 1: 88.64634 649.39268 41.455992
#> 2 41.21027 145.05238 9.259868
#> 3 37.62791 15.76949 1.006694
#> 4 34.56278 41.66962 2.660110
#> b 37.62791 15.76949 1.006694
H> ==

#> 596: 26.54863 85.38701 5.450944
#> 597: 37.62791 15.76949 1.006694
#> 598: 37.62791 15.76949 1.006694
#> 599: 35.83393 54.90868 3.505265
#> 600: 19.20941 83.58774 5.336082

To change the duration of the prediction time, we use the predicton.end argument. We can either provide
a time period (30 weeks in this example):

predict(est.pnbd, prediction.end = 30)

or provide a date indication the end of the prediction period:

predict(est.pnbd, prediction.end = "2006-05-08")

2.7 Plotting

CLVTools, offers a variety of different plots. All clvdata objects may be plotted using the plot () command.
Similar to summary (), the output of plot() and the corresponding options are dependent on the current
modeling step. When applied to a data object created the clvdata() command, the following plots can be
selected using the which option of plotting:

10

Tracking plot (which="tracking"): plots the the aggregated repeat transactions per period over a
given time period. The period can be specified using the prediction.end option. It is also possible
to generate cumulative tracking plots (cumulative = FALSE). The tracking plot is the default option.
Frequency plot (which="frequency"): plots the distribution of transactions or repeat transactions per
customer, after aggregating transactions of the same customer on a single time point. The bins may be
adjusted using the option trans.bins. (Note that if trans.bins is changed, the option for labeling
(label.remaining) usually needs to be adapted as well.)

Spending plot (which="spending"): plots the empirical density of either customer’s average spending
per transaction. Note that this includes all transactions and not only repeat-transactions. You can
switch to plotting the value of every transaction for a customer (instead of the a customers mean
spending) using mean. spending=FALSE.

Interpurchase time plot (which="interpurchasetime"): plots the empirical density of customer’s
mean time (in number of periods) between transactions, after aggregating transactions of the same
customer on a single time point. Note that customers without repeat-transactions are note part of this
plot.

In the following, we have a basic tracking-plot for the aggregated repeat transactions

plot(clv.apparel)
#> Plotting from 2005-01-02 unt:l 2010-12-26.

Number of Repeat Transactions

30

201

104

Weekly tracking plot

Estimation end: 2006-12-31

2006 2008 2010
Date

To plot customers mean interpurchase time, we use:

plot(clv.apparel, which="interpurchasetime")

11

Density of Customer's Mean Time between Transactions

0.03 1

0.02 1

Density

0.00 1

0 25 50 75 100
Mean Interpurchase Time (Weeks)

When the plot() command is applied to an object with the an estimated model (i.e. est.pnbd), the
following plots can be selected using the which option of:

o Tracking plot (which="tracking"): plots the actual repeat transactions and overlays it with the
repeat transaction as predicted by the fitted model. Currently, following previous literature, the in-
sample unconditional expectation is plotted in the holdout period. The period can be specified using
the prediction.end option. It is also possible to generate cumulative tracking plots (cumulative
= FALSE). The tracking plot is th the default option. The argument transactions disable for plot-
ting actual transactions (transactions=FALSE). For further plotting options see the documentation.
Note that only whole periods can be plotted and that the prediction end might not exactly match
prediction.end. See the ?plot.clv.data for more details.

o Probability mass function (pmf) plot (which="pmf"): plots the actual and expected number of cus-
tomers which made a given number of repeat transaction in the estimation period. The expected
number is based on the PMF of the fitted model, the probability to make exactly a given number
of repeat transactions in the estimation period. For each bin, the expected number is the sum of
all customers’ individual PMF value. The bins for the transactions can be adjusted using the option
trans.bins. (Note that if trans.bins is changed, label.remaining usually needs to be adapted as
well.

For a standard tracking plot including the model, we use:

plot(est.pnbd)
#> Plotting from 2005-01-02 until 2010-12-26.

12

Weekly tracking plot

Estimation end: 2006-12-31

301

201

104

Number of Repeat Transactions

2006 2008 2010
Date

Legend — Actual — Pareto/NBD Standard

To plot the cumulative expected transactions 30 time units (30 weeks in this example) ahead of the end of
the estimation plot, we use:

plot(est.pnbd, prediction.end = 30, cumulative = TRUE)

Alternatively, it is possible to specify a date for the prediction.endargument. Note that dates are rounded
to the next full time unit (i.e. week):

plot(est.pnbd, prediction.end = "2006-05-08", cumulative = TRUE)

For a plot of the probability mass function (pmf), with 7 bins, we use:

plot(est.pnbd, which="pmf", trans.bins=0:5, label.remaining="6+")

2.8 Covariates

CLVTools provides the option to include covariates into probabilistic customer attrition models. Covariates
may affect the purchase or the attrition process, or both. It is also possible to include different covariates
for the two processes. However, support for covariates is dependent on the model. Not all implemented
models provide an option for covariates. In general, CLVTools distinguishes between two types of covariates:
time-invariant and time-varying. The former include factors that do not change over time such as customer
demographics or customer acquisition information. The latter may change over time and include marketing
activities or seasonal patterns.

Data for time-invariant covariates must contain a unique customer ID and a single value for each covariate.
It should be supplied as a data.frame or data.table. In the example of the apparel retailer we use
demographic information “gender” as time-invariant and information on the acquisition channel as covariate
for both, the purchase and the attrition process. Use the data("apparelStaticCov") command to load the
time-invariant covariates. In this example gender is coded as a dummy variable with male=0 and female=1
and channel with online=0 and offline=1.

13

data("apparelStaticCov")

apparelStaticCov

#> Id Gender Channel
#> <char> <num> <num>
#> g 1 0 0
#> 2: 2 1 0
#> 3: 3 1 0
#> 4 4 1 0
#> 58 5 1 0
#> -

#> 596: 596 0 1
#> 597: 597 0 1
#> 598: 598 1 0
#> 599: 599 0 1
#> 600: 600 0 0

Data for time-varying covariates requires a time-series of covariate values for every customer. I.e. if the time-
varying covariates are allowed to change every week, a value for every customer for every week is required.
Note that all contextual factors are required to use the same time intervals for the time-series. In the example
of the apparel retailer we use information on seasonal patterns (High.Season) as time-varying covariate.
Additionally, we add gender as time-invariant contextual factors. Note that the data structure of invariant
covariates needs to be aligned with the structure of time-varying covariate. Use data("apparelDynCov")
command to load

data("apparelDynCov")

apparelDynCov

#> Id Cov.Date High.Season Gender Channel
#> <char> <Date> <num> <num> <num>
#> s 1 2005-01-02 0 0 0
#> 2: 1 2005-01-09 0 0 0
#> 3: 1 2005-01-16 0 0 0
#> 4: 1 2005-01-23 0 0 0
#> F 1 2005-01-30 0 0 0
#> -—-

#> 187796 600 2010-11-28 1 0 0
#> 187797: 600 2010-12-05 1 0 0
#> 187798: 600 2010-12-12 0 0 0
#> 187799: 600 2010-12-19 0 0 0
#> 187800: 600 2010-12-26 0 0 0

To add the covariates to an initialized clvdata object the commands SetStaticCovariates() and
SetDynamicCovariates() are available. The two commands are mutually exclusive. The argument
clv.data specifies the initialized object and the argument data.cov.life respectively data.cov.trans
specifies the data source for the covariates for the attrition and the purchase process. Covariates are added
separately for the purchase and the attrition process. Therefore if a covariate should affect both processes it
has to be added in both arguments: data.cov.life and data.cov.trans. The arguments names.cov.life
and names.cov.trans specify the column names of the covariates for the two processes. In our example, we
use the same covariates for both processes. Accordingly, we specify the time-invariant covariates “Gender”
and “Channel” as follows:

clv.static<- SetStaticCovariates(clv.data = clv.apparel,

data.cov.life = apparelStaticCov,
data.cov.trans = apparelStaticCov,

14

names.cov.life = c("Gender", "Channel"),
names.cov.trans =c("Gender", "Channel"),
name.id = "Id4d")

To specify the time-varying contextual factors for seasonal patterns, we use the following:

clv.dyn <- SetDynamicCovariates(clv.data = clv.apparel,
data.cov.life = apparelDynCov,
data.cov.trans = apparelDynCov,
names.cov.life = c("High.Season", "Gender", "Channel"),
names.cov.trans = c("High.Season", "Gender", "Channel"),
name.id = "Id",
name.date = "Cov.Date")

In order to include time-invariant covariates in a time-varying model, they may be recoded as a time-varying
covariate with a constant value in every time period.

Once the covariates are added to the model the estimation process is almost identical to the standard model
without covariates. The only difference is that the provided object now data for contains either time-invariant
or time-varying covariates and the option to define start parameters for the covariates of both processes using
the arguments start.params.life and start.params.trans. If not set, the staring values are set to 1.
To define starting parameters for the covariates, the name of the corresponding factor has to be used. For
example in the case of time-invariant covariates:

To execute the model estimation you have the choice between a formula-based interface and a non-formula-
based interface. In the following we illustrate the two alternatives.

2.8.1 Estimating the model using formula interface:

We use all present covariates:

est.pnbd.static <- latentAttrition(formula = ~ .|., family = pnbd, data=clv.static)

Using the formula interface, we can use only selected covariates (only Gender for the lifetime process and
both, Channel and Gender for the transaction process):

est.pnbd.static <- latentAttrition(formula = ~ Gender|Channel+Gender,
family = pnbd, data=clv.static)

Or we can transform covariates:

est.pnbd.static <- latentAttrition(formula = ~ Channel+Gender|I(log(Channel+2)),
family = pnbd, data=clv.static)

Analogously, we can estimate the model containing time-varying covariates. In this example we also activate
output of the optimizer in order to observe the progress.

est.pnbd.dyn <- latentAttrition(formula = ~ .|., family = pnbd, data = clv.dyn,
optimx.args = list(control=list(trace=5)))

2.8.2 Estimating the model using non-formula interface:

15

est.pnbd.static <- pnbd(clv.static,
start.params.model = c(r=1, alpha = 2, s = 1, beta = 2),
start.params.life = c(Gender=0.6, Channel=0.4),
start.params.trans = c(Gender=0.6, Channel=0.4))

#> Starting estimation. ..

#> Estimation finished!

It is not possible to alter or select covariates in the non-formula interface, but, we can also estimate a model
containing time-varying covariates:

est.pnbd.dyn <- pnbd(clv.dyn,
start.params.model = c(r=1, alpha = 2, s = 1, beta = 2),
start.params.life = c(High.Season=0.5, Gender=0.6, Channel=0.4),
start.params.trans = c(High.Season=0.5, Gender=0.6, Channel=0.4),
optimx.args = list(control=list(trace=5)))

To inspect the estimated model we use summary (), however all other commands such as print (), coef (),
loglike(), confint () and vcov() are also available. Now, output contains also parameters for the covari-
ates for both processes. Since covariates are added separately for the purchase and the attrition process,
there are also separate model parameters for the two processes. These parameters are directly interpretable
as rate elasticity of the corresponding factors: A 1% change in a contextual factor X¥ or X% changes the
purchase or the attrition rate by 'ypurchXP or vy, fEXL percent, respectively (Gupta 1991). In the example of
the apparel retailer, we observe that female customer purchase significantly more (trans.Gender=1.42576).
Note, that female customers are coded as 1, male customers as 0. Also customers acquired offline (coded
as Channel=1), purchase more (trans.Channel=0.40304) and stay longer (1ife.Channel=0.9343). Make
sure to check the Karush-Kuhn-Tucker optimality conditions of the first and second order (Kuhn and Tucker
1951) (KKT1 and KKT1) before interpreting the parameters. If those criteria are not met, the optimizer
has probably not arrived at an optimal solution. If this is the case it is usually a good idea to rerun the
estimation using alternative starting values.

summary (est.pnbd.static)
#> Pareto/NBD with Static Covariates Model

#>

#> Call:

#> pnbd(clv.data = clv.static, start.params.model = c(r = 1, alpha = 2,

#> s =1, beta = 2), start.params.life = c(Gender = 0.6, Channel = 0.4),
#> start.params.trans = c(Gender = 0.6, Channel = 0.4))

#>

#> Fitting period:

#> Estimation start 2005-01-02

#> Estimation end 2006-12-31

#> Estimation length 104.0000 Weeks

#>

#> Coefficients:

#> Estimate Std. Error z-wval Pr(>/z/)

#> r 1.8387 0.3457 5.319 1.04e-07 **x*
#> alpha 92.9435 16.9749 5.475 4.37e-08 ***
#> s 0.5913 0.2603 2.272 0.02311 *
#> beta 49.5050 36.1445 1.370 0.17080

#> life.Gender -0.6428 0.2956 -2.175 0.02965 *
#> life.Channel 0.7902 0.3058 2.584 0.00978 *x
#> trans.Gender 0.2860 0.1041 2.746 0.00603 **

16

#> trans.Channel 0.6239 0.1049 5.945 2.76e-09 ***

#> -—-

#> Signif. codes: O 'xxx' (0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
#>

#> Optimization info:

#> LL -5821.0627

#> AIC 11658.1254

#> BIC 11693.3008

#> KKT 1 TRUE

#> KKT 2 TRUE

#> fewvals 60.0000

#> Method L-BFGS-B

#>

#> Used Options:

#> Correlation FALSE
#> Regularization FALSE
#> Constraint covs FALSE

To predict future customer behavior we use predict (). Note that dependent on the model, the predicted
metrics may differ. For example, in the case of the Pareto/NBD model with time-varying covariates, in-
stead of DERT, DECT is predicted. DECT only covers a finite time horizon in contrast to DERT. Time-
varying covariates must be provided for the entire prediction period. If the data initially provided in the
SetDynamicCovariates() command does not cover the complete prediction period, the argument new.data
offers the ability to supply new data for the time-varying covariates in the from of a clvdata object.

2.9 Add Correlation to the model

To relax the assumption of independence between the purchase and the attrition process, CLVTools provides
the option to specify the argument use.cor when fitting the model (i.e. pnbd). In case of use.cor=TRUE, a
Sarmanov approach is used to correlate the two processes. start.param.cor allows to optionally specify a
starting value for the correlation parameter. Correlation can be added with or without covariates.

To execute the model estimation you have the choice between a formula-based interface and a non-formula-
based interface. In the following we illustrate the two alternatives.

2.9.1 Estimating the model using formula interface:

est.pnbd.cor <- latentAttrition(formula = , family = pnbd,
use.cor=TRUE, data=clv.apparel)

2.9.2 Estimating the model using non-formula interface:

est.pnbd.cor <- pnbd(clv.apparel,
use.cor= TRUE)
summary (est.pnbd. cor)

The parameter Cor(life,trans) is added to the parameter estimates that may be directly interpreted as
a correlation. In the example of the apparel retailer the correlation parameter is not significant and the
correlation is very close to zero, indicating that the purchase and the attrition process may be independent.

17

2.10 Advanced Options for Covariates

CLVTools provides two additional estimation options for models containing covariates (time-invariant or
time-varying): regularization and constraints for the parameters of the covariates. Support for this option
is dependent on the model. They may be used simultaneously.

In the following we illustrate code for both, a formula-based interface a non-formula-based interface.

Regularization helps to prevent overfitting of the model when using covariates. We can add regularization
lambdas for the two processes. The larger the lambdas the stronger the effects of the regularization. Regu-
larization only affects the parameters of the covariates. The use of regularization is indicated at the end of
the summary () output.

2.10.1 Estimating the model using formula interface:

est.pnbd.reg <- latentAttrition(formula = ~ .|., family = pnbd,
reg.lambdas=c(life=3, trans=8), data=clv.static)
summary (est.pnbd.reg)

2.10.2 Estimating the model using non-formula interface:

We use the argument reg.lambdas to specify the lambdas for the two processes (i.e. reg.lambdas =
c(trans=100, 1life=100):

est.pnbd.reg <- pnbd(clv.static,
start.params.model = c(r=1, alpha = 2, s = 1, beta = 2),
reg.lambdas = c(trans=100, 1ife=100))

summary (est.pnbd.reg)

Constraints implement equality constraints for contextual factors with regards to the two processes. For
example the variable “gender” is forced to have the same effect on the purchase as well as on the attrition
process. We can use the argument names. cov.constr(i.e. names.cov.constr=c("Gender")). In this case,
the output only contains one parameter for “Gender” as it is constrained to be the same for both processes. To
provide starting parameters for the constrained variable use start.params.constr. The use of constraints
is indicated at the end of the summary () output.

2.10.3 Estimating the model using formula interface:

est.pnbd.constr <- latentAttrition(formula = ~.|., family = pnbd, data = clv.static,
names.cov.constr=c("Gender"),
start.params.constr = c(Gender = 0.6))

summary (est.pnbd. constr)

Note: providing a starting parameter for the constrained variable is optional.

2.10.4 Estimating the model using non-formula interface:

18

est.pnbd.constr <- pnbd(clv.static,
start.params.model = c(r=1, alpha = 2, s = 1, beta = 2),
start.params.constr = c(Gender=0.6),
names.cov.constr=c("Gender"))

summary (est.pnbd. constr)

3 Customer Spending

Customer lifetime value (CLV) is composed of three components of every customer: the future level of
transactions, expected attrition behaviour (i.e. probability of being alive) and the monetary value. While
probabilistic latent attrition models provide metrics for the first two components, they do not predict cus-
tomer spending. To predict customer spending an additional model is required. The CLVToolspackage
features the Gamma/Gamma (G/G) (Fader, Hardie, and Lee 2005b; Colombo and Jiang 1999) model for
predicting customer spending. For convenience, the predict() command allows to automatically predict
customer spending for all latent attrition models using the option predict.spending=TRUE (see section
Customer Spending). However, to provide more options and more granular insights the Gamma/Gamma
model can be estimated independently. In the following, we discuss how to estimate a Gamma/Gamma
model using CLVTools.

The general workflow remains identical. It consists of the three main steps: (1) creating a clv.data object
containing the dataset and required meta-information, (2) fitting the model on the provided data and (3)
predicting future customer purchase behavior based on the fitted model.

CLVTools provides two ways for evaluating spending models: you can use of the formula interface or you
can use standard functions (non-formula interface). Both offer the same functionality. Through out this
walkthrough, we will illustrate both options.

Reporting and plotting results is facilitated by the implementation of well-known generic methods such as
plot (), print () and summary().

3.1 Load sample data provided in the package

For estimating customer spending CLVTools requires customers’ transaction history including price. Every
transaction record consists of a purchase date,customer ID and the price of the transaction. Data may be
provided as data.frame or data.table (Dowle and Srinivasan 2019). Currently, the Gamma/Gamma model
does not allow for covariates.

We use again simulated data comparable to data from a retailer in the apparel industry. The apparel dataset
is available in the CLVTools package. We use the data(apparelTrans) to load it and initialize a data object
using the clvdata() command. For details see section Initialize the CLV-Object.

data("apparelTrans")

apparelTrans

#> Id Date Price
#> <char> <Date> <num>
#> s 1 2005-01-02 230.30
#> 2: 1 2005-09-06 84.39
#> &s 1 2006-01-18 131.07
#> 4: 1 2006-04-05 86.43
#> o 1 2006-07-02 11.49
#> -—

#> 3183: 600 2005-01-02 24.94

19

#> 3184: 600 2005-04-17 54.97

#> 3185: 600 2005-06-30 66.84
#> 3186: 600 2005-10-27 22.54
#> 3187: 600 2006-01-09 12.97

clv.apparel <- clvdata(apparelTrans,
date.format="ymd",

time.unit = "week",
estimation.split = 40,
name.id = "Id4d",
name.date = "Date",
name.price = "Price")

3.2 Estimate Model Parameters

To estimate the Gamma/Gamma spending model, we use the command gg() on the initialized clvdata
object. clv.data specifies the initialized object prepared in the last step. Optionally, starting values for
the model parameters and control settings for the optimization algorithm may be provided: The argument
start.params.model allows to assign a vector of starting values for the optimization (i.e c(p=1, g=2,
gamma=1) for the the Gamma/Gamma model). This is useful if prior knowledge on the parameters of
the distributions are available. By default starting values are set to 1 for all parameters. The argument
optimx.args provides an option to control settings for the optimization routine (see section Estimate Model
Parameters).

In line with literature, CLVTools does not use by default the monetary value of the first transaction to fit
the model since it might be atypical of future purchases. If the first transaction should be considered the
argument remove.first.transaction can be set to FALSE.

To execute the model estimation you have the choice between a formula-based interface and a non-formula-
based interface. In the following we illustrate the two alternatives.

3.2.1 Estimating the model using formula interface:

est.gg <- spending(family = gg, data=clv.apparel)
#> Starting estimation. ..

#> Estimation finished!

est.gg

#> Gamma-Gamma Model

#>

#> Call:

#> spending (family = gg, data = clv.apparel)
#>

#> Coefficients:

#> D q gamma

#> 3.675 4.630 36.111

#> KKT1: TRUE

#> KKT2: TRUE

Using start parameters or other additional arguments for the optimizer:

20

est.gg <- spending(family = gg, data=clv.apparel,
optimx.args = list(control=list(trace=5)),
start.params.model=c(p=0.5, gq=15, gamma=2))

Specify the option to NOT remove the first transaction:
est.gg <- spending(family = gg, data=clv.apparel,
remove.first.transaction=FALSE)

3.2.2 Estimating the model using non-formula interface:

est.gg<- gg(clv.data = clv.apparel)
est.gg

Using start parameters and other additional arguments for the optimzier:

est.gg<- gg(start.params.model=c(p=0.5, gq=15, gamma=2), clv.data = clv.apparel)
est.gg

Specify the option to NOT remove the first transaction:

est.gg<- gg(clv.data = clv.apparel, remove.first.transaction=FALSE)
est.gg

3.3 Predict Customer Spending

Once the model parameters are estimated, we are able to predict future customer mean spending on an
individual level. To do so, we use predict() on the object with the estimated parameters (i.e. est.gg).
Note that there is no need to specify a prediction period as we predict mean spending.

In general, probabilistic spending models predict the following expected characteristic for every customer:
 predicted mean spending (“predicted.mean.spending”)

If a holdout period is available additionally the true mean spending (“actual.mean.spending”) during the
holdout period is reported.

To use the parameter estimates on new data (e.g., an other customer cohort), the argument newdata op-
tionally allows to provide a new clvdata object.

results.spending <- predict(est.gg)
print(results.spending)
#> Key: <Id>

#> Id actual.mean.spending predicted.mean.spending
#> <char> <num> <num>
#> 1: 1 104.82000 60.62446
#> 2: 10 31.65500 37.71808
#> 3: 100 37.03889 36.56190
#> 4 101 0.00000 33.24045

21

#> 5: 102 0.00000 36.56190

#> ---

#> 596: 95 22.76000 28.96908
#> 597: 96 84.53667 36.56190
#> 598: 97 0.00000 36.56190
#> 599: 98 33. 14000 36.56190
#> 600: 99 13.99000 17.43526

3.4 Plot Spendings
an estimated spending model object (i.e. est.gg) may be plotted using the plot() command. The
plot provides a comparison of the estimated and actual density of customer spending. The argument

plot.interpolation.points allows to adjust the number of interpolation points in density graph.

plot(est.gg)

Density of Average Transaction Value

0.02 1
2
(2]
c
5]
Qa
0.01
0.001
0 100 200 300 400
Average Value per Transaction
Legend — Gamma-Gamma
Literature

Bemmaor, Albert. C., and Nicolas Glady. 2012. “Modeling Purchasing Behavior with Sudden "Death”: A
Flexible Customer Lifetime Model” Management Science 58 (5): 1012-21.

Byrd, Richard H, Peihuang Lu, Jorge Nocedal, and Ciyou Zhu. 1995. “A Limited Memory Algorithm for
Bound Constrained Optimization.” SIAM Journal on Scientific Computing 16 (5): 1190-1208.

Colombo, Richard, and Weina Jiang. 1999. “A stochastic RFM model.” Journal of Interactive Marketing
13 (3): 2-12.

Dowle, Matt, and Arun Srinivasan. 2019. Data.table: Extension of ’Data.frame’. https://CRAN.R-project.
org/package=data.table.

Fader, Peter S., Bruce G. S. Hardie, and KL. Lee. 2005a. “’Counting Your Customers’ the Easy Way: An
Alternative to the Pareto/NBD Model.” Marketing Science 24 (2): 275-84.

. 2005b. “RFM and CLV: Using Iso-Value Curves for Customer Base Analysis.” Journal of Marketing
Research 42 (4): 415-30.

Grolemund, Garrett, and Hadley Wickham. 2011. “Dates and Times Made Easy with lubridate.” Journal
of Statistical Software 40 (3): 1-25. https://www.jstatsoft.org/article/view/v040i03.

22

https://www.ncbi.nlm.nih.gov/pubmed/20518988
https://CRAN.R-project.org/package=data.table
https://CRAN.R-project.org/package=data.table
https://www.jstatsoft.org/article/view/v040i03

Gupta, Sunil. 1991. “Stochastic Models of Interpurchase Time with Time-Dependent Covariates.” Journal
of Marketing Research 28 (1): 1-15.

Kuhn, H. W., and A. W. Tucker. 1951. “Nonlinear Programming.” In Second Berkeley Symposium on
Mathematical Statistics and Probability, edited by J. Neyman, 481-92.

Nash, John C. 2014. “On Best Practice Optimization Methods in R.” Journal of Statistical Software 60 (2):
1-14. https://www.jstatsoft.org/article/view /v060i02.

Nash, John C., and Ravi Varadhan. 2011. “Unifying Optimization Algorithms to Aid Software System
Users: optimx for R.” Journal of Statistical Software 43 (9): 1-14. https://www.jstatsoft.org/article/
view/v043i09.

Nelder, John A, and Roger Mead. 1965. “A Simplex Method for Function Minimization.” The Computer
Journal 7 (4): 308-13.

Schmittlein, David C., Donald G. Morrison, and Richard Colombo. 1987. “Counting Your Customers:
Who-Are They and What Will They Do Next?” Management Science 33 (1): 1-24.

Wickham, Hadley, Jim Hester, and Winston Chang. 2019. Deuvtools: Tools to Make Developing r Packages
Easier. https://CRAN.R-project.org/package=devtools.

23

https://www.jstatsoft.org/article/view/v060i02
https://www.jstatsoft.org/article/view/v043i09
https://www.jstatsoft.org/article/view/v043i09
https://CRAN.R-project.org/package=devtools

	Prerequisites: Setup the R environment
	Apply the CLVTools Package
	General workflow
	Load sample data provided in the package
	Initialize the CLV-Object
	Check the clvdata Object
	Estimate Model Parameters
	Predict Customer Behavior
	Plotting
	Covariates
	Add Correlation to the model
	Advanced Options for Covariates

	Customer Spending
	Load sample data provided in the package
	Estimate Model Parameters
	Predict Customer Spending
	Plot Spendings

