
DiscreteFDR: An R package for controlling the false

discovery rate for discrete test statistics

Guillermo Durand

Sorbonne University
Florian Junge

Darmstadt University
of Applied Sciences

Sebastian Döhler

Darmstadt University
of Applied Sciences

Etienne Roquain

Sorbonne University

Abstract

The simultaneous analysis of many statistical tests is ubiquitous in applications. Per-
haps the most popular error rate used for avoiding type one error inflation is the false
discovery rate (FDR). However, most theoretical and software development for FDR con-
trol has focused on the case of continuous test statistics. For discrete data, methods that
provide proven FDR control and good performance have been proposed only recently. The
R package DiscreteFDR (Durand and Junge (2019), version 1.2) provides an implementa-
tion of these methods. For particular commonly used discrete tests such as Fisher’s exact
test, it can be applied as an off-the-shelf tool by taking only the raw data as input. It can
also be used for any arbitrary discrete test statistics by using some additional information
on the distribution of these statistics. The paper reviews the statistical methods in a
non-technical way, provides a detailed description of the implementation in DiscreteFDR

and presents some sample code and analyses.

Keywords: multiple testing, false discovery rate, package, R, discrete tests, Fisher’s exact test.

1. Introduction

Multiple testing procedures are important tools for identifying statistically significant findings
in massive and complex data while controlling a specific error rate. An important focus has
been given to methods controlling the false discovery rate (FDR), i.e., the expected proportion
of falsely rejected hypotheses among all rejected hypotheses, which has become the standard
error rate for high dimensional data analysis. Since the original procedure of Benjamini and
Hochberg (1995), much effort has been undertaken to design FDR controlling procedures that
adapt to various underlying structures of the data, such as the quantity of signal, the signal
strength and the dependencies, among others.

2 DiscreteFDR R package

The R package DiscreteFDR, presented in this paper, deals with adaptation to discrete and
non-identically distributed test statics by implementing procedures developed by Döhler, Du-
rand, and Roquain (2018) (in the sequel abbreviated as [DDR]). This type of data arises in
many relevant applications, in particular when data represent frequencies or counts. Exam-
ples can be found in clinical studies (see e.g., Westfall and Wolfinger (1997)), genome-wide
association studies (GWAS) (see e.g., Dickhaus, Straßburger et al. (2012)) and next gen-
eration sequencing data (NGS) (see e.g., Chen and Doerge (2015b)). The primary discrete
test we have in mind in this paper is Fisher’s exact test, see Lehmann and Romano (2006),
but we also sketch an application of DiscreteFDR to multiple Poisson tests in the spirit of
Jimenez-Otero, de Una-Alvarez, and Pardo-Fernandez (2018).

It is well known (see e.g., Westfall and Wolfinger (1997)) that applying critical values derived
for continuous approximations to discrete null distributions can generate a severe power loss,
already at the stage of the single tests. A consequence is that using ’blindly’ the BH procedure
with discrete p values will control the FDR in a too conservative manner. Therefore, more
powerful procedures that avoid this conservatism are much sought after in applications, see
for instance Karp, Heller et al. (2016), van den Broek, Dijkstra et al. (2015) and Dickhaus,
Straßburger et al. (2012).

In the literature, constructing multiple testing procedures that take into account the dis-
creteness of the test statistics has a long history, for more details see [DDR]. The heuristic
motivation for the procedures implemented in DiscreteFDR is as follows. Let p(1) ≤ . . . ≤ p(m)

denote the ordered p values and H(1), . . . , H(m) the corresponding null hypotheses. The BH

procedure [BH] works by rejecting H(1), . . . , H(k̂), where k̂ is the largest integer k such that

p(k) ≤
k

m
· α. (1)

Now suppose that the cumulative distribution functions F1, . . . , Fm of the p values under the
null hypotheses are known and introduce the transformation

ξ(t) =
1

m

m∑

i=1

Fi(t), t ∈ [0, 1]. (2)

For continuous settings we often have Fi(t) = t which implies ξ(t) = t and so we can rephrase
(1) as

ξ(p(k)) ≤
k

m
· α. (3)

Heyse (2011) proposed to use the transformation ξ in (2), where the Fi need no longer be
uniform and identical. The benefit of this approach is that - depending on the discreteness
and heterogeneity of the involved p value distributions - ξ(t) may be much smaller than t.
Clearly, the smaller the ξ-values, the more hypotheses can be rejected. Figure 1 displays such
a function where the functions F1, . . . , F2446 are derived from m = 2446 independent Fisher’s
exact test statistics based on the pharmacovigilance data from Heller and Gur (2011) (see
Section 5 for more details). In this example we have ξ(t) ≈ t/3, thereby yielding a potentially
strong rejection enhancement.

Unfortunately, the Heyse procedure does not rigorously control the FDR in general; counter-
examples are provided in Heller and Gur (2011) and [DDR]. To correct this, [DDR] introduce

Guillermo Durand, Florian Junge, Sebastian Döhler, Etienne Roquain 3

new procedures relying on the following modifications of the ξ function (more details are
presented in Section 3):

ξSU(t) =
1

m

m∑

i=1

Fi (t)

1 − Fi (τm)
; ξSD(t) =

1

m

m∑

i=1

Fi (t)

1 − Fi (t)
, t ∈ [0, 1],

where τm is the generalized inverse of ξSD taken at point α. Figure 1 demonstrates that
the difference between these modifcations and the original ξ can be very small, in particular
for small values of t. In addition, [DDR] also introduce more powerful ’adaptive’ versions,
meaning that the derived critical values are designed in a way that ’implicitly estimates’ the
overall proportion of true null hypotheses. All these procedures provide rigorous FDR control
under independence of the p values and are implemented in the R package DiscreteFDR.

0.00 0.02 0.04 0.06 0.08 0.10

0.00

0.02

0.04

0.06

0.08

0.10

t

ξ(
t)

Figure 1: Plots of variants of ξ for the pharmacovigilance data. The solid black line corre-
sponds to the uniform case, the discrete variants are represented by blue (for ξ), green (for
ξSD) and red (for ξSU) solid lines. Additionally, five arbitrarily selected Fi’s are displayed by
using different line types.

While there exist numerous R functions and packages that implement multiple testing proce-
dures in the continuous setting (see e.g., Hothorn, Bretz, and Westfall (2008) and Blanchard,
Dickhaus et al. (2017)), there are only relatively few tools available that deal specifically with
discrete test statistics. The package MHTdiscrete (see Zhu and Guo (2017)) is described by its
authors as a ’comprehensive tool for almost all existing multiple testing methods for discrete
data’. It implements several FWER and FDR procedures designed for discrete data. While the
procedures for FWER control are extensively described in an accompanying preprint (see Zhu
and Guo (2017)), there seems to be no detailed mathematical description of the implemented
FDR procedures. The package discreteMTP (see Heller, Gur, and Yaacoby (2012)) also im-
plements several methods aiming at FDR control (including the Heyse procedure) described
in more detail in Heller and Gur (2011). The main contribution of the package DiscreteFDR

is to provide practitioners with a simple to use set of tools (both adaptive and non-adaptive)
for analysing discrete data with both proven FDR control and good performance.

In this paper, our primary aim is to introduce DiscreteFDR. As an ’appetizer’, we start by
illustrating the main ideas through analysis of a toy data set. We hope to convince readers

4 DiscreteFDR R package

that it is worthwile to use discrete FDR methods. We then review the mathematical methods
and results from [DDR], followed by some more technical details of the implementation in
Section 4 . Section 5 contains an analysis of some real data and includes an example that
illustrates how DiscreteFDR can be used for arbitrary discrete tests. The paper concludes
with a summary and discussion.

We realize - and indeed hope - that the audience of this paper may be quite heterogeneous,
which is why we would like to suggest some guidance for possible ways of reading it. For
subject matter scientists and practitioners who may not be interested in the mathematical
or software details, we especially recommend to study Sections 2 and 5. For readers who
additionally want to understand more of the mathematical background we recommend Section
3, for readers interested in the implementation details of the R-package we recommend Section
4.

2. A toy example

To give a first impression of how DiscreteFDR works, we consider an artifical toy example.
A more realistic example involving pharmacovigilance data is given in Section 5.

Suppose we would like to compare two treatments in nine different populations. For each
population we do this by evaluating the responders and non-responders for each treatment.
This leads to categorical data which can be represented, for each population i = 1, . . . , 9 in
the following 2 × 2 table:

responders non responders total
treatment 1 x1i y1i n1i

treatment 2 x2i y2i n2i

total x1i + x2i y1i + y2i ni = n1i + n2i

Table 1: 2 × 2 table for population i.

Denoting the responder probabilities for population i by π1i and π2i we can test e.g.

H0i : π1i = π2i vs. H1i : π1i 6= π2i

by using Fisher’s (two-sided) exact test (see Lehmann and Romano (2006), which is im-
plemented in the R function fisher.test). Suppose the data in the nine populations are
independent and we observe the following data frame df

X1 Y1 X2 Y2

1 4 144 0 132

2 2 146 0 132

3 2 146 1 131

4 14 134 3 129

5 6 142 2 130

6 9 139 1 131

7 4 144 2 130

8 0 148 2 130

9 1 147 2 130

Guillermo Durand, Florian Junge, Sebastian Döhler, Etienne Roquain 5

In this data frame each of the 9 rows represents the data of an observed 2 × 2 table: e.g.,
the third row of the data corresponds to x13 = 2, y13 = 146, x23 = 1, y23 = 131. Even though
in this example, the total number of tested hypotheses m = 9 is very small, for illustrative
purposes we deal with the multiplicity problem here by controlling FDR at level α = 5%.
The DBH step-down procedure (to be explained in more detail in Section 3) can be applied
directly to the data frame object df and yields the following adjusted p values:

R> library("DiscreteFDR")

R> DBH.sd.fast <- fast.Discrete(df, alternative = "two.sided",

+ direction = "sd")

R> DBH.sd.fast$Adjusted

[1] 0.25630985 1.00000000 1.00000000 0.03819796 0.51482782 0.03819796

[7] 1.00000000 0.47895996 1.00000000

Thus we can reject two hypotheses at FDR-level α = 5%. In order to compare this with the
usual (continuous) BH procedure we have to determine the raw p values first. This would
be possible by applying the fisher.test function to all nine 2 × 2 tables. Alternatively, we
may use the more convenient function fisher.pvalues.support included in our package for
accessing the raw p values:

R> p <- fisher.pvalues.support(df, alternative = "two.sided")

R> raw.pvalues <- p$raw

R> p.adjust(raw.pvalues, method = "BH")

[1] 0.37430072 0.74976959 1.00000000 0.09570921 0.51928737 0.09570921

[7] 0.77313633 0.49804147 0.77313633

Applying the continuous BH procedure from the stats package in the last line of code, we find
that we can not reject any hypotheses at FDR-level α = 5%. As this example illustrates, the
discrete approach can potentially yield a large increase in power. The gain depends on the
involved distribution functions and the raw p values. To appreciate where this comes from, it
is instructive to consider the distribution functions F1, . . . , F9 of the p values under the null
in more detail. Take for instance the first 2 × 2 table:

responders non responders total
treatment 1 4 144 148
treatment 2 0 132 132
total 4 276 280

Table 2: 2 × 2 table for population 1.

Fisher’s exact test works by determining the probability of observing this (or a more ’extreme’)
table, given that the margins are fixed. So each Fi is determined by the margins of table i.
Since x11 + x21 = 4, the only potentially observable tables are given by x11 = 0, . . . , 4. For
each one of these 5 values a p value can be determined using the hypergeometric distribution.

6 DiscreteFDR R package

Therefore, the p value of any 2 × 2 table with margins given by the above table can take
(at most) 5 distinct values, say x1, . . . , x5. Combining these 5 values into a set, we obtain
the support A1 = {x1, . . . , x5} of distribution F1. Now we can continue in this vein for
the remaining 2 × 2 tables to obtain the supports A1, . . . , A9 for the distributions functions
F1, . . . , F9. The supports can be accessed via the $support command, e.g.

R> p$support[c(1,5)]

[[1]]

[1] 0.04820493 0.12476691 0.34598645 0.62477763 1.00000000

[[2]]

[1] 0.002173856 0.007733719 0.028324482 0.069964309 0.154043258

[6] 0.288492981 0.481808361 0.726262402 1.000000000

returns A1 and A5. Panel (a) in Figure 2 shows a graph of the distribution functions
F1, . . . , F9. Each Fi is a step-function with Fi(0) = 0, the jumps occuring only on the support
Ai and Fi(x) = x only for x ∈ Ai. In particular, all distributions are stochastically larger than
the uniform distribution (i.e., Fi(x) ≤ x), but in a heterogeneous manner. This heterogeneity
can be exploited e.g., by transforming the raw p values from the exact Fisher’s test using the

function ξSD(x) =
9∑

i=1

Fi(x)

1 − Fi(x)
presented in the Introduction. Panel (b) shows that ξSD is a

step function. Its jumps occur on the joint support A = A1 ∪ . . . ∪ A9. Panel (b) also shows
that ξSD(x) ≪ x, at least for small values of x. It turns out that the critical values of our
new DBH step-down procedure are essentially given by inverting ξSD at the critical values of
the [BH] procedure 1 · α/9, 2 · α/9, . . . , α, so that these values are considerably larger than
the [BH] critical values (for more details see Section 3). This is illustrated in panel (c) along
with the ordered p values. In particular, all asterisks are located above the green [BH] dots,
therefore this procedure can not reject any hypothesis. In contrast, the two smallest p values
are located below red DBH step-down dots, so that this procedure rejects two hypotheses as
we had already seen earlier.

3. Implemented FDR-controlling procedures

The procedures used in the package are all based upon a comparison between the ordered
p values p(k), 1 ≤ k ≤ m, and a sequence of nondecreasing critical values τk, 1 ≤ k ≤ m.

Depending on how these two sequences intercept allow to define a rejection number k̂ and
thus a rejection set of null hypotheses H(1), . . . , H(k̂). Classically, the step-up procedure with
critical values τk, 1 ≤ k ≤ m, corresponds to choose the last right crossing point

k̂SU = max{k : p(k) ≤ τk}.

Hence, it goes backwards, starting from the largest p value p(m), stopping the first time it

finds k0 such that p(k0) ≤ τk0 and returning k̂SU = k0. By contrast, the step-down procedure
with critical values τk, 1 ≤ k ≤ m uses the first left crossing point

k̂SD = max{k : for all k′ ≤ k, p(k′) ≤ τk′}.

Guillermo Durand, Florian Junge, Sebastian Döhler, Etienne Roquain 7

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

(a)

x

F
(x

)

0.00 0.02 0.04 0.06 0.08 0.10
0

.0
0

0
.0

2
0

.0
4

0
.0

6
0

.0
8

0
.1

0

(b)

x

ξ

2 4 6 8

0
.0

0
0

.0
5

0
.1

0
0

.1
5

(c)

Index

c
ri

ti
c
a

l
va

lu
e

s

Figure 2: Panel (a) depicts the distribution functions F1, . . . , F9 in various colours, (b) is a
graph of the transformation ξSD. The uniform distribution function is shown in light grey in
(a) and (b). Panel (c) shows the [BH] critical values (green dots), the DBH step-down critical
values (red dots) and the sorted raw p values (asterisks).

Hence, it goes forward, starting from the smallest p value p(1), stopping the first time it finds

k0 such that p(k0) > τk0 and returning k̂SD = k0 − 1.

Such multiple testing procedures are thus driven by a sequence of critical values and by
a choice between the step-up or step-down version. In our package, the 5 different possible
choices are listed in Table 3, with 3 step-up procedures [DBH-SU], [A-DBH-SU], [DBR-λ] and
2 step-down procedures [DBH-SD], [A-DBH-SD]. We easily check that [A-DBH-SU] (resp. [A-
DBH-SD]) rejects always more null hypotheses than [DBH-SU] (resp. [DBH-SD]). Note that
the names of the procedures are slightly different in the original paper [DDR]. This is done
to emphasize that our package is primarily devoted to the discrete case.

3.1. Critical values

The specific shape of the critical values comes from the FDR upper-bounds derived in [DDR],
which ensures that these procedures control the FDR at the nominal level α under indepen-
dence of the p values, see Theorem 1 and Corollary 1 in [DDR]. In Table 3, each Fi is defined
as the (least favorable) cumulative distribution function of the p value pi under the null hy-
pothesis. As in the example from Section 2, A = A1 ∪ . . . ∪ Am ⊂ [0, 1] stands for the union
of the supports of the marginal distributions of the p values, pi, 1 ≤ i ≤ m which can be de-
termined under the full hull hypothesis, i.e., when all null hypotheses are assumed to be true.
While A = [0, 1] in the case where the Fi’s are continuous functions, the primary setting we
have in mind is a large number of simultaneous Fisher exact tests, so that A = A1 ∪ . . . ∪ Am

is finite but very large. See also Section 2 for some concrete examples.

Let us underline that obtaining such τk numerically might be time consuming because the
overall support A can be large while testing whether each t ∈ A satisfies the required condition
given by the second column in Table 3 involves a complex combination of the Fi, 1 ≤ i ≤ m.
In the package, we have implemented a shortcut that reduces the range of t ∈ A that has to

8 DiscreteFDR R package

be explored: it is based on the fact that if Fi(t) ≤ t for all t and i (super-uniformity), we have
the following lower bounds τ min

k ’s on the critical values τk’s, see Lemmas 2, 3 and 4 in [DDR]:

[DBH-SU] τ min
k = max{t ∈ A : t ≤ αk/m(1 + α)−1}

[DBH-SD] τ min
k = max{t ∈ A : t ≤ αk/m(1 + αk/m)−1}

[A-DBH-SU] τ min
m = max{t ∈ A : t ≤ α(1 + α)−1}

τ min
k = max

{
t ∈ A : t ≤ τm ∧

(
(1 − τm)

αk

m − k + 1

)}
, k < m;

[A-DBH-SD] τ min
k = max{t ∈ A : t ≤ αk/(m − (1 − α)k + 1)}

[DBR-λ] τ min
k = max

{
t ∈ A : t ≤ λ ∧

(
(1 − λ) αk

m−k+1

)}

Our current implementations of [DBH-SU] and [A-DBH-SU] first determine τm by searching
for τm in A∩[τ min

m , 1] and then determine all other τk simultaneously using τk ≥ τ min
1 instead of

τk ≥ τ min
k . We take this approach for simplicity and performance reasons. The stepdown pro-

cedures only use the latter constraint. These lower bounds help to reduce the computational
burden considerably.

3.2. Transformed p values

If we are only interested in the set of rejected null hypotheses and not in the critical values,
we can significantly speed-up the program by skipping the explicit computation of the critical
values and by directly considering the transformed p values:

p′

k = ξk(p(k)), 1 ≤ k ≤ m, (4)

where the functions ξk(·), defined in Table 3, are such that τk is the inverse of ξk at point
αk/m. Note that while the elements of {p(k), 1 ≤ k ≤ m} are ordered, this is not necessarily
the case for the elements of {p′

k, 1 ≤ k ≤ m}. The following proposition is obvious.

Proposition 1 For each of the critical values listed in Table 3 we have for all 1 ≤ k ≤ m,

p(k) ≤ τk ⇐⇒ p′

k ≤ αk/m, (5)

where p′

k are the transformed p values defined by (4).

A consequence of (5) is that the step-up and step-down cutoffs can be computed by using
only the transformed p values and the BH critical values as follows:

k̂SU = max{k : p′

k ≤ αk/m}

k̂SD = max{k : for all k′ ≤ k, p′

k′ ≤ αk′/m}.

Thus, all of the above methods can be interpreted as variant of the classical (SU or SD) BH
procedure, for which each p value has been suitably transformed to account for discreteness.

3.3. Adjusted p values

In applications, it is often convenient for the analyst to use adjusted p values p̃k instead of the
raw p values and rejecting those hypotheses for which p̃k ≤ α. The advantage of this approach

Guillermo Durand, Florian Junge, Sebastian Döhler, Etienne Roquain 9
P

ro
ce

d
u
re

C
ri

ti
ca

l
va

lu
es

T
ra

n
sf

or
m

at
io

n

[D
B

H
-S

U
]

k
<

m

τ m
=

m
a
x

{
t

∈
A

:
1 m

m ∑ i=
1

F
i
(t

)

1
−

F
i
(t

)
≤

α

}

τ k
=

m
ax

{
t

∈
A

:
t

≤
τ m

,
1 m

m ∑ i=
1

F
i
(t

)

1
−

F
i
(τ

m
)

≤
α

k
/m

}
ξ m

(t
)

=
1 m

m ∑ i=
1

F
i
(t

)

1
−

F
i
(t

)

ξ k
(t

)
=

  

1 m

∑
m i=

1
F

i
(t

)
1
−

F
i
(τ

m
)

,t
≤

τ m

1
,e

ls
e

[D
B

H
-S

D
]

τ k
=

m
ax

{
t

∈
A

:
1 m

m ∑ i=
1

F
i
(t

)

1
−

F
i
(t

)
≤

α
k
/m

}
ξ k

(t
)

=
1 m

m ∑ i=
1

F
i
(t

)

1
−

F
i
(t

)

[A
-D

B
H

-S
U

]

k
<

m

τ m
=

m
a
x

{
t

∈
A

:
1 m

m ∑ i=
1

F
i
(t

)

1
−

F
i
(t

)
≤

α

}

τ k
=

m
ax

{
t

∈
A

:
t

≤
τ m

,
m

−
k

+
1

∑ ℓ=
1

(
F

(t
)

1
−

F
(τ

m
))

(ℓ
)

≤
α

k

}

ξ m
(t

)
=

1 m

m ∑ i=
1

F
i
(t

)

1
−

F
i
(t

)

ξ k
(t

)
=

  

1 m

∑
m

−
k

+
1

ℓ=
1

(
F

(t
)

1
−

F
(τ

m
)

) (ℓ
)

,t
≤

τ m

1
,e

ls
e

[A
-D

B
H

-S
D

]
τ k

=
m

ax

{
t

∈
A

:
m

−
k

+
1

∑ ℓ=
1

(
F

(t
)

1
−

F
(t

))

(ℓ
)

≤
α

k

}
ξ k

(t
)

=
1 m

m
−

k
+

1
∑ ℓ=

1

(
F

(t
)

1
−

F
(t

))

(ℓ
)

[D
B

R
-λ

]

k
<

m

τ m
=

m
ax

{ t
∈

A
:

(F
(t

))
(1

)
≤

((
1

−
λ

)m
α

)
∧

λ
}

τ k
=

m
ax

{
t

∈
A

:
(F

(t
))

(1
)

≤
λ

,
m

−
k

+
1

∑ ℓ=
1

(F
(t

))
(ℓ

)
≤

α
k
(1

−
λ

)}
ξ m

(t
)

=

  

(F
(t

))
(1

)

m
(1

−
λ

)
,(

F
(t

))
(1

)
≤

λ

1
,e

ls
e

ξ k
(t

)
=

  

∑
m

−
k

+
1

ℓ
=

1
(F

(t
))

(ℓ
)

m
(1

−
λ

)
,(

F
(t

))
(1

)
≤

λ

1
,e

ls
e

T
ab

le
3:

Im
p
le

m
en

te
d

p
ro

ce
d
u
re

s
(l

ef
t

co
lu

m
n
),

cr
it

ic
al

va
lu

es
(c

en
te

r)
an

d
as

so
ci

at
ed

tr
an

sf
or

m
at

io
n

fu
n
ct

io
n
s

(r
ig

h
t

co
lu

m
n
).

T
h
e

su
ffi

x
’S

U
’

st
an

d
s

fo
r

st
ep

-u
p
,

th
e

su
ffi

x
’S

D
’

fo
r

st
ep

-d
ow

n
p
ro

ce
d
u
re

s.

10 DiscreteFDR R package

is that it is more convenient to apply and easier to communicate. Furthermore, it avoids
to explicitly rely on the, often somewhat arbitrary, choice of α. With the transformations
introduced above, it is straightforward to define (variants of) discrete FDR-adjusted p values.
The generic definition given in Dudoit and van der Laan (2007) then yields

p̃k = min
ℓ=k,...,m

(
m

ℓ
· p′

ℓ

)
∧ 1, 1 ≤ k ≤ m (6)

for step-up procedures and

p̃k = max
ℓ=1,...,k

(
m

ℓ
· p′

ℓ

)
∧ 1, 1 ≤ k ≤ m, (7)

for step-down procedures. For our step-down procedures, the usual result holds true.

Proposition 2 For the step-down procedures [DBH-SD], [A-DBH-SD] and the step-up pro-
cedure [DBR-λ] listed in Table 3 we have for all α ∈ (0, 1), for all 1 ≤ k ≤ m,

H(k) is rejected by the procedure taken at level α ⇐⇒ p̃k ≤ α,

where p̃k are the adjusted p values defined by (7).

In the above proposition, note that H(k) is given by the original ordering of the p values
{pi, 1 ≤ i ≤ m}.

For the procedures [DBH-SU], [A-DBH-SU], the situation is more complicated since the ad-
justed p value p̃k depends on α (through τm). The statement in Proposition 2 actually still
holds in that situation but not the usual interpretation that the adjusted p value p̃k is the
smallest level α at which the procedure rejects H(k). Hence, the analyst would need to exer-
cise care in interpreting them. To avoid any confusion, the package does not report adjusted
p values for [DBH-SU] and [A-DBH-SU].

4. Implementation in the package DiscreteFDR

4.1. General structure

The package consists of six groups of functions:

Main functions discrete.BH

DBR

Kernel functions kernel.DBH.crit

kernel.DBH.fast

kernel.ADBH.crit

kernel.ADBH.fast

kernel.DBR.crit

kernel.DBR.fast

Helper functions match.pvals

fisher.pvalues.support

Wrapper functions DBH

Guillermo Durand, Florian Junge, Sebastian Döhler, Etienne Roquain 11

ADBH

fast.discrete

Print/Summary functions print.DiscreteFDR

summary.DiscreteFDR

print.summary.DiscreteFDR

Plot functions plot.DiscreteFDR

hist.DiscreteFDR

The discrete.BH function implements [DBH-SU], [DBH-SU], [A-DBH-SU] and [A-DBH-SD].
Similarly, DBR implements [DBR-λ]. They use the helper function match.pvals for matching
matching of p values with their respective c.d.f.s (see details in 4.2), and the kernels for the
actual computation. [DBH-SU], [DBH-SD], [A-DBH-SU] and [A-DBH-SD] can be accessed
directly through the wrapper functions DBH and ADBH, respectively.

The wrapper function fast.discrete applies the Discrete FDR-controlling procedures, which
are implemented in discrete.BH, to a set of 2 × 2 contingency tables, given by a matrix or
data frame. It uses the fisher.pvalues.support helper function to compute p value c.d.f.s
and raw p values from these tables in the framework of Fisher’s exact test.

The wrapper and main functions return a DiscreteFDR S3 class object for which we supply
print, summary and plot functions.

We also provide the amnesia data set, used in our examples in Section 5 and in our paper
[DDR]. It is basically the amnesia data set of package discreteMTP, but slightly reformatted
(the difference lies in the third column).

The functions discrete.BH, DBH, ADBH and DBR take the following input values:

raw.pvalues The vector (of the same length as pCDFlist) of raw observed p values
which is calculated from the data.

pCDFlist A list of vectors that represent the supports A1, . . . , Am of the discrete
distribution functions F1, . . . , Fm under the respective null hypotheses,
as described in Section 3.

alpha The global significance level α ∈ (0, 1) at which the procedure provides
FDR control; the default is 0.05.

direction (DBH and ADBH only) A string, either "su" or "sd", specifying whether
the step-up variant (the default, "su") or the step-down variant
("sd") should be used.

adaptive Specifying whether the adaptive version is to be used (TRUE) or not
(FALSE).

lambda (DBR only) The λ parameter of the [DBR-λ] procedure as in Table 3;
the default is 0.05.

ret.crit.consts Specifying whether the critical values τk are to be computed and
included in the output list, at the expense of computational speed;
the default is FALSE.

The output DiscreteFDR S3 class contains the following elements:

Rejected A vector containing the rejected raw p values
Indices A vector containing the indices of rejected hypotheses

12 DiscreteFDR R package

num.rejected Number of rejected hypotheses. This corresponds to k̂SU and k̂SD,
as described in Section 3.2

Adjusted A vector containing adjusted p values (if available)
Critical.values A vector containing the critical values (if requested)
Method Character string describing the used algorithm, e.g. "Discrete

Benjamini-Hochberg procedure (step-up)"
Signif.level Global significance level that was used when calling the respective

function
Lambda (DBR only) The parameter lambda that was used when calling DBR

Data$raw.pvalues Raw p values that were used when calling the respective function
Data$pCDFlist List c.d.f.s (represented by vectors) that were used when calling the

respective function
Data$data.name Character strings of the variable names of the used raw.pvalues

and pCDFlist

More details as to the implementation are provided in the following part.

4.2. Details for some specific functions

Helper functions

The match.pvals function performs nearest-neighbor matching for all elements of raw.pvalues,
i.e., it checks for each value whether it occurs in its respective p value c.d.f. If this is not
the case, it is replaced by the value that is closest to it, that is, its nearest neighbor in its
c.d.f. This is to ensure that all values of raw.pvalues actually originate from their respective
c.d.f.s, e.g., to correct rounding errors. It has been inspired by a help page of the package
discreteMTP.

fisher.pvalues.support computes discrete raw p values and their support for the test of
no association between two categorical variables in 2 x 2 contingency tables using Fisher’s
exact tests. The p values are computed directly by phyper, instead of fisher.test, because
the latter is much slower. The function is used by the fast.discrete function to apply such
contingency tables directly to the discrete.BH function.

Main Functions

Basically, both main functions have the same workflow:

1. Use match.pvals for matching of raw p values with the c.d.f.s and sort the results in
ascending order.

2. Determine the overall support A =
⋃

Ai from the individual c.d.f.s, remove double
values and sort them in ascending order.

3. Use the knowledge of lower bounds, as presented in Section 3.1, to remove unnecessary
elements from the support.

4. Compute transformed p values and/or critical values (if requested).

Guillermo Durand, Florian Junge, Sebastian Döhler, Etienne Roquain 13

5. Create output list with elements as described in Section 4.1.

Steps 2.-4. are done by the kernel functions.

Kernel functions

As stated in Section 3, there are two ways to determine which hypotheses corresponding to
the elements of a raw p value vector can be rejected.

1. With critical values (see 3.1): this approach works by first determining the critical
values. Especially when the size of the support and the number of hypotheses are large,
it is computationally intensive, because all elements of the support have to be evaluated
by every single c.d.f.

2. With transformed p values (see Section 3.2): here, only the raw p values are evaluated.
Thus, it is much more efficient.

As a result, all three implemented procedures have two kernels, that is, a fast one for simplified
computation and a slower implementation that calculates critical values. These values are
then used to determine which hypotheses are to be rejected and which are not.

The kernel functions need the following parameters:

pCDFlist The list of vector-represented c.d.f.s.
pvalues A vector of values from the support A, i.e. the entire support for the

critical values approach or the ordered observed p values for the transformed
p values approach.

stepUp A logical value indicating if the step-up or step-down method is to be used.
alpha The global significance level for which FDR control is to be provided; only

needed for step-up direction.
support A vector of values containing the entire support A; only needed for step-up

direction.
lambda ([DBR-λ] only) The tuning parameter λ.

The critical values kernels additionally need:

sorted.pv A numeric vector of observed p values in ascending order.

Basically, the kernels implement the formulas of Table 3. Every step function must be eval-
uated at every element of either the support (for the critical values approach) or only the
sorted raw p values (for the transformed p values approach). The most naive approach is
the use of for loops, which would be extremely slow when using plain R code, especially
for [A-DBH] where lots of c.d.f. evaluation and sorting is involved. For that reason, the
kernels are implemented in C++ using Rcpp. But even then, evaluating all the c.d.f.s one
value at a time and then sorting the results (for [A-DBH] and [DBR-λ] only) would still be
very slow. For that reason we pass a vector of values to the c.d.f.s, using the fact that we
already sorted them. That way, evaluations are very much faster than a simple one-by-one
solution. Unfortunately, since we need these evaluations for every value in pvalues, their

14 DiscreteFDR R package

number may be huge, if the number of hypotheses and/or the size of the support are large.
This may easily exceed the amount of RAM of a typical PC. In our tests, we could easily
overstrain a workstation with 32 GiB of RAM. As a solution to this problem, we implemented
memory-conserving algorithms.

For [DBH-SD], this means, that, for each p value c.d.f. Fi, we compute the fractions Fi(t)
1−Fi(t)

for all of {t ∈ A : t ≥ τ min
1 }, with α being the significance level (see [DDR], Lemma 3) inside

a for loop, which adds up the resulting vectors iteratively. If the critical values are not
demanded by the user, we evaluate at the observed p values instead of the whole support. In
both cases, the number of passes of the for loop is identical to the number of hypotheses. For
[DBH-SU], we first compute the (last) critical constant τm as above, but we can restrict the
computations to the set {t ∈ A : t ≥ α

1+α
} (see [DDR], Lemma 2). After that, we compute the

fractions Fi(t)
1−Fi(τm) as before, but we only have to consider values of the set {t ∈ A : t ≤ τm}.

For the [A-DBH] procedures, p value c.d.f.s are evaluated iteratively at smaller chunks of the
input vectors pvalues. The results of the fractions are then stored in a matrix. We found
a size of 512 MiB to deliver the best performance. Depending on the number of hypotheses,
m, the size and number of the chunks is determined dynamically. All p value transformations
and critical constant computations are done for this submatrix. The intermediate results are
then stored in vectors. This is repeated for the remaining chunks by using a for loop. The
intermediate results are updated with each pass of the loop until all input values have been
processed. The [DBR-λ] algorithm is working almost identically, but no fractions are needed
and there is no step-up/step-down direction.

4.3. Print and summary functions

For our DiscreteFDR S3 class, we implemented print and summary functions that resemble
those of R’s own htest class. Our print.DiscreteFDR function prints the FDR-controlling
algorithm, the used data, the number of hypotheses, the number of rejections of both the
used algorithm and of the original BH procedure, the desired significance level and the largest
rejected p value.

R> df <- fisher.pvalues.support(counts = amnesia[2:3], input = "HG2011")

R> DBH.crit <- DBH(dfraw, dfsupport, direction = "sd", ret.crit.consts = TRUE)

R> print(DBH.crit)

Discrete Benjamini-Hochberg procedure (step-down)

data: raw.pvalues and pCDFlist

number of tests = 2446

number of rejections = 27 at global FDR level 0.05

(Original BH rejections = 24)

largest rejected p value: 0.001506142

The output of our print.summary.DiscreteFDR function is similar. The summary function
summary.DiscreteFDR simply adds a table that contains the indices of the observed p values,
the values themselves, the respective critical values (if present in the S3 class object), the
adjusted p values (if present in the S3 class object) and a logical column that indicates if

Guillermo Durand, Florian Junge, Sebastian Döhler, Etienne Roquain 15

the respective hypothesis is rejected or not. The resulting summary.DiscreteFDR object
therefore includes all the elements of the DiscreteFDR object, plus the table that has just
been described. Consequently, the output of print.summary.DiscreteFDR contains the same
contents as print.DiscreteFDR and additionally prints the aforementioned table.

R> options(max.print = 147) # limit output to 29 rows

R> summary(DBH.crit)

Discrete Benjamini-Hochberg procedure (step-down)

data: raw.pvalues and pCDFlist

number of tests = 2446

number of rejections = 27 at global FDR level 0.05

(Original BH rejections = 24)

largest rejected p value: 0.001506142

Index P.value Critical.Value Adjusted Rejected

1 2444 7.782834e-46 7.481655e-05 2.331896e-43 TRUE

2 2062 1.226896e-39 1.524782e-04 1.963243e-37 TRUE

3 1678 4.760437e-25 2.399533e-04 5.775585e-23 TRUE

4 979 9.132160e-22 3.160307e-04 8.298439e-20 TRUE

5 1366 1.456280e-20 3.943703e-04 1.186040e-18 TRUE

6 1299 3.059764e-18 4.807272e-04 2.376280e-16 TRUE

7 2311 1.485714e-15 5.535942e-04 9.392055e-14 TRUE

8 1858 5.465918e-15 6.113213e-04 3.088654e-13 TRUE

9 2380 2.466485e-13 6.806928e-04 1.324199e-11 TRUE

10 1174 8.190767e-12 7.895607e-04 3.755741e-10 TRUE

11 1980 1.254673e-10 8.605722e-04 6.225913e-09 TRUE

12 2441 1.776331e-09 9.498662e-04 7.012274e-08 TRUE

13 2203 4.747098e-07 1.038794e-03 2.049958e-05 TRUE

14 1282 8.139380e-07 1.117269e-03 3.216570e-05 TRUE

15 497 5.820519e-06 1.203590e-03 2.161737e-04 TRUE

16 1460 1.473035e-05 1.313392e-03 5.987643e-04 TRUE

17 2291 3.150488e-05 1.362022e-03 1.241262e-03 TRUE

18 2390 3.666630e-05 1.472362e-03 1.344660e-03 TRUE

19 1253 4.135871e-05 1.519281e-03 1.393141e-03 TRUE

20 2134 5.365009e-05 1.610519e-03 1.863119e-03 TRUE

21 655 6.205960e-05 1.646469e-03 2.011965e-03 TRUE

22 931 2.099819e-04 1.781383e-03 6.179849e-03 TRUE

23 1216 3.087783e-04 1.823676e-03 8.479449e-03 TRUE

24 308 4.871859e-04 1.925381e-03 1.327439e-02 TRUE

25 2047 7.028504e-04 1.991301e-03 1.846999e-02 TRUE

26 829 1.342716e-03 2.100560e-03 3.234815e-02 TRUE

27 1626 1.506142e-03 2.142791e-03 3.478364e-02 TRUE

28 2220 2.268544e-03 2.238255e-03 5.060239e-02 FALSE

29 512 2.653781e-03 2.341868e-03 5.674687e-02 FALSE

[reached 'max' / getOption("max.print") -- omitted 2417 rows]

16 DiscreteFDR R package

4.4. Run times

To illustrate the run times of DBH, ADBH and DBR, we used the arabidopsisE data set, which
was once included in the fdrDiscreteNull package, but was removed in recent versions. From
this data, a total of 17400 hypotheses along with their respective p value distributions and
a vector of raw p values were derived (for more details, see Chen and Doerge (2015a)). The
accumulated size of the support A is 1,074,398. From this data, we used subsets of the
first m = 250, 500, 1000, 3000, 5000, 7000, 10000, 17400 hypotheses, each resulting in different
support sizes, as shown in the tables in the appendix. For each subset, the median run time
of 25 runs was recorded. The decision for multiple, repeated runs and their median was made
in order to account for possible side loads of the workstation and to avoid overly pronounced
effects of very good and especially very bad runs, so we get a robust indication of the required
time. All three methods were used with the following settings:

• alpha = 0.05

• direction = "sd" and direction = "su" (for DBH and ADBH)

• lambda = 0.05 (for DBR)

• ret.crit.consts = TRUE and ret.crit.consts = FALSE

All computations were performed with R version 3.6.1 on the following system:

• CPU: AMD Ryzen 7 1800X, 3.60 GHz

• RAM: 32 GiB DDR4, 2400 MHz

• OS: Windows 10 Education v1903

The complete results tables can be found in the appendix.

Results of critical values approach

The following plots illustrate our findings by depicting the development of the run times as
a function of the product of m and the overall support size |A|. In addition to a plot with
standard axis scaling, we also employ an additional one with logarithmic axes.

0.0e+00 5.0e+09 1.0e+10 1.5e+10

0
2
0
0

4
0
0

6
0
0

8
0
0

m * |A|

R
u
n
 T

im
e
 [
s
e
c
]

DBH−SD
DBH−SU
A−DBH−SD
A−DBH−SU
DBR−0.05

16 18 20 22

−
4

−
2

0
2

4
6

log(m * |A|)

lo
g
 R

u
n
 T

im
e

DBH−SD
DBH−SU
A−DBH−SD
A−DBH−SU
DBR−0.05

Comparison of DiscreteFDR procedures with critical values

Figure 3: Run time comparison of DiscreteFDR procedures with computation of critical
values.

Guillermo Durand, Florian Junge, Sebastian Döhler, Etienne Roquain 17

From both plots, we can clearly observe that [DBH-SD] and [DBH-SU] are the fastest algo-
rithms, with [DBH-SU] becoming slightly slower with increasing sizes. The calculations of
[A-DBH-SU] takes roughly 3-7 times and those of [A-DBH-SD] almost 8-10 times as long as
[DBH-SD]. [DBR-0.05] needs about 80-90 % of the computational time of [A-DBH-SU]. In
addition, the second plot shows that the proportions of run times and, as a result, the order
remain roughly stable after m · |A| ≈ 3, 000 ·182, 000 = 546, 000, 000. Furthermore, it is visible
that the run times of all the procedures, except [DBR-0.05], exhibit roughly linear growth.

Results of transformed p values approach

0.0e+00 5.0e+09 1.0e+10 1.5e+10

0
1
0

2
0

3
0

4
0

5
0

m * |A|

R
u
n
 T

im
e
 [
s
e
c
]

DBH−SD
DBH−SU
A−DBH−SD
A−DBH−SU
DBR−0.05

16 18 20 22

−
6

−
4

−
2

0
2

4

log(m * |A|)

lo
g
 R

u
n
 T

im
e

DBH−SD
DBH−SU
A−DBH−SD
A−DBH−SU
DBR−0.05

Comparison of DiscreteFDR procedures without critical values

Figure 4: Run time comparison of DiscreteFDR procedures without computation of critical
values.

Here, it is immediately apparent that the transformed p values approach is an order of magni-
tude faster than the ones with critical values, but recognizing a ranking is a bit more difficult.
However, up to and including m · |A| ≈ 1, 000 · 64, 000 = 64, 000, 000, all procedures take
less than a second to compute their results, which is almost unnoticable. After that point,
[DBH-SD] and [DBR-0.05] are the fastest algorithms, with [DBH-SD] outperforming every
other procedure for very large sizes. They are followed by [A-DBH-SD], [A-DBH-SU] and
[DBH-SU]. The two latter ones exhibit mostly identical performance, although they are the
slowest methods. Their largely higher computation time is explained by the fact that these
two procedures have to determine the critical value τm, which is responsible for 80% of the
computational time, as an in-depth analysis has shown.

5. Further analyses

5.1. Analysis of pharmacovigilance data

To illustrate how the procedures in DiscreteFDR can be used for real data, we revisit the
analysis of the pharmacovigilance data from Heller and Gur (2011) performed in [DDR]. This
data set is obtained from a database for reporting, investigating and monitoring adverse drug
reactions due to the Medicines and Healthcare products Regulatory Agency in the United
Kingdom. It contains the number of reported cases of amnesia as well as the total number
of adverse events reported for each of the m = 2446 drugs in the database. For more details

18 DiscreteFDR R package

we refer to Heller and Gur (2011) and to the accompanying R-package discreteMTP (Heller
et al. (2012)), which also contains the data. Heller and Gur (2011) investigate the association
between reports of amnesia and suspected drugs by performing for each drug a Fisher’s exact
test (one-sided) for testing association between the drug and amnesia while adjusting for
multiplicity by using several (discrete) FDR procedures. In what follows we present code
that reproduces parts of Figure 2 and Table 1 in [DDR].

We procede as in the example in Section 2. Since we need to access the critical values
we first determine the p values and their support for the data set amnesia contained for
convenience in the package DiscreteFDR. For this, we use the option "HG2011" in the function
fisher.pvalues.support.

R> library("DiscreteFDR")

R> data(amnesia)

R> amnesia.formatted <- fisher.pvalues.support(amnesia[, 2:3],

+ input = "HG2011")

R> raw.pvalues <- amnesia.formatted$raw

R> pCDFlist <- amnesia.formatted$support

Then we perform the FDR analysis with functions DBH and ADBH (SU and SD) and DBR at
level α = 0.05 including critical values.

R> DBH.su <- DBH(raw.pvalues, pCDFlist, ret.crit.consts = TRUE)

R> DBH.sd <- DBH(raw.pvalues, pCDFlist, direction = "sd",

+ ret.crit.consts = TRUE)

R> ADBH.su <- ADBH(raw.pvalues, pCDFlist, ret.crit.consts = TRUE)

R> ADBH.sd <- ADBH(raw.pvalues, pCDFlist, direction = "sd",

+ ret.crit.consts = TRUE)

R> DBR.su <- DBR(raw.pvalues, pCDFlist, ret.crit.consts = TRUE)

By accessing the critical values we can now generate a plot similar to Figure 2 from [DDR].
Note that both [DBH-SU] and [DBH-SD] are visually indistinguishable from their adaptive
counterparts.

Guillermo Durand, Florian Junge, Sebastian Döhler, Etienne Roquain 19

0 20 40 60 80 100

0
.0

0
0

0
.0

0
2

0
.0

0
4

0
.0

0
6

Index

c
ri

ti
c
a

l
va

lu
e

s

Figure 5: Critical values for [BH] (green dots), [DBH-SU] (orange dots), [DBH-SD] (red
dots), [A-DBH-SU] (blue dots), [A-DBH-SD] (purple dots), [DBR] (yellow dots). The sorted
raw p values are represented by asterisks.

The rejected hypotheses can be accessed via the command $Indices. The following code
yields some of the values from Table 1 in [DDR]:

R> rej.BH <- length(which(p.adjust(raw.pvalues, method = "BH") <= 0.05))

R> rej.DBH.su <- length(DBH.su$Indices)

R> rej.DBH.sd <- length(DBH.sd$Indices)

R> rej.ADBH.su <- length(ADBH.su$Indices)

R> rej.ADBH.sd <- length(ADBH.sd$Indices)

R> rej.DBR.su <- length(DBR.su$Indices)

R> c(rej.BH, rej.DBH.su, rej.DBH.sd, rej.ADBH.su, rej.ADBH.sd, rej.DBR.su)

[1] 24 27 27 27 27 27

The (continuous) BH rejects only 24 hypotheses whereas all the discrete procedures imple-
mented in DiscreteFDR are able to identify three additional drug candidates potentially
associated with amnesia.

5.2. Other types of discrete tests

In this section we sketch how DiscreteFDR can be used to analyse arbitrary multiple discrete
tests. Jimenez-Otero et al. (2018) used DiscreteFDR to detect disorder in NGS experiments
based on one-sample tests of the Poisson mean. Rather than reproducing their analysis in

20 DiscreteFDR R package

detail, we illustrate the general approach by using a toy example similar to the one in Section
2 and show how the test of the Poisson mean can be accomodated by DiscreteFDR.

To fix ideas, suppose we observe m = 9 independent Poisson distributed counts N1, . . . , N9

(Jimenez-Otero et al. (2018) used this to model the read counts of different DNA bases). We
assume that Ni ∼ Pois(λi) and the goal is to identify cases where λi is larger than some
pre-specified value λ0

i , i.e., we have the (one-sided) multiple testing problem

H0i : λi = λ0
i vs. H1i : λi > λ0

i .

As in Section 2, the goal is to adjust for multiple testing by using the [DBH-SD] procedure
at FDR-level α = 5%. In our example the observations n1, . . . , n9 and parameters λ0

1, . . . , λ0
9

are given as follows:

observations lambda.0

[1,] 3 0.6

[2,] 3 1.2

[3,] 1 0.7

[4,] 2 1.3

[5,] 3 1.0

[6,] 3 0.2

[7,] 1 0.8

[8,] 2 1.3

[9,] 4 0.9

Denote by Gi the distribution of Ni under H0i i.e., Gi(x) = P (Ni ≤ x). For observations
n1, . . . , n9 of N1, . . . , N9 the p values for the above one-sided test are given by

pi = P (Ni ≥ ni) = P (Ni > ni − 1) = Gi(ni − 1),

where Gi(x) = P (Ni > x) = 1−Gi(x) denotes the survival function of the Poisson distribution
with parameter λ0

i . Thus the raw p values are determined by the following R code:

R> raw.pvalues <- sapply(1:m,function(i){ppois(observations[i]-1,lambda.vector[i],

+ lower.tail = FALSE)})

R> raw.pvalues

[1] 0.023115288 0.120512901 0.503414696 0.373176876 0.080301397

[6] 0.001148481 0.550671036 0.373176876 0.013458721

Following the definition of the qpois function in R we define the inverse function of Gi by

Gi
−1

(p) = min{n ∈ N : Gi(n) ≤ p}

and obtain for the distribution function of the i-th p value under the null

Fi(x) = Gi(Gi
−1

(x)).

Each function Fi is a step function with Fi(0) = 0, Fi(1) = 1 and there exists an infinite
sequence of jumps at locations 1 = x1 > x2 > . . . > xn > xn+1 > . . . > 0 such that
F (xj) = xj for j ∈ N.

Guillermo Durand, Florian Junge, Sebastian Döhler, Etienne Roquain 21

Initially it seems that we run into a problem if we want to determine the critical values of
[DBH-SD] since the supports of F1, . . . , F9 are no longer finite (but still discrete). We can deal
with this problem by using the observation from Section 3.1 that it is sufficient to consider
new, restricted supports Ai ∩ [smin, 1] where the lower threshold satisfies

smin ≤ τ min
1 = max {t ∈ A : t ≤ ymin} where ymin =

α

m
·

(
1 +

α

m

)
−1

. (8)

To determine such an smin we procede as follows. Define nmax
i = Gi

−1
(ymin) + 1, tmin

i =
Gi(n

max
i − 1) and set smin = min (tmin

1 , . . . , tmin
9). It is easily checked that this choice of smin

satisfies (8). We can determine smin by the following code

R> y.min <- alpha/m*(1+alpha/m)^(-1)

R> n.max <- sapply(1:m,function(w){qpois(y.min,lambda.vector[w],

+ lower.tail = FALSE)})+1

R> t.min <- sapply(1:m,function(w){ppois(n.max[w]-1,lambda.vector[w],

+ lower.tail = FALSE)})

R> s.min <- min(t.min)

R> s.min

[1] 0.0007855354

For determining the restricted supports it is actually more convenient to work with nmax
i than

smin. We can subsequently use these supports as the pCDFlist argument in the usual way
when calling the DBH function:

R> supports <- lapply(1:m,function(w){sort(ppois(0:n.max[w]-1,lambda.vector[w],

+ lower.tail = FALSE))})

R> DBH.sd <- DBH(raw.pvalues,supports,direction = "sd", ret.crit.consts = TRUE)

Figure 6 shows a summary similar to Figure 2. Applying the continuous BH procedure

R> p.adjust(raw.pvalues, method = "BH")

[1] 0.06934586 0.21692322 0.55067104 0.47979884 0.18067814 0.01033633

[7] 0.55067104 0.47979884 0.06056424

results in one rejection at FDR-level α = 5%, whereas the DBH step-up procedure can reject
three hypotheses:

R> DBH.sd$Adjusted

[1] 0.039602625 0.101622881 0.580898946 0.522450788 0.101509307

[6] 0.001935955 0.626257875 0.522450788 0.033073393

22 DiscreteFDR R package

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

(a)

x

F
(x

)

0.00 0.02 0.04 0.06 0.08 0.10

0
.0

0
0

.0
2

0
.0

4
0

.0
6

0
.0

8
0

.1
0

(b)

x

ξ

2 4 6 8

0
.0

0
0

.0
5

0
.1

0
0

.1
5

(c)

Index

c
ri

ti
c
a

l
va

lu
e

s
Figure 6: Panel (a) depicts the distribution functions F1, . . . , F9 in various colours, (b) is a
graph of the transformation function ξSD. The uniform distribution function is shown in light
grey in (a) and (b). Panel (c) shows the [BH] critical values (green dots), the DBH step-down
critical values (red dots) and the sorted raw p values (asterisks).

As in Figure 2, Panel (c) presents a graphical comparison between the two procedures applied
to the p values.

6. Summary and future work

Controlling the FDR for discrete tests is an important goal in many data analytic settings. In
this paper, we introduced the R package DiscreteFDR, implementing procedures from [DDR].
These procedures come with guaranteed FDR control under independence and deal effectively
with the conservativeness encountered in discrete tests.

We hope that our software will make discrete methods for FDR control more accessible to
a wide audience of practitioners. More specifically, DiscreteFDR can be used both in an
’expert’ and a ’standard’ mode. For the data analyst, taking discreteness and multiplicity
issues into account simultaneously may appear to be rather challenging since information on
many distribution functions has to be stored, combined and evaluated. For this reason, we
have included the wrapper function fast.discrete which applies the discrete procedures to a
set of 2 × 2 tables, given by a matrix or data frame, where each contingency table is analysed
by Fisher’s exact test. Thus, this function can be seen as an implementation of a multiple
Fisher test that controls FDR. For controlling the more stringent Familywise Error Rate
(FWER) for multiple exact Fisher tests, we would like to point out the R package multfisher

which implements the approaches described in Ristl, Xi, Glimm, and Posch (2018). For those
analysts who are looking for a simple to apply, off-the-shelf method, using fast.discrete will
automatically take care of generating the list of (the support of the) distribution functions
pCDFlist, which may otherwise be tedious work. For more expert users who want to use

Guillermo Durand, Florian Junge, Sebastian Döhler, Etienne Roquain 23

other tests than Fisher’s exact test, the work flow, described in more detail in Section 5.2,
consists of first generating the pCDFlist list, and then passing this on to the DBH or DBR

functions.

Interfaces that generate pCDFlist from a given data set for a given statistical test are very
helpful tools. Currently, Fisher’s exact test is the only test for which our package supplies
such an interface. In the future, we are planning to include helper functions similar to
fisher.pvalues.support for further tests like the Binomial and Poisson tests.

The R package DiscreteFDR is available from the Comprehensive R Archive network (CRAN)
at https://cran.r-project.org/web/packages/DiscreteFDR/index.html.

7. Acknowledgements

We thank Antje Jahn for very carefully reading the manuscript and providing numerous
suggestions that greatly improved the content and presentation of the paper. This work has
been supported by the CNRS (PEPS FaSciDo) and the French grants ANR-16-CE40-0019
(SansSouci project) and ANR-17-CE40-0001 (Basics project).

References

Benjamini Y, Hochberg Y (1995). “Controlling the false discovery rate: A practical and
powerful approach to multiple testing.” Journal of the Royal Statistical Society. Series B,
57(1), 289–300. ISSN 00359246. URL http://www.jstor.org/stable/2346101.

Blanchard G, Dickhaus T, Hack N, Konietschke F, Rohmeyer K, Rosenblatt J, Scheer M,
Werft W (2017). mutoss: Unified Multiple Testing Procedures. R package version 0.1-12,
URL https://CRAN.R-project.org/package=mutoss.

Chen X, Doerge R (2015a). fdrDiscreteNull: False Discovery Rate Procedure Under Discrete
Null Distributions. R package version 1.0, URL https://CRAN.R-project.org/package=

fdrDiscreteNull.

Chen X, Doerge R (2015b). “A weighted FDR procedure under discrete and heterogeneous
null distributions.” arXiv:1502.00973.

Dickhaus T, Straßburger K, Schunk D, Morcillo-Suarez C, Illig T, Navarro A (2012). “How to
analyze many contingency tables simultaneously in genetic association studies.” Statistical
applications in genetics and molecular biology, 11(4). ISSN 1544-6115. doi:10.1515/

1544-6115.1776. URL http://dx.doi.org/10.1515/1544-6115.1776.

Döhler S, Durand G, Roquain E (2018). “New FDR bounds for discrete and heterogeneous
tests.” Electron. J. Statist., 12(1), 1867–1900. doi:10.1214/18-EJS1441. URL https:

//doi.org/10.1214/18-EJS1441.

Dudoit S, van der Laan MJ (2007). Multiple Testing Procedures and Applications to Genomics.
Springer Series in Statistics. Springer. ISBN: 978-0-387-49316-9.

24 DiscreteFDR R package

Durand G, Junge F (2019). DiscreteFDR: Multiple Testing Procedures with Adaptation for
Discrete Tests. R package version 1.2, URL https://CRAN.R-project.org/package=

DiscreteFDR.

Heller R, Gur H (2011). “False discovery rate controlling procedures for discrete tests.”
arXiv:1112.4627.

Heller R, Gur H, Yaacoby S (2012). discreteMTP: Multiple testing procedures for discrete
test statistics. R package version 0.1-2, URL https://CRAN.R-project.org/package=

discreteMTP.

Heyse JF (2011). “A false discovery rate procedure for categorical data.” In Recent Advances
in Bio- statistics: False Discovery Rates, Survival Analysis, and Related Topics, pp. 43–58.

Hothorn T, Bretz F, Westfall P (2008). “Simultaneous Inference in General Parametric
Models.” Biometrical Journal, 50(3), 346–363.

Jimenez-Otero N, de Una-Alvarez J, Pardo-Fernandez JC (2018). “Goodness-of-fit tests for
disorder detection in NGS experiments.” Biometrical Journal, 0(0). doi:10.1002/bimj.

201700284. https://onlinelibrary.wiley.com/doi/pdf/10.1002/bimj.201700284,
URL https://onlinelibrary.wiley.com/doi/abs/10.1002/bimj.201700284.

Karp NA, Heller R, Yaacoby S, White JK, Benjamini Y (2016). “Improving the Iden-
tification of Phenotypic Abnormalities and Sexual Dimorphism in Mice When Study-
ing Rare Event Categorical Characteristics.” Genetics. ISSN 0016-6731. doi:

10.1534/genetics.116.195388. http://www.genetics.org/content/early/2016/12/

05/genetics.116.195388.full.pdf, URL http://www.genetics.org/content/early/

2016/12/05/genetics.116.195388.

Lehmann E, Romano J (2006). Testing Statistical Hypotheses. Springer. ISBN 0387988645.
URL http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=

ASIN/0387988645.

Ristl R, Xi D, Glimm E, Posch M (2018). “Optimal exact tests for multiple binary endpoints.”
Computational Statistics and Data Analysis, pp. 1–17.

van den Broek E, Dijkstra MJJ, Krijgsman O, Sie D, Haan JC, Traets JJH, van de Wiel
MA, Nagtegaal ID, Punt CJA, Carvalho B, Ylstra B, Abeln S, Meijer GA, Fijneman RJA
(2015). “High Prevalence and Clinical Relevance of Genes Affected by Chromosomal Breaks
in Colorectal Cancer.” PLOS ONE, 10(9), 1–14. doi:10.1371/journal.pone.0138141.
URL https://doi.org/10.1371/journal.pone.0138141.

Westfall P, Wolfinger R (1997). “Multiple tests with discrete distributions.” The American
Statistician, 51(1), 3–8. ISSN 00031305. URL http://www.jstor.org/stable/2684683.

Zhu Y, Guo W (2017). “Familywise Error Rate Controlling Procedures for Discrete Data.”
ArXiv e-prints. 1711.08147.

Zhu Y, Guo W (2017). MHTdiscrete: Multiple Hypotheses Testing for Discrete Data. R
package version 1.0.0, URL https://CRAN.R-project.org/package=MHTdiscrete.

Guillermo Durand, Florian Junge, Sebastian Döhler, Etienne Roquain 25

A. Run Time Comparison Tables

m |A| Critical values Run time

250 14442
TRUE 0.02

FALSE 0.00

500 30873
TRUE 0.08

FALSE 0.01

1000 64058
TRUE 0.28

FALSE 0.01

3000 181801
TRUE 2.42

FALSE 0.07

5000 297930
TRUE 6.72

FALSE 0.19

7000 420162
TRUE 13.39

FALSE 0.35

10000 608459
TRUE 28.48

FALSE 0.70

17400 1074398
TRUE 90.53

FALSE 2.02

Table 9: Median run times for the [DBH-SD] procedure.

m |A| Critical values Run time

250 14442
TRUE 0.02

FALSE 0.02

500 30873
TRUE 0.08

FALSE 0.05

1000 64058
TRUE 0.28

FALSE 0.17

3000 181801
TRUE 2.44

FALSE 1.33

5000 297930
TRUE 6.78

FALSE 3.67

7000 420162
TRUE 13.60

FALSE 7.34

10000 608459
TRUE 29.34

FALSE 15.65

17400 1074398
TRUE 94.96

FALSE 49.83

Table 10: Median run times for the [DBH-SU] procedure.

26 DiscreteFDR R package

m |A| Critical values Run time

250 14442
TRUE 0.11

FALSE 0.00

500 30873
TRUE 0.57

FALSE 0.02

1000 64058
TRUE 2.32

FALSE 0.05

3000 181801
TRUE 24.13

FALSE 0.49

5000 297930
TRUE 62.14

FALSE 1.43

7000 420162
TRUE 130.61

FALSE 2.92

10000 608459
TRUE 281.12

FALSE 6.27

17400 1074398
TRUE 939.50

FALSE 19.91

Table 11: Median run times for the [A-DBH-SD] procedure.

m |A| Critical values Run time

250 14442
TRUE 0.06

FALSE 0.01

500 30873
TRUE 0.25

FALSE 0.04

1000 64058
TRUE 1.02

FALSE 0.17

3000 181801
TRUE 12.38

FALSE 1.41

5000 297930
TRUE 30.44

FALSE 3.67

7000 420162
TRUE 94.39

FALSE 7.32

10000 608459
TRUE 141.81

FALSE 15.42

17400 1074398
TRUE 467.48

FALSE 49.14

Table 12: Median run times for the [A-DBH-SU] procedure.

Guillermo Durand, Florian Junge, Sebastian Döhler, Etienne Roquain 27

m |A| Critical values Run time

250 14442
TRUE 0.10

FALSE 0.00

500 30873
TRUE 0.53

FALSE 0.01

1000 64058
TRUE 2.24

FALSE 0.05

3000 181801
TRUE 11.85

FALSE 0.48

5000 297930
TRUE 25.92

FALSE 1.41

7000 420162
TRUE 54.34

FALSE 2.86

10000 608459
TRUE 115.94

FALSE 4.40

17400 1074398
TRUE 387.28

FALSE 4.49

Table 13: Median run times for the [DBR] procedure at λ = 0.05.

Affiliation:

Guillermo Durand
Sorbonne Université,
Laboratoire de Probabilités, Statistique et Modélisation
4, place Jussieu
75005 Paris, France
E-mail: Guillermo.Durand@upmc.fr

Florian Junge
Darmstadt University of Applied Sciences
Darmstadt Institute for Statistics and Operations Research
Schöfferstraße 3
64295 Darmstadt, Germany
E-mail: florian.junge@h-da.de

Sebastian Döhler
Darmstadt University of Applied Sciences
Faculty of Mathematics and Natural Sciences
Darmstadt Institute for Statistics and Operations Research
Schöfferstraße 3
64295 Darmstadt, Germany
E-mail: sebastian.doehler@h-da.de

28 DiscreteFDR R package

Etienne Roquain
Sorbonne Université,
Laboratoire de Probabilités, Statistique et Modélisation
4, place Jussieu
75005 Paris, France
E-mail: Etienne.Roquain@upmc.fr

	Introduction
	Examples
	New procedures
	Critical values
	Transformed p values
	Adjusted p values

	Implementation
	General structure
	Details for some specific functions
	Helper functions
	Main Functions
	Kernel functions

	Print and summary functions
	Run times
	Results of critical values approach
	Results of transformed p values approach

	Examples
	Analysis of pharmacovigilance data
	Other types of discrete tests

	Summary
	Acknowledgements
	Run Time Comparison Tables

