| LazyLoad: | yes | 
| LazyData: | yes | 
| Version: | 2024.7-30 | 
| Title: | Forward Stepwise Deep Autoencoder-Based Monotone NLDR | 
| Maintainer: | Youyi Fong <youyifong@gmail.com> | 
| Depends: | R (≥ 3.5.0) | 
| Suggests: | R.rsp, RUnit | 
| Imports: | kyotil, reticulate (≥ 1.10) | 
| VignetteBuilder: | R.rsp | 
| Description: | FS-DAM performs feature extraction through latent variables identification. Implementation is based on autoencoders with monotonicity and orthogonality constraints. | 
| License: | GPL-2 | GPL-3 [expanded from: GPL (≥ 2)] | 
| NeedsCompilation: | no | 
| Packaged: | 2024-07-31 14:57:27 UTC; Youyi | 
| Author: | Youyi Fong [cre], Jun Xu [aut] | 
| Repository: | CRAN | 
| Date/Publication: | 2024-07-31 15:30:02 UTC | 
Select Biomarkers from the HVTN 505 Correlates Analysis
Description
See reference.
Usage
data("cc.505")Format
A data frame with 189 observations on the following 27 variables.
- ptid
- a character vector 
- trt
- a numeric vector 
- case
- a numeric vector 
- control
- a numeric vector 
- perprot
- a numeric vector 
- last_uninfec_immun_vst
- a numeric vector 
- racefull
- a numeric vector 
- racefulltxt
- a character vector 
- bmi
- a numeric vector 
- bmicat
- a numeric vector 
- bmicattxt
- a character vector 
- earliest_pos_vst
- a numeric vector 
- level
- a character vector 
- matchlevel
- a character vector 
- samplingfraction
- a numeric vector 
- vst9subcohort
- a numeric vector 
- HIVwk28preunbl
- a numeric vector 
- age
- a numeric vector 
- racecc
- a character vector 
- bhvrisk
- a numeric vector 
- BMI
- a numeric vector 
- stratuminds_vaccs
- a numeric vector 
- stratuminds
- a numeric vector 
- cd4.env.poly
- a numeric vector 
- cd8.env.poly
- a numeric vector 
- mfounders
- a numeric vector 
- wei
- a numeric vector 
References
Fong, Y, Xu, J. Multi-Stage Simultaneous Deep Autoencoder-based Monotone (MSS-DAM) Nonlinear Dimensionality Reduction Methods, Journal of Computational and Graphical Statistics, in press.
FS-DAM NLDR
Description
Forward stepwise deep autoencoder-based monotone nonlinear dimension reduction.
Usage
fsdam(dat, opt_numCode = ncol(dat), opt_seed = 1, opt_model = "n", opt_gpu = 0, 
opt_k = 100, opt_nEpochs = 10000, 
opt_constr = c("newpenalization", "constrained", "none"),
 opt_tuneParam = 10, opt_penfun = "mean", opt_ortho = 1, opt_earlystop = "no", 
 verbose = FALSE)
## S3 method for class 'fsdam'
 plot(x, which=c("mse", "history", "decoder.func", "scatterplot"),
 k=NULL, dim.1=NULL, dim.2=NULL, col.predict=2, ...)
Arguments
| dat | data frame. | 
| opt_numCode | number of components to extract | 
| opt_seed | seed for torch | 
| opt_model | n for newpenalization | 
| opt_gpu | zero-based index of gpu to be used among all gpus. If negative, then no gpu is used | 
| opt_k | number of nodes in the coding/decoding layers | 
| opt_nEpochs | number of epochs for training | 
| opt_constr | constraint string | 
| opt_tuneParam | tuning parameter for monotonicity penalty | 
| opt_penfun | penalize sum or mean | 
| opt_ortho | tuning parameter for orthogonality penalty | 
| opt_earlystop | whether to stop early | 
| verbose | verbose | 
| x | fsdam object | 
| which | which | 
| k | the component to plot | 
| dim.1 | index of the first variable | 
| dim.2 | index of the second variable | 
| col.predict | color of the predicted curve when which = scatterplot | 
| ... | plotting arguments | 
Details
If the torch python package is not available, this function will stop. 
To make sure the right python installation is used, run reticulate::use_python("/app/easybuild/software/Python/3.7.4-foss-2016b/bin/python") in R before running this function for the first time.
It is recommended that dat is scaled before calling fsdam.
References
Fong, Y, Xu, J. Multi-Stage Simultaneous Deep Autoencoder-based Monotone (MSS-DAM) Nonlinear Dimensionality Reduction Methods, Journal of Computational and Graphical Statistics, in press.
Examples
## Not run: 
    
fit=fsdam(hvtn505tier1[1:100,-1], opt_numCode=2, verbose=TRUE)
fit
plot(fit,which="mse")
plot(fit,which="history")
## End(Not run)
HVTN 505 Immune Correlates Tier 1 Dataset
Description
Contains eight immune response variables from the vaccine arm of the HVTN 505 trial.
Usage
data("hvtn505tier1")Format
A data frame with 150 observations on the following 9 variables.
- ptid
- a character vector 
- CD8_ANYVRCENV_PolyfunctionalityScore_score
- a numeric vector 
- IgGw28_env_mdw
- a numeric vector 
- IgGw28_V1V2_mdw
- a numeric vector 
- IgGw28_gp41_mdw
- a numeric vector 
- ADCP1
- a numeric vector 
- R2aConSgp140CFI
- a numeric vector 
- IgAw28_env_mdw
- a numeric vector 
- IgG3w28_env_mdw
- a numeric vector 
References
Fong, Y, Xu, J. Multi-Stage Simultaneous Deep Autoencoder-based Monotone (MSS-DAM) Nonlinear Dimensionality Reduction Methods, Journal of Computational and Graphical Statistics, in press.
Janes, H.E., Cohen, K.W., Frahm, N., De Rosa, S.C., Sanchez, B., Hural, J. et al (2017), Higher T-cell responses induced by DNA/rAd5 HIV-1 preventive vaccine are associated with lower HIV-1 infection risk in an efficacy trial, The Journal of infectious diseases, 215, 1376-1385.
Fong, Y., Shen, X., Ashley, V.C., Deal, A., Seaton, K.E., Yu, C. et al (2018), Vaccine-induced antibody responses modify the association between T-cell immune responses and HIV-1 infection risk in HVTN 505, The Journal of Infectious Diseases, 217, 1280–1288.
Neidich, S.D., Fong, Y., Shen, X., Ashley, V.C., Deal, A., Seaton, K.E. et al (2019), Antibody Fc-effector Functions and IgG3 Associates with Decreased HIV-1 Acquisition Risk, The Journal of Infectious Diseases, 129, 4838-4849.