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FuzzySimRes: Epistemic Bootstrap – an

Efficient Tool for Statistical Inference

Based on Imprecise Data
by Maciej Romaniuk, Przemysław Grzegorzewski, Abbas Parchami

Abstract The classical Efron’s bootstrap is widely used in many areas of statistical inference, including
imprecise data. In our new package FuzzySimRes we adapted the bootstrap methodology to the
epistemic fuzzy data, i.e. fuzzy perceptions of the usual real-valued random variables. The epistemic
bootstrap algorithms deliver real-valued samples generated randomly from the initial fuzzy sample.
Then, these samples can be utilized directly in various statistical procedures. Moreover, we imple-
mented a practically oriented simulation procedure to generate synthetic fuzzy samples and provided
a real-life epistemic dataset ready to use for various techniques of statistical analysis. Some examples
of their applications, together with the comparisons of the epistemic bootstrap algorithms and the
respective benchmarks, are also discussed.

1 Introduction

Efron’s bootstrap (Efron and Tibshirani, 1993) is a simple but very powerful tool. This useful resam-
pling method is successfully applied in statistical inference, including estimation, hypotheses testing,
and other data analysis techniques, e.g., Davison and Hinkley (1997); James et al. (2021); Romaniuk
(2019).

In our package FuzzySimRes we adapted the classical bootstrap algorithm to a special kind of
imprecise data, i.e. the epistemic random fuzzy numbers (see Couso and Dubois (2014)), which
might be treated as fuzzy perceptions of the usual real-valued random variables. This way, a special
resampling methodology, known as the epistemic bootstrap, can be introduced (Grzegorzewski and
Romaniuk, 2021, 2022a,c). Following the suggested methods we can generate random real-valued
samples based on the initial fuzzy sample. Such a “change of a viewpoint” from the “fuzzy world”
to its “clear” (i.e. real-value) counterpart can be a very useful and important tool. This allows all
commonly used classical statistical methods (developed for real-valued samples), including statistical
tests, estimation procedures, etc., to be directly and easily adapted to fuzzy epistemic samples.

Please note that statistical inference for the fuzzy data is usually underdeveloped, poses some
problems, and leads to discussions about the intuitions, solutions, etc. (e.g., concerning the different
approaches to the p-value).

We provide some useful functions in our package FuzzySimRes. They are related to a practically
oriented simulation of various types of fuzzy numbers (FNs), the epistemic bootstrap itself, and its
applications related to the estimation of important statistical measures of the initial sample, and the
one- and two-sample statistical tests. Additionally, we provide the real-life dataset of the epistemic FNs,
which can be useful in comparing various approaches to fuzzy statistical inference. Based on the two
general epistemic bootstrap functions, users of FuzzySimRes can build their own “epistemic bootstrap
statistical tools” to fit their purposes (e.g., the necessity of using tests other than the Kolmogorov-
Smirnov one).

In the following, we briefly compare FuzzySimRes package with other existing ones and introduce
a necessary notation. Then, the functions implemented in the package are illustrated with the respective
examples. Finally, the outcomes of these functions are compared taking into account some benchmarks
for different statistical problems using both the synthetic and real-life data.

1.1 A brief review of related packages

There are some packages related to fuzzy numbers and their statistical analysis. Firstly, we should
mention FuzzyNumbers (Gagolewski and Caha, 2021). This library aims to provide S4 classes
and methods for FNs. They can be used to construct different types of FNs (e.g., triangular or
trapezoidal ones), compute arithmetic operators for fuzzy values, calculate their approximations,
and find different characteristics of FNs (like the possibility and necessity values, expected interval,
ambiguity, membership functions among many others) for arbitrary FNs or some of their special
types, etc. Notably, our package FuzzySimRes uses S4 objects describing FNs derived from this
package. However, there are no special functions devoted to simulations or resampling methods in
FuzzyNumbers package. Therefore, it can be seen as a kind of “foundation” to deal with FNs.
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The next package, FuzzySTs (Berkachy and Donzé, 2020) is a collection of various statistical
tools, like fuzzification methods, numerical estimations of fuzzy statistical measures and bootstrap
distribution of the likelihood ratio, testing hypotheses by fuzzy confidence intervals and estimation of
the fuzzy p-values for epistemic fuzzy data. These approaches are related to fuzzy notions, like fuzzy
p-values, resulting in the strictly fuzzy output (Berkachy and Donzé, 2019).

And SAFD (Trutschnig et al., 2013) package joins two kinds of functions. Similarly to FuzzyNum-
bers, it provides basic operations on FNs (like the sum, mean, etc.), but it also contains some strictly
statistical functions. They allow us to simulate FNs and perform bootstrap tests for the equality of the
means. As for the simulation function, this is an implementation of the second procedure described by
González-Rodríguez et al. (2009), where a respective basis is perturbated stochastically to generate a
new polygonal fuzzy number. There are important theoretical and practical differences (Parchami
et al., 2024) between this approach and the one applied in FuzzySimRes package. The statistical
tests in SAFD library are exclusively based on the classical bootstrap as described by Colubi (2009);
Montenegro et al. (2004).

On the other hand, Sim.PLFN (Parchami, 2017) can be seen as a kind of “ancestor” of our package.
It allows only to simulation of some kinds of FNs some kinds of FNs, especially so-called piecewise
linear FNs (Coroianu et al., 2013), and calculates a few basic operators (like the sum, mean, and
variance) for them.

Another package, FuzzyStatTra (Lubiano and de la Rosa de Saa, 2017), also provides basic sta-
tistical functions for FNs like calculation of the mean and medians, indexes, and various distance
measures. Some simulation procedures are also included there, but they are intended for special cases
of dependent and independent components described by Sinova et al. (2016). Therefore, they can not
be considered as “multi-purpose” generation functions when the probability distributions are selected
by the user.

We should also mention our previous package, FuzzyResampling (Romaniuk et al., 2022) that pro-
vides various resampling algorithms other than the classical bootstrap (Romaniuk and Grzegorzewski,
2023). The main aim of these approaches is to overcome a problem with repetition of a few distinct
values (which is commonly seen in the case of the Efron’s bootstrap) and to create FNs, which are
“similar” (in the sense of some characteristics of FNs) but not “the same” as values from the initial
sample (Grzegorzewski et al., 2020; Romaniuk and Hryniewicz, 2019; Grzegorzewski and Romaniuk,
2022b). Additionally, the tests for the means related to the approach presented by Lubiano et al. (2016)
but based on these new resampling methods are also provided.

Nevertheless, FuzzySimRes has some unique features. Firstly, it adds very useful simulation
functions (as its acronym – Fuzzy Simulations and Resampling – suggests) to complete FuzzyNumbers
in this field. These procedures are very intuitive and practically oriented as noted by Parchami et al.
(2024) (contrary to, e.g., SAFD that adds some random noise without keeping track of important
characteristics of the input FNs). Secondly, the so-called epistemic bootstrap is implemented there.
Apart from ready-to-use general epistemic bootstrap functions, special procedures are provided for
the estimation of parameters of the underlying statistical model, together with an interface that can be
used with various classical statistical tests. The epistemic bootstrap is a relatively new idea and the
respective algorithms were not implemented in other publicly available software packages (including
R itself). It should be noted, that this approach is completely different when compared with the
ontic-oriented resampling procedures from FuzzyResampling that can be seen as a “generalization” of
the classical bootstrap procedure (Grzegorzewski et al., 2020; Grzegorzewski and Romaniuk, 2022b).

1.2 Epistemic fuzzy numbers

In the following, we recall some basic concepts and notations concerning fuzzy numbers. For a more
detailed introduction, we refer the reader to, e.g., Ban et al. (2015).

A fuzzy number (abbreviated further as FN) is an imprecise value characterized by a mapping
Ã : R → [0, 1] (a membership function), such that its α-cut defined by

Ãα =

{
{x ∈ R : Ã(x) ⩾ α} if α ∈ (0, 1],
cl{x ∈ R : Ã(x) > 0} if α = 0,

(1)

is a nonempty compact interval for each α ∈ [0, 1]. Operator cl in (1) denotes the closure. Every FN is
completely characterized both by its membership function Ã(x) and a family of α-cuts {Ãα}α∈[0,1].
There are two special α-cuts: the core Ã1 = core(Ã), which contains all values fully compatible
with the concept described by Ã, and the support Ã0 = supp(Ã) on real line, for which values are
compatible to some extent with the concept modeled by Ã. A family of all FNs will be denoted
by F(R).

The R Journal Vol. 16/2, June 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=FuzzySTs
https://CRAN.R-project.org/package=SAFD
https://CRAN.R-project.org/package=Sim.PLFN
https://CRAN.R-project.org/package=FuzzyStatTra
https://CRAN.R-project.org/package=FuzzyResampling


CONTRIBUTED RESEARCH ARTICLE 177

There are many possible shapes of the membership functions. A special family of the LR-fuzzy
numbers is defined by

Ã(x) =





0 if x < a1,

L
(

x−a1
a2−a1

)
if a1 ⩽ x < a2,

1 if a2 ⩽ x < a3,

R
(

a4−x
a4−a3

)
if a3 ⩽ x < a4,

0 if x ⩾ a4,

(2)

where L, R : [0, 1] → [0, 1] are continuous and strictly increasing function such that L(0) = R(0) = 0
and L(1) = R(1) = 1, and a1, a2, a3, a4 ∈ R, where a1 ⩽ a2 ⩽ a3 ⩽ a4. If L and R are linear functions,

i.e. L
(

x−a1
a2−a1

)
= x−a1

a2−a1
and R

(
a4−x
a4−a3

)
= a4−x

a4−a3
, we get a trapezoidal fuzzy number (denoted further

on as TPFN). Moreover, if a2 = a3 then we have a triangular fuzzy number (abbreviated as TRFN). In
these two cases, we can simply write A = (a1, a2, a3, a4) (for TPFN) or A = (a1, a2, a4) (for TRFN) to
fully describe such FNs.

Another type of the LR-fuzzy number is known as the k-knot piecewise linear fuzzy number
(Coroianu et al., 2019) (or polygonal fuzzy number, see Báez-Sánchez et al. (2012), abbreviated further
as PLFN), which is suitable especially in an approximation of more complex FNs. In this case, L and R
functions are polygons consisting of k ∈ N segments.

Fuzzy numbers are used to model the results of various experiments that cannot be precisely
described, qualified, or measured. But in many cases, we have to draw conclusions and make decisions
based on data whose uncertainty comes both from randomness (which classical statistics copes with)
and lack of precision (for which the fuzzy set theory is perfect for modeling). To model such data one
can use fuzzy random variables, known also as random fuzzy numbers (Parchami et al., 2024).

It should be noted here that we can look at fuzzy random variables from two different perspectives:
ontic or epistemic (e.g. Couso and Dubois (2014)). The first concerns data that appear to be essentially
fuzzy in value, while the second refers to situations where, although precise (accurate) data values
exist, they are imprecisely observed (e.g. due to imperfections in measuring devices, inaccuracies
caused by people performing the measurements, or how results are reported), so their true actual
values remain unknown. This second kind of imprecision is widespread in real-life problems met in
engineering, science, and other applications, so further on we limit our attention only to epistemic
data.

Following the definition by Kwakernaak (1978) and Kruse (1982) a fuzzy random variable X̃ can
be considered as a fuzzy perception of the unknown random variable X, called the original of X̃. More
precisely, given a probability space (Ω,F , P), a mapping X : Ω → F(R) is said to be a fuzzy random
variable (f.r.v.) if for each α ∈ [0, 1] (inf Xα) : Ω → R and (sup Xα) : Ω → R are real-valued random
variables on (Ω,F , P). Similarly, a fuzzy random sample X̃1, . . . , X̃n is a fuzzy perception of a random
sample X1, . . . , Xn of the usual real-valued random variables. For more details, we refer the reader to
Kwakernaak (1978); Kruse (1982).

1.3 Epistemic vs classical bootstrap

There are important differences between the classical Efron’s bootstrap (Efron and Tibshirani, 1993)
and its epistemic counterpart (Grzegorzewski and Romaniuk, 2021, 2022c, 2024). In the classical
bootstrap approach, the initial sample is then directly resampled. Therefore, in the case of fuzzy
input, the output also consists of the same FNs as in the primary sample (with possible repetitions
or omitting some of them). This procedure can be very useful in statistical inference (see, e.g., (Gil
et al., 2006; Lubiano et al., 2016; Montenegro et al., 2004)) but the respective statistical tests (or other
statistical procedures like the estimation) have to be specially developed for fuzzy-valued samples.
Therefore, there is a need to construct “almost completely new” statistical solutions taking into account
various distance measures for fuzzy sets existing in the literature, more complex definitions of the
expected value, possible problems with difference operator, etc. (Ban et al., 2015; Heilpern, 1992).
Resampling procedures existing in FuzzyResampling package can be seen as a kind of generalization
of this classical bootstrap (in the same manner as the smoothed bootstrap in the case of real-valued
samples). They aim to preserve some important characteristics of FNs (like the value, ambiguity, etc.)
but with an alternation of FNs from the initial sample into ”new” values occurring in the generated
samples (Grzegorzewski et al., 2020; Grzegorzewski and Romaniuk, 2022b). However, we are still
obtaining fuzzy-valued outputs for these methods.

On the other hand, in the epistemic bootstrap, a completely real-valued (i.e. “crisp”) sample is
generated from a fuzzy-valued initial sample. It allows to use of directly highly developed statistical
tools for real-valued data (various statistical tests, point or interval estimators, etc.) without the

The R Journal Vol. 16/2, June 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 178

need for transforming them into a “new fuzzy world”. Consequently, knowing statistical tools with
suitable good properties, the areas of possible applications of epistemic fuzzy data may substantially
expand. To explain it better, consider the following goodness-of-fit testing problem. In Lubiano et al.
(2016) and Lubiano et al. (2017), the outcomes of the well-known questionnaire TIMSS-PIRLS 2011
performed by Spanish primary school pupils were considered, while in Ramos-Guajardo et al. (2019)
experts’ perceptions about different characteristics of the Gamonedo blue chees were discussed. In
both cases, researchers dealt with subjective valuations expressed in natural language, which are
inherently imprecise, and therefore modeled using ontic fuzzy sets. Thus, the problems mentioned
above required the construction of appropriate statistical tools that would enable inferences to be
made based on this type of data. Meanwhile, the epistemic variants of the classical Kolmogorov-
Smirnov and Cramer-von Mises tests were directly used for fuzzy data concerning the lifetimes
of street light equipment (Hesamian and Taheri, 2013) and electronic circuit thickness (Faraz and
Shapiro, 2010) in Grzegorzewski and Romaniuk (2024). The obtained results were consistent with
predictions concerning these real-life samples, like the behavior of the probability distributions of their
originals (Gibbons and Chakraborti, 2010). The example related to the electronic circuit thickness is
also considered further in this paper. Some other applications can be also found in (Grzegorzewski
and Romaniuk, 2022a,c,b, 2024).

Moreover, using brute computational force, we can easily improve the quality of the outputs.
However, the results are quite satisfactory also for the limited number of α-cuts. For instance, using
even 10 α-cuts leads to the p-values for the epistemic versions of the goodness-of-fit tests (like
the Kolmogorov-Smirnov or Cramer-von Mises tests) very close to their respective benchmarks
(Grzegorzewski and Romaniuk, 2024).

2 Overview of FuzzySimRes package

Firstly, we briefly discuss the functions implemented in FuzzySimRes package. They can be roughly
divided into four groups:

1. random generation of FNs of various types,

2. general epistemic bootstrap procedures,

3. epistemic estimation of basic population characteristics from fuzzy samples,

4. interface to statistical tests based on the epistemic bootstrap.

Moreover, a set of real-life epistemic fuzzy data is also included in the package. All examples in R can
be reproduced using the supplementary file.

Taking into account the above-mentioned types of functions, there are many possible applications
of FuzzySimRes package:

1. Generation of synthetic fuzzy samples according to the specified probability distributions. Such
samples can be then used to check the validity and quality of new statistical tools for FNs in a
strictly controlled “environment”, e.g., to plot power curves for a statistical test (Grzegorzewski
and Romaniuk, 2022c) or to check the influence of different model parameters on the estimated
p-values (Grzegorzewski and Romaniuk, 2024).

2. Estimation is one of the key problems in statistical inference. The same applies to fuzzy-
valued data, especially in the epistemic case. Then, our considerations about the mean or the
standard deviation related to the respective originals of the fuzzy random sample can give us
the necessary insight into the parameters of the underlying statistical model (Grzegorzewski
and Romaniuk, 2021, 2022c).

3. Statistical tests are the next important subject in statistical inference. To accept or reject the null
hypothesis, the respective statistical test has to be developed. As it was previously mentioned,
the epistemic bootstrap allows for direct application of the widely known real-valued tests
instead of their “fuzzy-oriented” counterparts. Therefore, e.g., the classical goodness-of-fit
Kolmogorov-Smirnov or Cramer-von Mises tests can be directly used with the interface provided
by FuzzySimRes package (Grzegorzewski and Romaniuk, 2022a, 2024).

4. Real-life fuzzy data are also important to develop statistical procedures. Synthetic samples are
very useful, but some problems are only visible when the data are provided by a “true source”.
In FuzzySimRes package, there is a special set of such data used to construct a fuzzy statistical
control chart (Faraz and Shapiro, 2010) and check the quality of statistical tests based on the
epistemic bootstrap (Grzegorzewski and Romaniuk, 2024).

The general workflow for some possible applications (black lines) and the internal order of
invoking functions (orange lines) from FuzzySimRes package can be found in Fig. 1.
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Figure 1: General workflow for possible applications and invoking the functions from FuzzySimRes
package.

2.1 Generation of the initial sample

In many cases, synthetic samples of predefined properties are necessary to analyze statistical methods
numerically. Two functions in FuzzySimRes allow the generation of random fuzzy variables. The first
one

SimulateFuzzyNumber(originalPD,parOriginalPD,incrCorePD,

parIncrCorePD,suppLeftPD,parSuppLeftPD,

suppRightPD,parSuppRightPD,knotNumbers = 0,

type = "trapezoidal",...)

is used to generate randomly a single TPFN (for type = "trapezoidal"), TRFN (type = "triangular"),
or PLFN (type = "PLFN", respectively). All these types of FNs utilize the respective S4 objects from
FuzzyNumbers.

To simulate a TPFN X̃, five independent real-valued random variables are necessary: X for its
“true value” (i.e., its original), Cl , Cr – the left and right increment of the core, Sl , Sr – the left and right
increment of the support, respectively. To generate these random variables the functions derived from
stats (R Core Team, 2023) with the respective parameters are used (see Table 1), e.g., to draw randomly
the original X, the function originalPD with the parameters parOriginalPD should be applied.

Random variable Function Parameters
X originalPD parOriginalPD

Cl , Cr incrCorePD parIncrCorePD

Sl suppLeftPD parSuppLeftPD

Sr suppRightPD parSuppRightPD

Table 1: Random variables used to simulate a TPFN.

As a result we obtain a random TPFN given by (X − Cl − Sl , X − Cl , X + Cr, X + Cr + Sr) (see
also Grzegorzewski and Romaniuk (2022a) for the similar procedure). Obviously, for a TRFN we
have Cl = Cr = 0 without using the respective parameters in SimulateFuzzyNumber. In the case of a
PLFN, the number of knots knotNumbers should be greater than zero, and then the specially truncated
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probability distributions for both arms of the support are applied. The function SimulateFuzzyNumber

returns both the generated FN (as value in the output list) and its random original X (as original).

Let us initialize a random seed and generate a TPFN with the “true origin” described by the normal
distribution with the expected value µ = 0 and standard deviation σ = 1 (denoted by N(µ, σ)), the
increments of the core given by the uniform distribution on the interval (0, 0.6) (denoted by U(0, 0.6))
and the increments of the support from U(0, 1):

# seed PRNG

> set.seed(123456)

> SimulateFuzzyNumber(originalPD="rnorm",parOriginalPD=list(mean=0,sd=1),

+ incrCorePD="runif",parIncrCorePD=list(min=0,max=0.6),

+ suppLeftPD="runif",parSuppLeftPD=list(min=0,max=1),

+ suppRightPD="runif",parSuppRightPD=list(min=0,max=1),

+ type="trapezoidal")

$original

[1] 0.6857515

$value

Trapezoidal fuzzy number with:

support=[-0.316967,1.10087],

core=[0.480817,0.902528].

The second function generates a sample of n independent FNs similarly to SimulateFuzzyNumber:

SimulateSample(n = 1,originalPD,parOriginalPD,incrCorePD,

parIncrCorePD,suppLeftPD,parSuppLeftPD,

suppRightPD,parSuppRightPD,knotNumbers = 0,

type = "trapezoidal")

This function returns a list of simulated FNs together with a vector of their respective originals. Let us
generate 10 TPFNs given by the same distributions as in the previous example and print the second
simulated value and its “true origin”:

# seed PRNG

> set.seed(123456)

> sample1 <- SimulateSample(n=10,originalPD="rnorm",

+ parOriginalPD=list(mean=0,sd=1),

+ incrCorePD="runif",parIncrCorePD=list(min=0,max=0.6),

+ suppLeftPD="runif",parSuppLeftPD=list(min=0,max=1),

+ suppRightPD="runif",parSuppRightPD=list(min=0,max=1),

+ type="trapezoidal")

> sample1$original[2]

[1] -1.301602

> sample1$value[2]

$X2

Trapezoidal fuzzy number with:

support=[-1.937,-0.229014],

core=[-1.40214,-0.822808].

> plot(sample1$value[[2]])

The obtained graph of this exemplary FN can be found in Fig. 2.

2.2 Epistemic bootstrap

All of the functions described in further sections use two main procedures related to the epistemic
bootstrap (Grzegorzewski and Romaniuk, 2021, 2022a,c, 2024).

The first one

The R Journal Vol. 16/2, June 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 181

−2.0 −1.5 −1.0 −0.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

α

Figure 2: Example of the generated TPFN.

EpistemicBootstrap(fuzzySample, cutsNumber = 1,...)

applies the standard epistemic bootstrap (abbreviated as std) to a single value or a whole list of FNs
given by fuzzySample. This procedure firstly generates uniformly a list of α-cuts (their number is
specified by cutsNumber). Then, it generates a sample from each of the input FNs, corresponding to
the aforementioned list of the α-cuts. A final output is given as a real-valued matrix, with the number
of rows that is equal to cutsNumber, and the number of columns designated by the initial sample size.

This way, we obtain b real-valued bootstrap samples X
∗j =

(
X
∗j
1 , . . . , X

∗j
n

)
, based on the initial fuzzy

sample X̃ = (X̃1, . . . , X̃n), where j = 1, . . . , b and b is equal to cutsNumber.

Let us apply the epistemic bootstrap with 3 α-cuts for the previously generated sample1, and then
show the output rounded to 4 decimal places:

> set.seed(123456)

> epistemicOutput <- EpistemicBootstrap(sample1$value, cutsNumber = 3)

> round(epistemicOutput,digits = 4)

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

0.7978 0.5323 -1.0784 0.6744 0.8553 0.9501 1.1755 0.6460 -0.5347 -0.0049 1.5937

0.7536 0.5253 -1.4512 1.4851 0.8546 0.9337 1.4773 0.6576 -0.3149 -0.0022 1.8909

0.3913 0.1991 -0.4767 1.1215 0.9443 -0.0089 0.8814 0.4538 0.0633 -0.9345 1.1242

The first column shows α-cuts drawn randomly, while the rest columns contain values generated from
each α-cut.

The second function

AntitheticBootstrap(fuzzySample, cutsNumber = 1,...)

applies the so-called antithetic epistemic bootstrap (denoted further on by anti). Instead of drawing a
single value from the given α-cut of each FN, we generate two values: one from this α-cut and the
other from (1 − α)-cut, and then we determine their average. As indicated in Grzegorzewski and
Romaniuk (2022a,c), the antithetic approach improves the quality of some statistical inference methods.
An example of how to use this function can be found in the supplementary file.

The epistemic bootstrap produces a real-valued sample based on the initial fuzzy values. Therefore,
it can be easily applied to estimate various statistical measures of the input values (like the mean) or
to conduct many “classical” (i.e. real-valued) statistical tests.

2.3 Estimation of parameters

Estimation of basic population parameters (like the mean) is a fundamental task of most statistical
inference problems. Given fuzzy data, we can easily adapt the epistemic bootstrap to estimate the
quantities of interest (see (Grzegorzewski and Romaniuk, 2022c)).

A general function
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EpistemicEstimator(fuzzySample,estimator = "sd",cutsNumber = 1,bootstrapMethod = "std",

trueValue = NA,...)

can be used to determine the desired estimate from the fuzzySample of the specified function in
estimator. Both the classical epistemic approach (bootstrapMethod = "std") and its antithetic
counterpart (bootstrapMethod = "anti") are available. Since the mean is the most used statistical
parameter, it can be obtained using a special function

EpistemicMean(fuzzySample,cutsNumber = 1,bootstrapMethod = "std",trueValue = NA,...)

instead of the general command.

Besides estimates, the standard error (SE) and the mean squared error (MSE) of the considered
estimators are also calculated. The SE is estimated (for b > 1) using the formula

ŜE =

√√√√ 1
b − 1

b

∑
k=1

(
θ̂
(
X∗k

)
− ¯̂θ

)2
, (3)

where θ̂
(

X
∗k
)

is the estimator of θ based on the epistemic bootstrap sample for the k-th α-cut, and ¯̂θ

is the overall mean for θ̂
(
X

∗1) , . . . , θ̂
(

X
∗b
)

. If the true (but usually unknown) value of θ is set with
trueValue, then the MSE is estimated by

M̂SE =
1
b

b

∑
k=1

(
θ̂
(

X
∗k
)
− θ

)2
. (4)

Let us estimate the median and its SE for sample1 using 100 α-cuts and the classical epistemic
bootstrap:

> set.seed(56789)

> EpistemicEstimator(sample1$value, estimator = "median",cutsNumber = 100)

$value

[1] 0.6287525

$SE

[1] 0.1705336

$MSE

[1] NA

To estimate the variance using bootstrap, instead of the classical well-known formula, its more
sophisticated and specially corrected variant (Grzegorzewski and Romaniuk, 2022c) can be used with
the function

EpistemicCorrectedVariance(fuzzySample,cutsNumber = 1,bootstrapMethod = "std",...)

As noted in Grzegorzewski and Romaniuk (2022c), this estimator can more closely approximate the
desired value, e.g., we have

> set.seed(56789)

> EpistemicCorrectedVariance(sample1$value, cutsNumber = 100$)

[1] 0.8729738

2.4 Statistical tests

The real-valued samples generated by the epistemic bootstrap can be also used for hypothesis testing.
However, given several bootstrap samples, one has to clarify how to merge the obtained test statistics
or the p-values (Grzegorzewski and Romaniuk, 2022a). FuzzySimRes contains a general function

EpistemicTest(sample1, sample2, algorithm = "avs", ...)

that can be used to activate one of the specially tailored procedures.

By setting algorithm = "avs" the averaging statistic (abbreviated as avs) is activated and the
function
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AverageStatisticEpistemicTest(sample1,sample2,bootstrapMethod = "std",

test = "ks.test",cutsNumber = 1,criticalValueFunction = "KSTestCriticalValue",...)

is used. Similarly, by setting algorithm = "ms" the function

MultiStatisticEpistemicTest(sample1,sample2,bootstrapMethod = "std",

test = "ks.test",cutsNumber = 1,combineMethod = "simes",...)

and multi-statistic method (denoted by ms) are applied. Finally, for algorithm = "res" the resampling
algorithm (abbreviated as res) together with the function

ResamplingStatisticEpistemicTest(sample1,sample2,bootstrapMethod = "std",

test = "ks.test",cutsNumber = 1,K = 1,combineMethod = "simes",...)

run. The above functions can be applied to both one-sample and two-sample statistical tests, where the
relevant samples are entered as lists of fuzzy values. For the one-sample case, sample2=NULL should
be set.

To use a statistical test, one has to specify the name of the respective function in test (e.g.,
test="ks.test" for ks.test from stats activates the Kolmogorov-Smirnov goodness-of-fit test, abbre-
viated further on as the KS test). User-defined functions can be also used if they have at least one or
two parameters (x for one- or x,y for two-sample case, namely) and return a list of at least two values
(statistic for the output test statistic, and p.value for the calculated p-value). In the case of the avs
approach, the additional parameter criticalValueFunction is required with the name of the function
calculating the p-value for a specified critical level of the considered test statistic. For the KS test, such
a procedure is given by KSTestCriticalValue available in FuzzySimRes.

To conduct the test, the classical epistemic approach (bootstrapMethod = "std") or its antithetic
version (bootstrapMethod = "anti") can be applied. The p-values (in the case of ms or res methods)
are aggregated with the algorithm specified in combineMethod. Besides combineMethod="mean", i.e.
the simple averaging of p-values, all other methods are as in the package palasso (Rauschenberger
et al., 2020).

Let us generate the second sample with the small shift in location and compare it with the
previously generated sample1 using the two-sample KS test with the anti and ms approaches for 100
α-cuts:

> set.seed(56789)

> sample2 <- SimulateSample(n=10,originalPD="rnorm",

+ parOriginalPD=list(mean=0.5,sd=1),

+ incrCorePD="runif",parIncrCorePD=list(min=0,max=0.6),

+ suppLeftPD="runif",parSuppLeftPD=list(min=0,max=1),

+ suppRightPD="runif", parSuppRightPD=list(min=0,max=1),

+ type="trapezoidal")

> EpistemicTest(sample1$value,sample2$value,algorithm = "ms",

+ bootstrapMethod="anti",cutsNumber=100)

[1] 0.1873127

An example of the one-sample KS test can be found in the supplementary file.

2.5 Real-life dataset

FuzzySimRes provides a fuzzy epistemic dataset controlChartData concerning electronic circuit
thickness, which is one of the most important quality characteristics in the production of the electronic
boards for vacuum cleaners (see Faraz and Shapiro (2010) for the relevant source). This dataset is
given as a list of 90 TRFNs and contains 30 samples, each of size three. Every observation has its own
label X.y.z, where y is a sample number, and z stands for the element number in a sample, e.g.

> controlChartData$X.1.2$

Trapezoidal fuzzy number with:

support=[70.19,74.15],

core=[71.4,71.4].

is the second value in the first sample.
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3 Statistical applications with the package

As it was mentioned, the epistemic bootstrap provides real-valued samples generated from the initial
fuzzy sample. It enables us to apply many classical statistical methods instead of using procedures
specifically designed for fuzzy data (usually underdeveloped in the R environment). In the following,
we present some statistical applications of such approaches for both synthetic and real-life datasets.

In the first case, using SimulateSample, the respective samples are generated from the probability
distributions described in Table 2. Available TPFNs are grouped by their types, wherein the normal
distribution with the mean µ and standard deviation σ is denoted by N(µ, σ), the uniform distribution
on the interval (a, b) – by U(a, b), the exponential distribution with the parameter λ – by Exp(λ),
the Weibull distribution with the shape k and scale λ parameters – by Weib(k, λ), and the Gamma
distribution with the shape α and rate β parameters – by Γ(α, β), respectively. In the case of the real-life
dataset, the data controlChartData embedded in FuzzySimRes is applied.

In the following, only some of the results are presented in the tables and graphs to reduce the
overall length of the paper. All of the outputs can be found in the supplementary script file.

Type X Cl , Cr Sl Sr

F(N,U,U,U) N(0, 1) U(0, 0.6) U(0, 1) U(0, 1)
F(Weib,Exp,Exp,Exp) Weib(2, 1) Exp(5) Exp(5) Exp(4)
F(Γ,U,U,U) Γ(2, 2) U(0, 0.6) U(0, 0.8) U(0, 0.8)

Table 2: Scenarios for simulating fuzzy random variables.

3.1 Comparison of estimators

We start with a comparison of some estimators of the mean, variance, and median for both epistemic
approaches, i.e., the std and anti. For all types of the TPFNs mentioned in Table 2, the function
EpistemicEstimator was applied with b = 100 α-cuts. To limit the randomness impact, each numerical
experiment was repeated m = 1000 times. Both small (n = 10) and moderate (n = 100) samples were
considered.

Since the function SimulateSample produces also the “true values” of the fuzzy samples (i.e., their
originals), it gives an opportunity (quite exceptional in real-life applications) to compare the epistemic
bootstrap estimators based on fuzzy samples with the results related to these originals. Then, we can
calculate the respective error – Originals Absolute Error (abbreviated as OAE) – that measures the
absolute difference between the epistemic bootstrap estimator θ̂∗j based on the j-th synthetic sample

and its counterpart θ̂o
j obtained from the originals for this j-th sample, i.e.,

OAE =
1
m

m

∑
j=1

∣∣∣θ̂∗j − θ̂o
j

∣∣∣ , (5)

where m is the number of simulations.

In general, it seems that the anti approach gives better results – the resulting estimates are closer
to their “true” values and the respective errors are lower (see Table 3 and the supplementary file).
To facilitate the understanding of Table 3, the best outputs (i.e., the estimators that are the closest to
the respective true values of the parameters, and the lowest errors in each case) are given in boldface
there. Of course, the answers may vary for the different error measures (e.g., sometimes the OAE
is slightly lower for the std approach). However, the anti method clearly provides the significant
improvement measured with the SE, slightly less important (but still visible) in the case of the MSE.
Taking into account the low additional numerical burden of this approach when it is compared with
the std method (i.e. generation of two values: from the α-cut and its (1 − α) counterpart instead of
only a single drawing), the anti algorithm should be recommended to users. The above-mentioned
conclusions are similar to the ones discussed in Grzegorzewski and Romaniuk (2021, 2022c).

3.2 Detection of the difference in location

Then, we conducted the power analysis for the two-sample KS test taking into account all the con-
sidered epistemic bootstrap approaches. Two independent samples corresponding to the types of
the TPFNs from Table 2 were generated and the deterministic shift was added to the second sample.
As previously, both the small (n = 10) and moderate (n = 100) samples were considered, and each
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Mean Variance Median
std anti std anti std anti

F(N,U,U,U), n = 10
Value -0.0055 -0.0053 1.1476 1.0854 -0.0034 -0.0038
SE 0.1089 0.0760 0.2424 0.1595 0.1797 0.1347
MSE 0.1145 0.1078 0.3469 0.2972 0.1602 0.1522
OAE 0.0407 0.0405 0.1555 0.1105 0.0874 0.0819

F(N,U,U,U), n = 100
Value 0.0016 0.0016 1.1472 1.0850 0.0004 0.0006
SE 0.0345 0.0242 0.0999 0.0498 0.0705 0.0573
MSE 0.0115 0.0110 0.0526 0.0305 0.0179 0.0168
OAE 0.0135 0.0134 0.1480 0.0860 0.0405 0.0375

F(Weib,Exp,Exp,Exp), n = 10
Value 0.8917 0.8912 0.2884 0.2671 0.8536 0.8517
SE 0.0636 0.0440 0.0728 0.0478 0.0941 0.0706
MSE 0.0272 0.0251 0.0287 0.0222 0.0398 0.0378
OAE 0.0409 0.0412 0.0716 0.0553 0.0609 0.0621
F(Weib,Exp,Exp,Exp), n = 100
Value 0.8864 0.8865 0.2828 0.2614 0.8417 0.8387
SE 0.0203 0.0141 0.0295 0.0152 0.0359 0.0290
MSE 0.0029 0.0027 0.0068 0.0037 0.0044 0.0041
OAE 0.0127 0.0127 0.0676 0.0462 0.0252 0.0247

Table 3: Numerical comparison of the estimators (for the mean, variance, and median) and their errors
(the standard error – SE, the mean squared error – MSE, and the originals absolute error – OAE) based
on the epistemic bootstrap (the standard – std, and the antithetic epistemic bootstrap – anti).

numerical experiment was repeated m = 1000 times. Besides the estimation of the null hypothesis
rejection percentage for the significance level α = 0.05, the p-values for the increasing shift were also
obtained and aggregated by simple averaging.

Using SimulateSample which delivers the originals of the simulated fuzzy sample, we can compare
the results of the epistemic bootstrap tests with their “crisp” counterpart, so the results of the classical
two-sample KS test serve us as a benchmark. We can see that the estimated p-values (see Fig. 3) and
power curves (see Fig. 5) for the moderate sample of TPFNs described by F(N,U,U,U) are very close to
their respective benchmarks, especially for the shift larger than 0.75. To visualize the results better,
the differences in p-values and power curves between the epistemic bootstrap approaches and the
classical KS test were also calculated (see Fig. 4 and 6, respectively).
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Figure 3: Estimated p-values of the two-
sample epistemic and “crisp” KS tests for
F(N,U,U,U), n = 100, and shift in location.
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Figure 4: Differences in estimated p-values
between the two-sample epistemic and “crisp”
KS tests for F(N,U,U,U), n = 100, and shift in
location.

In general, the estimation error for p-values is lower when the ms or res approaches are used
(especially when they are combined with the anti method), and the power curves are closer to the
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Figure 5: Power curves of the two-
sample epistemic and “crisp” KS tests for
F(N,U,U,U), n = 100, and shift in location.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

−
0.

12
−

0.
10

−
0.

08
−

0.
06

−
0.

04
−

0.
02

0.
00

0.
02

Shift

D
iff

er
en

ce
 in

 p
ow

er

avs−std
avs−anti
ms−std
ms−anti
res−std
res−anti

Figure 6: Differences in power curves between
the two-sample epistemic and “crisp” KS tests
for F(N,U,U,U), n = 100, and shift in location.

respective benchmarks for the avs and ms algorithms (the anti method has also a beneficial effect).
Additional examples can be found in the supplementary file and Grzegorzewski and Romaniuk
(2022a).

3.3 Detection of the difference in scale

Next, we conducted the power study of tests to detect the difference in dispersion. This case was
modeled by gradually increasing the standard deviation of the second sample when the first one is
simulated according to F(N,U,U,U) type.

As previously, the p-values and power curves (see Fig. 7 and 9) were estimated for the moderate
sample and the respective simulation parameters: m = 1000, α = 0.05, and b = 100. A comparison of
the epistemic bootstrap approaches and our benchmark (i.e., the two-sample “crisp” KS test) was also
done (see Fig. 8 and 10, respectively). It seems that the estimation error of p-values is lower for the ms
or res approach and the power curves are closer to the respective results of the “crisp” KS test for the
avs and ms algorithms. Thus, the anti method again improves the results.

An additional example for the small sample is provided in the supplementary file.

2 4 6 8 10

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Standard deviation

p−
va

lu
e

avs−std
avs−anti
ms−std
ms−anti
res−std
res−anti
KS

Figure 7: Estimated p-values of the two-
sample epistemic and “crisp” KS tests for
F(N,U,U,U), n = 100, difference in scale.
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Figure 8: Differences in estimated p-values
between the two-sample epistemic and “crisp”
KS tests for F(N,U,U,U), n = 100, difference in
scale.

3.4 Goodness-of-fit test in quality control

Finally, we applied the KS two-sample test for the manufacturing data embedded in FuzzySimRes.
These fuzzy data can be used to build the respective control charts to check the behavior of the
underlying process (Faraz and Shapiro, 2010). But in our experiment, the sample was divided
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Figure 9: Power curves of the two-
sample epistemic and “crisp” KS tests for
F(N,U,U,U), n = 100, difference in scale.
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randomly into two parts to check if they came from the same distribution (so they were “not statistically
different”).

> set.seed(5678)

> randomSetsCCD <- sample(length(controlChartData),length(controlChartData)/2)

> EpistemicTest(controlChartData[randomSetsCCD],controlChartData[-randomSetsCCD],

+ algorithm="avs",cutsNumber=1000)

[1] 0.3319477

> EpistemicTest(controlChartData[randomSetsCCD],controlChartData[-randomSetsCCD],

+ algorithm="ms",combineMethod="mean",cutsNumber=1000)

[1] 0.433548

> EpistemicTest(controlChartData[randomSetsCCD],controlChartData[-randomSetsCCD],

+ algorithm="res",combineMethod="mean",cutsNumber=1000,K=200)

[1] 0.4616578

As we can see, all of the considered algorithms do not reject the null hypothesis for the KS test,
even for high significance levels. These results are consistent with the findings in Faraz and Shapiro
(2010). Moreover, as Grzegorzewski and Romaniuk (2024) described, the epistemic KS test clearly
indicates the issues caused by the troublesome 21st subsample. It makes the process out of control and
results in the lower p-values in the goodness-of-fit tests.

4 Conclusions

FuzzyResampling package delivers resampling methods developed to overcome some shortcomings
of the classical Efron’s bootstrap in the fuzzy environment (see also Romaniuk and Grzegorzewski
(2023)). However, this package was intended for the ontic fuzzy data.

Meanwhile, FuzzySimRes is a package that has a completely new purpose. The proposed epistemic
bootstrap methods allow the generation of real-valued samples from the epistemic fuzzy data, which
can then be directly utilized as input values for the various classical statistical procedures (like
estimators, tests, etc.). It seems that the proposed methods combined with some well-known statistical
techniques can be competitive with available fuzzy procedures which are not too popular among
practitioners. Moreover, as was shown in the respective examples, the results of the suggested
approaches implemented to imprecise data are comparable with their counterparts – the benchmarks
related to the real-valued originals of the fuzzy perceptions.

Of course, further investigations on epistemic bootstrap are still required. They can be aimed both
at new resampling epistemic procedures and their applications in statistical inference and machine
learning.

The R Journal Vol. 16/2, June 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 188

References

A. Báez-Sánchez, A. Moretti, and M. Rojas-Medar. On polygonal fuzzy sets and numbers. Fuzzy Sets
and Systems, 209:54–65, 2012. URL https://doi.org/10.1016/j.fss.2012.04.003. [p177]

A. Ban, L. Coroianu, and P. Grzegorzewski. Fuzzy Numbers: Approximations, Ranking and Applications.
Polish Academy of Sciences, Warsaw, 2015. [p176, 177]

R. Berkachy and L. Donzé. Testing hypotheses by fuzzy methods: A comparison with the classical
approach. In A. Meier, E. Portmann, and L. Terán, editors, Applying Fuzzy Logic for the Digital
Economy and Society, pages 1–22, Cham, 2019. Springer International Publishing. URL https:

//doi.org/10.1007/978-3-030-03368-2_1. [p176]

R. Berkachy and L. Donzé. FuzzySTs: Fuzzy Statistical Tools, 2020. URL https://CRAN.R-project.org/

package=FuzzySTs. R package version 0.2. [p176]

A. Colubi. Statistical inference about the means of fuzzy random variables: Applications to the
analysis of fuzzy- and real-valued data. Fuzzy Sets and Systems, 160(3):344–356, 2009. URL https:

//doi.org/10.1016/j.fss.2007.12.019. [p176]

L. Coroianu, M. Gagolewski, and P. Grzegorzewski. Nearest piecewise linear approximation of fuzzy
numbers. Fuzzy Sets and Systems, 233:26–51, 2013. ISSN 0165-0114. URL https://doi.org/10.1016/

j.fss.2013.02.005. [p176]

L. Coroianu, M. Gagolewski, and P. Grzegorzewski. Piecewise linear approximation of fuzzy numbers:
algorithms, arithmetic operations and stability of characteristics. Soft Computing, 23(19):9491–9505,
Oct 2019. URL https://doi.org/10.1007/s00500-019-03800-2. [p177]

I. Couso and D. Dubois. Statistical reasoning with set-valued information: Ontic vs. epistemic views.
International Journal of Approximate Reasoning, 55:1502–1518, 2014. doi: j.ijar.2013.07.002. URL
https://doi.org/10.1016/j.ijar.2013.07.002. [p175, 177]

A. C. Davison and D. V. Hinkley. Bootstrap Methods and their Application. Cambridge Series in Statistical
and Probabilistic Mathematics. Cambridge University Press, 1997. URL https://doi.org/10.1017/

CBO9780511802843. [p175]

B. Efron and R. J. Tibshirani. An Introduction to the Bootstrap. Number 57 in Monographs on Statistics
and Applied Probability. Chapman & Hall/CRC, Boca Raton, Florida, USA, 1993. [p175, 177]

A. Faraz and A. F. Shapiro. An application of fuzzy random variables to control charts. Fuzzy Sets and
Systems, 161(20):2684–2694, 2010. ISSN 0165-0114. URL https://doi.org/10.1016/j.fss.2010.05.

004. [p178, 183, 186, 187]

M. Gagolewski and J. Caha. FuzzyNumbers Package: Tools to Deal with Fuzzy Numbers in R, 2021. URL
https://github.com/gagolews/FuzzyNumbers/. [p175]

J. D. Gibbons and S. Chakraborti. Nonparametric Statistical Inference. Chapman and Hall/CRC, 2010.
[p178]

M. Gil, M. Montenegro, G. González-Rodríguez, A. Colubi, and M. Casals. Bootstrap approach to
the multi-sample test of means with imprecise data. Computational Statistics and Data Analysis, 51:
148–162, 2006. URL https://doi.org/10.1016/j.csda.2006.04.018. [p177]

G. González-Rodríguez, A. Colubi, and W. Trutschnig. Simulation of fuzzy random variables. Informa-
tion Sciences, 179(5):642–653, 2009. ISSN 0020-0255. URL https://doi.org/10.1016/j.ins.2008.

10.018. [p176]

P. Grzegorzewski and M. Romaniuk. Epistemic bootstrap for fuzzy data. In Joint Proceedings of
IFSA-EUSFLAT-AGOP 2021 Conferences, pages 538–545. Atlantis Press, 2021. URL https://doi.

org/10.2991/asum.k.210827.071. [p175, 177, 178, 180, 184]

P. Grzegorzewski and M. Romaniuk. Bootstrapped Kolmogorov-Smirnov test for epistemic fuzzy
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