Package 'GGEBiplots'

January 20, 2025

Title GGE Biplots with 'ggplot2'

Version 0.1.3

Description Genotype plus genotype-by-environment (GGE) biplots rendered using 'ggplot2'. Provides a command line interface to all of the functionality contained within the archived package 'GGEBiplotGUI'.

Depends R (>= 3.3.1)

License GPL-3

Encoding UTF-8

LazyData true

Imports ggplot2 (>= 2.2.0), ggforce (>= 0.1.1), scales (>= 0.4.1), grDevices (>= 3.3.1), stats (>= 3.3.1), grid (>= 3.3.1)

RoxygenNote 7.1.2

NeedsCompilation no

Author Sam Dumble [aut, cre], Elisa Frutos Bernal [ctb], Purificacion Galindo Villardon [ctb]

Maintainer Sam Dumble <s.dumble@stats4sd.org>

Repository CRAN

Date/Publication 2022-02-09 16:20:02 UTC

Contents

CompareGens	 2
DiscRep	 2
EnvRelationship	 3
ExamineEnv	 3
ExamineGen	 4
GGEModel	 4
GGEPlot	 6
MeanStability	 8
Ontario	 8

	RankEnv RankGen																											
	stattable WhichWon .	 	 •		•	 	•	 	•	•	•	•		•	•	•	•	•	•	•		•		•	•	•	1	0
ex																											1	1

Index

CompareGens

Compare two genotypes biplot

Description

Compare the performance of two genotypes across all environments

Usage

```
CompareGens(GGEModel, G1, G2, ...)
```

Arguments

GGEModel	An object of class GGEModel or gge
G1	genotype to compare. Must be a string which matches a genotype label
G2	genotype to compare. Must be a string which matches a genotype label and not equal to G1
	Other arguments sent to GGEPlot

Examples

data(Ontario)
GGE1<-GGEModel(Ontario)
CompareGens(GGE1,"cas","luc")</pre>

DiscRep

Discrimination vs. representativeness biplot

Description

Evaluating the environments based on both discriminating ability and representativeness

Usage

DiscRep(GGEModel, ...)

Arguments

GGEModel	An object of class GGEModel or gge
	Other arguments sent to GGEPlot

EnvRelationship

Examples

```
data(Ontario)
GGE1<-GGEModel(Ontario)
DiscRep(GGE1)</pre>
```

EnvRelationship Relationship between environments

Description

Relationship between environments

Usage

EnvRelationship(GGEModel, ...)

Arguments

GGEModel	An object of class GGEModel or gge
	Other arguments sent to GGEPlot

Examples

data(Ontario)
GGE1<-GGEModel(Ontario)
EnvRelationship(GGE1)</pre>

nment	ent	ent
-------	-----	-----

Description

Ranking the cultivars based on their performance in any given environment

Usage

```
ExamineEnv(GGEModel, Env, ...)
```

Arguments

GGEModel	An object of class GGEModel or gge
Env	environment to examine. Must be a string which matches an environment label
	Other arguments sent to GGEPlot

Examples

data(Ontario)
GGE1<-GGEModel(Ontario)
ExamineEnv(GGE1,"WP93")</pre>

ExamineGen

Description

Ranking the environments based on the relative performance of any given cultivar

Usage

```
ExamineGen(GGEModel, Gen, ...)
```

Arguments

GGEModel	An object of class GGEModel or gge
Gen	genotype to examine. Must be a string which perfectly matches an genotype label
	Other arguments sent to GGEPlot

Examples

```
data(Ontario)
GGE1<-GGEModel(Ontario)
ExamineGen(GGE1,"cas")</pre>
```

GGEModel

Produces genotype plus genotype-by-environment model from a 2-way table of means

Description

Calculates the GGE model where presented with a two way table of means with genotypes in rows, where genotype names are set as row names, and environments in columns, where environment names are set as column names. This function serves as a command line interface to the internal code contained within the archived package 'GGEBiplotGUI'. For dealing with missing data then a better implementation is available through gge.

Usage

```
GGEModel(Data, centering = "tester", scaling = "none", SVP = "column")
```

GGEModel

Arguments

Data	a data frame or matrix containing genotype by environment means with the genotypes in rows and the environments in columns. row names and column names should be set to indicate the genotype names and environment names.
centering	centering method. Either "tester" for tester centered (G+GE), "global" for global centered (E+G+GE), "double" for double centred (GE) or "none" for no centering. Models produced without centering cannot be used in the GGEPlot function.
scaling	scaling method. Either "sd" for standard deviation or "none" for no scaling.
SVP	method for singular value partitioning. Either "row", "column", "dual" or "symmetrical".

Value

A list of class GGEModel containing:

coordgenotype	plotting coordinates for genotypes from all components
coordenviroment	t
	plotting coordinates for environments from all components
eigenvalues	vector of eigenvalues from each component
vartotal	overall variance
varexpl	percentage of variance explained by each component
labelgen	genotype names
labelenv	environment names
axes	axis labels
Data	scaled and centered input data
centering	name of centering method
scaling	name of scaling method
SVP	name of SVP method

References

Yan W, Kang M (2003). *GGE Biplot Analysis: A Graphical Tool for Breeders, Geneticists, and Agronomists.* CRC Press.

Yan W, Kang M (2002). Singular-Value Partitioning in Biplot Analysis of Multienvironment Trial Data. Agronomy Journal, 94, 990-996. doi: 10.2134/agronj2002.0990

Examples

```
data(Ontario)
GGE1<-GGEModel(Ontario)
GGEPlot(GGE1)</pre>
```

GGEPlot

Description

Produces the GGE biplot as an object of class 'ggplot' from a model produced by a call to either GGEModel or gge. Nearly all stylistic attributes of output can either be customised within the function or disabled so that the user can customise output to their own liking.

Usage

```
GGEPlot(
  GGEModel,
  type = 1,
  d1 = 1,
  d2 = 2,
  selectedE = NA,
  selectedG = NA,
  selectedG1 = NA,
  selectedG2 = NA,
  colSegment = "red",
  colHull = "black",
  largeSize = 4.5,
  axis_expand = 1.2,
  axislabels = TRUE,
  axes = TRUE,
  limits = TRUE,
  titles = TRUE,
  footnote = TRUE,
 textGen = element_text(family = "", face = 1, color = "forestgreen", size = 4, hjust
    = 0, vjust = 0, angle = 0),
 textEnv = element_text(family = "", face = 1, color = "blue", size = 4, hjust = 0,
    vjust = 0, angle = 0)
)
```

Arguments

GGEModel	An object of class GGEModel or gge						
type	type of biplot to produce.						
	1. Basic biplot.						
	2. Examine environment. See ExamineEnv						
	3. Examine genotype. See ExamineGen						
	4. Relationship among environments. See EnvRelationship						
	5. Compare two genotypes. See CompareGens						
	6. Which won where/what. See WhichWon						

	7. Discrimination vs. representativeness. See DiscRep
	8. Ranking environments. See RankEnv
	9. Mean vs. stability. See MeanStability
	10. Ranking gentoypes See RankGen
d1	PCA component to plot on x axis. Defaults to 1
d2	PCA component to plot on y axis. Defaults to 2
selectedE	name of the environment to examine when type=2. Must be a string which matches an environment label
selectedG	name of the genotype to examine when type=3. Must be a string which matches a genotype label
selectedG1	name of a genotype to compare when type=5. Must be a string which matches a genotype label
selectedG2	name of a genotype to compare when type=5. Must be a string which matches a genotype label and not equal to selectedG1
colSegment	colour for segment or circle lines. Defaults to "red"
colHull	colour for hull when type=6. Defaults to "black"
largeSize	text size to use for larger labels where type=5, used for the two selected geno- types, and where type=6, used for the outermost genotypes. Defaults to 4.5
axis_expand	multiplication factor to expand the axis limits by to enable fitting of labels. Defaults to 1.2
axislabels	logical. If TRUE then include automatically generated labels for axes
axes	logical. If TRUE then include x and y axes going through the origin
limits	logical. If TRUE then automatically rescale axes
titles	logical. If TRUE then include automatically generated titles
footnote	logical. If TRUE then include automatically generated footnote
textGen	element_text for genotype labels
textEnv	element_text for environment labels

Value

A biplot of class ggplot

References

Yan W, Kang M (2003). *GGE Biplot Analysis: A Graphical Tool for Breeders, Geneticists, and Agronomists.* CRC Press.

Examples

```
data(Ontario)
GGE1<-GGEModel(Ontario)
GGEPlot(GGE1)</pre>
```

MeanStability

Description

Evaluating cultivars based on both average yield and stability

Usage

```
MeanStability(GGEModel, ...)
```

Arguments

GGEModel	An object of class GGEModel or gge
	Other arguments sent to GGEPlot

Examples

```
data(Ontario)
GGE1<-GGEModel(Ontario)
MeanStability(GGE1)</pre>
```

Ontario

Ontario winter wheat (1993)

Description

The sample data are yields from the 1993 Ontario winter wheat (Triticum aestivum L.) performance trials, in which 18 cultivars were tested at nine locations (Yan and Kang 2003). Duplicated from the archived package 'GGEBiplotGUI'.

Usage

data(Ontario)

Format

A data frame with 18 observations on the following 10 variables.

Source

Yan W, Kang MS (2003). "GGE Biplot Analysis: A Graphical Tool for Breeders, Geneticists, and Agronomists." *CRC Press, Boca Raton, FL, USA*.

Examples

data(Ontario)

RankEnv

Description

Ranking environments with respect to the ideal environment

Usage

```
RankEnv(GGEModel, ...)
```

Arguments

GGEModel	An object of class GGEModel or gge
	Other arguments sent to GGEPlot

Examples

```
data(Ontario)
GGE1<-GGEModel(Ontario)
RankEnv(GGE1)</pre>
```

RankGen

Ranking genotypes with respect to the ideal genotype

Description

Ranking genotypes with respect to the ideal genotype

Usage

```
RankGen(GGEModel, axis_expand = 1.4, ...)
```

Arguments

GGEModel	An object of class GGEModel or gge
axis_expand	multiplication factor to expand the axis limits by to enable fitting of labels. De- faults to 1.4 for genotype ranking plot as the circles usually extend beyond limits of the other biplot types.
	Other arguments sent to GGEPlot

Examples

```
data(Ontario)
GGE1<-GGEModel(Ontario)
RankGen(GGE1)</pre>
```

stattable

Description

Transforms raw data into a simple two-way table for use in GGEModel with row names and column names. By design rather than just a side-effect of combining list with tapply

Usage

```
stattable(rowfactor, columnfactor, outcome, FUN = mean, ...)
```

Arguments

rowfactor	variable to be included in the rows
columnfactor	variable to be included in the columns
outcome	vector containing outcome values
FUN	name of summary function to use
	other arguments for FUN

Examples

simdata<-data.frame(expand.grid(Genotype=1:10,Environment=1:10,Rep=1:3),Outcome=rnorm(300))
meantab<-stattable(simdata\$Genotype,simdata\$Environment,simdata\$Outcome,FUN=mean,na.rm=TRUE)
GGEPlot(GGEModel(meantab))</pre>

WhichWor

Which Won Where/What Biplot

Description

Identifying the 'best' cultivar in each environment

Usage

WhichWon(GGEModel, ...)

Arguments

GGEModel	An object of class GGEModel or gge
	Other arguments sent to GGEPlot

Examples

data(Ontario)
GGE1<-GGEModel(Ontario)
WhichWon(GGE1)</pre>

Index

* 2way stattable, 10 * Biplot GGEPlot, 6 * GGEBiplotGUI stattable, 10 * GGE CompareGens, 2 DiscRep, 2 EnvRelationship, 3 ExamineEnv, 3 ExamineGen, 4 GGEModel, 4 GGEPlot, 6 MeanStability, 8 RankEnv, 9 RankGen, 9 WhichWon, 10 * biplot GGEModel, 4 * datasets Ontario,8 * ggplot2 GGEModel, 4 * means stattable, 10 * statistics stattable, 10 * summary stattable, 10 * table stattable, 10 CompareGens, 2, 6 DiscRep, 2, 7 EnvRelationship, 3, 6 ExamineEnv, 3, 6 ExamineGen, 4, 6

gge, 4, 6 GGEModel, 4, 6, 10 GGEPlot, 2–5, 6, 8–10 MeanStability, 7, 8 Ontario, 8 RankEnv, 7, 9 RankGen, 7, 9 stattable, 10 WhichWon, 6, 10