Package 'RProbSup'

January 20, 2025

Type Package

Title Calculates Probability of Superiority

Version 3.0

Author John Ruscio

Maintainer John Ruscio <ruscio@tcnj.edu>

Description The A() function calculates the A statistic, a nonparametric measure of effect size for two independent groups that's also known as the probability of superiority (Ruscio, 2008), along with its standard error and a confidence interval constructed using bootstrap methods (Ruscio & Mullen, 2012). Optional arguments can be specified to calculate variants of the A statistic developed for other research designs (e.g., related samples, more than two independent groups or related samples; Ruscio & Gera, 2013).
<DOI:10.1037/1082-989X.13.1.19>.
<DOI:10.1080/00273171.2012.658329>.
<DOI:10.1080/00273171.2012.738184>.

License MIT + file LICENSE

Encoding UTF-8

LazyData true

NeedsCompilation no

Repository CRAN

Date/Publication 2020-10-19 04:40:06 UTC

Contents

Α	 																							2
A1	 																					•		3
A2	 				•																		•	4
AAD1	 				•	 •	•	•			•	•	•		•	•					•	•		5
AAD2	 	• •			•		•	•			•	•	•	 •	•	•	•	•	•	•	•	•		6
AAPD1																								
AAPD2	 																					•		8

CalcA1	9
CalcA2	0
CalcAAD1	1
CalcAAD2	12
CalcAAPD1	13
CalcAAPD2	4
CalcIK1	15
CalcIK2	6
CalcOrd1	17
CalcOrd2	8
IK1 1	9
IK2 2	20
Ord1	21
Ord2	
RemoveMissing	23
2	24

Index

A	Α	

Description

Calculates probability of superiority (A), its standard error, and a confidence interval.

Usage

A(data, design = 1, statistic = 1, weights = FALSE, w = 0, w1 = 0, w2 = 0, increase = FALSE, ref = 1, r = 0, n.bootstrap = 1999, conf.level = .95, ci.method = 1, seed = 1)

Arguments

data	For a between subjects design, a matrix of cases (rows) by scores (column 1) and group codes (column 2). For a within subjects design, a matrix of scores with each sample in its own column (matrix).
design	Design of experiment (scalar, default = 1 (for between subjects design), user can also call 2 (for within subjects design)).
statistic	Statistic to be calculated (scalar, default = 1 (A), user can also call 2 (A.AAD), 3 (A.AAPD), 4 (A.IK), or 5 (A.Ord)).
weights	Whether to assign weights to cases (default = FALSE); if set to TRUE, data contains case weights in final column.
W	Weights for cases (vector; default = 0).
w1	Weights for cases in group 1 (vector; default = 0).
w2	Weights for cases in group 2 (vector; default = 0).

A

increase	Set to TRUE if scores are predicted to increase with group codes (default = FALSE).
ref	Reference group (to compare to all others) (scalar, default = 1).
r	Vector of proportions (vector, default = 0, represents equal proportions).
n.bootstrap	Number of bootstrap samples (scalar, default = 1999).
conf.level	Confidence level (default = .95).
ci.method	Method used to construct confidence interval (scalar, default = 1 (for BCA), user can also call 2 (for percentile)).
seed	Random number seed (scalar, default = 1).

Value

Returns list object with the following elements: A : A statistic (scalar). SE : Standard error of A (scalar). ci.lower : Lower bound of confidence interval (scalar). ci.upper : Upper bound of confidence interval (scalar). conf.level : Confidence level (scalar). n.bootstrap : Number of bootstrap samples (scalar). boot.method : Bootstrap method ("BCA" or "percentile"). n : Sample size (after missing data removed; scalar). n.missing : Number of cases of missing data, removed listewise (scalar).

Author(s)

John Ruscio

References

Ruscio (2008) & Ruscio and Mullen (2012) & Ruscio and Gera (2013)

Examples

```
x1 <- rnorm(25)
x2 <- x1 - rnorm(25, mean = 1)
x3 <- x2 - rnorm(25, mean = 1)
data <- cbind(c(x1, x2, x3), c(rep(1, 25), rep(2, 25), rep(3, 25)))
A(data, 1, 2)
```

A1

A1

Description

Calculates the standard error and constructs a confidence interval for the A statistic using bootstrap methods.

```
A1(y1, y2, weights = FALSE, w1 = 0, w2 = 0, n.bootstrap = 1999, conf.level = .95, ci.method = 1, seed = 1)
```

Arguments

y1	Scores for group 1 (vector).
y2	Scores for group 2 (vector).
weights	Whether to weight cases (default = FALSE).
w1	Weights for cases in group 1 (optional) (vector, default is 0).
w2	Weights for cases in group 2 (optional) (vector, default is 0).
n.bootstrap	Number of bootstrap samples (scalar, default = 1999).
conf.level	Confidence level (scalar, default = .95).
ci.method	Method used to construct confidence interval (scalar, default = 1 (for BCA), user can also call 2 (for percentile).
seed	Random number seed (scalar, default = 1).

Value

A vector containing the A statistic, its estimated standard error, and the upper and lower bounds of the confidence interval.

Author(s)

John Ruscio

References

Ruscio (2008) & Ruscio and Mullen (2012) & Ruscio and Gera (2013)

Examples

#Example used in Ruscio and Mullen (2012)
y1 <- c(6, 7, 8, 7, 9, 6, 5, 4, 7, 8, 7, 6, 9, 5, 4)
y2 <- c(4, 3, 5, 3, 6, 2, 2, 1, 6, 7, 4, 3, 2, 4, 3)
A1(y1, y2)</pre>

A2

A2

Description

Calculates the standard error and constructs a confidence interval for the A statistic for two correlated samples using bootstrap methods.

```
A2(y1, y2, weights = FALSE, w = 0, n.bootstrap = 1999, conf.level = .95, ci.method = 1, seed = 1)
```

AAD1

Arguments

y1	Scores for group 1 (vector).
y2	Scores for group 2 (vector).
weights	Whether to weight cases (default = FALSE).
W	Weights for cases in group 1 (optional) (vector, default is 0).
n.bootstrap	Number of bootstrap samples (scalar, default = 1999).
conf.level	Confidence level (scalar, default = .95).
ci.method	Method used to construct confidence interval (scalar, default = 1 (for BCA), user can also call 2 (for percentile).
seed	Random number seed (scalar, default = 1).

Value

A vector containing the A statistic, its estimated standard error, and the upper and lower bounds of the confidence interval.

Author(s)

John Ruscio

References

Ruscio (2008) & Ruscio and Mullen (2012) & Ruscio and Gera (2013)

Examples

y1 <- c(6, 7, 8, 7, 9, 6, 5, 4, 7, 8, 7, 6, 9, 5, 4) y2 <- c(7, 5, 6, 7, 6, 4, 3, 5, 4, 5, 4, 5, 7, 4, 5) A2(y1, y2)

AAD1

AAD1

Description

Calculates the confidence interval for the A statistic for the average absolute deviation for two or more groups.

```
AAD1(y, r = 0, weights = FALSE, n.bootstrap = 1999, conf.level = .95, ci.method = 1, seed = 1)
```

Arguments

У	Matrix of cases (rows) by scores (column 1) and group codes (column 2) (matrix).
r	Vector of proportions (default = 0, represents equal proportions) (vector).
weights	Weight of each case. Set to TRUE to weight cases; if so, column 3 contains case weights (default = FALSE).
n.bootstrap	Number of bootstrap samples (scalar, default = 1999).
conf.level	Confidence level (scalar, default = .95).
ci.method	Method used to construct confidence interval (scalar, default = 1 (for BCA), user can also call 2 (for percentile).
seed	Random number seed (scalar, default = 1).

Value

A vector containing the A statistic, its estimated standard error, and the upper and lower bounds of the confidence interval.

Author(s)

John Ruscio

References

Ruscio (2008) & Ruscio and Mullen (2012) & Ruscio and Gera (2013)

Examples

```
x1 <- rnorm(25)
x2 <- x1 - rnorm(25, mean = 1)
x3 <- x2 - rnorm(25, mean = 1)
y <- cbind(c(x1, x2, x3), c(rep(1, 25), rep(2, 25), rep(3, 25)))
AAD1(y)
```

AAD2

AAD2

Description

Calculates the confidence interval for the A statistic for the average absolute deviation for two or more correlated samples.

```
AAD2(y, r = 0, weights = FALSE, n.bootstrap = 1999,
conf.level = .95, ci.method = 1, seed = 1)
```

AAPD1

Arguments

У	Matrix of cases (rows) by scores (column 1) and group codes (column 2) (matrix).
r	Vector of proportions (default = 0, represents equal proportions) (vector).
weights	Weight of each case. Set to TRUE to weight cases; if so, column 3 contains case weights (default = FALSE).
n.bootstrap	Number of bootstrap samples (scalar, default = 1999).
conf.level	Confidence level (scalar, default = .95).
ci.method	Method used to construct confidence interval (scalar, default = 1 (for BCA), user can also call 2 (for percentile).
seed	Random number seed (scalar, default = 1).

Value

A vector containing the A statistic, its estimated standard error, and the upper and lower bounds of the confidence interval.

Author(s)

John Ruscio

References

Ruscio (2008) & Ruscio and Mullen (2012) & Ruscio and Gera (2013)

Examples

x1 <- rnorm(25) x2 <- x1 - rnorm(25, mean = 1) x3 <- x2 - rnorm(25, mean = 1) y <- cbind(x1, x2, x3) AAD2(y)

AAPD1

AAPD1

Description

Calculates the confidence interval for the A statistic for the average absolute paired deviation for two or more groups.

```
AAPD1(y, weights = FALSE, n.bootstrap = 1999,
conf.level = .95, ci.method = 1, seed = 1)
```

Arguments

У	Matrix of cases (rows) by scores (column 1) and group codes (column 2) (matrix).
weights	Weight of each case. Set to TRUE to weight cases; if so, column 3 contains case weights (default = FALSE).
n.bootstrap	Number of bootstrap samples (scalar, default = 1999).
conf.level	Confidence level (scalar, default = .95).
ci.method	Method used to construct confidence interval (scalar, default = 1 (for BCA), user can also call 2 (for percentile).
seed	Random number seed (scalar, default = 1).

Value

A vector containing the A statistic, its estimated standard error, and the upper and lower bounds of the confidence interval.

Author(s)

John Ruscio

References

Ruscio (2008) & Ruscio and Mullen (2012) & Ruscio and Gera (2013)

Examples

```
x1 <- rnorm(25)
x2 <- x1 - rnorm(25, mean = 1)
x3 <- x2 - rnorm(25, mean = 1)
y <- cbind(c(x1, x2, x3), c(rep(1, 25), rep(2, 25), rep(3, 25)))
AAPD1(y)
```

AAPD2

```
AAPD2
```

Description

Calculates the confidence interval for the A statistic for the average absolute paired deviation for two or more correlated samples.

```
AAPD2(y, weights = FALSE, n.bootstrap = 1999,
conf.level = .95, ci.method = 1, seed = 1)
```

CalcA1

Arguments

У	Matrix of cases (rows) by scores (column 1) and group codes (column 2) (matrix).
weights	Weight of each case. Set to TRUE to weight cases; if so, column 3 contains case weights (default = FALSE).
n.bootstrap	Number of bootstrap samples (scalar, default = 1999).
conf.level	Confidence level (scalar, default = $.95$).
ci.method	Method used to construct confidence interval (scalar, default = 1 (for BCA), user can also call 2 (for percentile).
seed	Random number seed (scalar, default = 1).

Value

A vector containing the A statistic, its estimated standard error, and the upper and lower bounds of the confidence interval.

Author(s)

John Ruscio

References

Ruscio (2008) & Ruscio and Mullen (2012) & Ruscio and Gera (2013)

Examples

x1 <- rnorm(25) x2 <- x1 - rnorm(25, mean = 1) x3 <- x2 - rnorm(25, mean = 1) y <- cbind(x1, x2, x3) AAPD2(y)

CalcA1

CalcA1

Description

Calculates the A statistic for 2 groups.

Usage

CalcA1(y1, y2, weights = FALSE, w1 = 0, w2 = 0)

Arguments

y1	Scores for group 1 (vector).
у2	Scores for group 2 (vector).
weights	Whether to weight cases (default = FALSE).
w1	Weights for cases in group 1 (optional) (vector, default is 0).
w2	Weights for cases in group 2 (optional) (vector, default is 0).

Value

The A statistic.

Author(s)

а

John Ruscio

References

Ruscio (2008) & Ruscio and Mullen (2012) & Ruscio and Gera (2013)

Examples

```
#Example used in Ruscio and Mullen (2012)
y1 <- c(6, 7, 8, 7, 9, 6, 5, 4, 7, 8, 7, 6, 9, 5, 4)
y2 <- c(4, 3, 5, 3, 6, 2, 2, 1, 6, 7, 4, 3, 2, 4, 3)
CalcA1(y1, y2)</pre>
```

CalcA2

CalcA2

Description

Calculates the A statistic for 2 correlated samples.

Usage

CalcA2(y1, y2, weights = FALSE, w = 0)

Arguments

y1	Scores for variable 1 (vector).
y2	Scores for variable 2 (vector).
weights	Whether to weight cases (default = FALSE).
W	Weights (optional) (vector, default is 0).

Value

a The A statistic.

CalcAAD1

Author(s)

John Ruscio

References

Ruscio (2008) & Ruscio and Mullen (2012) & Ruscio and Gera (2013)

Examples

y1 <- c(6, 7, 8, 7, 9, 6, 5, 4, 7, 8, 7, 6, 9, 5, 4) y2 <- c(7, 5, 6, 7, 6, 4, 3, 5, 4, 5, 4, 5, 7, 4, 5) CalcA2(y1, y2)

Description

Calculates the A statistic for the average absolute deviation for two or more groups. Note: This function is not meant to be called by the user, but it is called by AAD1.

Usage

CalcAAD1(y, r = 0, weights = FALSE)

Arguments

У	Matrix of cases (rows) by scores (column 1) and group codes (column 2) (matrix).
r	Vector of proportions (default = 0, represents equal proportions) (vector).
weights	Weight of each case. Set to TRUE to weight cases; if so, column 3 contains case weights (default = FALSE).

Value

a The A statistic.

Author(s)

John Ruscio

References

Ruscio (2008) & Ruscio and Mullen (2012) & Ruscio and Gera (2013)

Examples

```
x1 <- rnorm(25)
x2 <- x1 - rnorm(25, mean = 1)
x3 <- x2 - rnorm(25, mean = 1)
y <- cbind(c(x1, x2, x3), c(rep(1, 25), rep(2, 25), rep(3, 25)))
CalcAAD1(y)
```

```
CalcAAD2
```

CalcAAD2

Description

Calculates the A statistic for the average absolute deviation for two or more correlated samples. Note: This function is not meant to be called by the user, but it is called by AAD2.

Usage

CalcAAD2(y, r = 0, weights = FALSE)

Arguments

У	Matrix of cases (rows) by scores (column 1) and group codes (column 2) (matrix).
r	Vector of proportions (default = 0, represents equal proportions) (vector).
weights	Weight of each case. Set to TRUE to weight cases; if so, column 3 contains case weights (default = FALSE).

Value

a The A statistic.

Author(s)

John Ruscio

References

Ruscio (2008) & Ruscio and Mullen (2012) & Ruscio and Gera (2013)

Examples

```
x1 <- rnorm(25)
x2 <- x1 - rnorm(25, mean = 1)
x3 <- x2 - rnorm(25, mean = 1)
y <- cbind(x1, x2, x3)
CalcAAD2(y)
```

12

CalcAAPD1

CalcAAPD1

Description

Calculates the A statistic for the average absolute paired deviation for two or more groups. Note: This function is not meant to be called by the user, but it is called by AAPD1.

Usage

CalcAAPD1(y, weights = FALSE)

Arguments

У	Matrix of cases (rows) by scores (column 1) and group codes (column 2) (matrix).
weights	Weight of each case. Set to TRUE to weight cases; if so, column 3 contains case weights (default = FALSE).

Value

a The A statistic.

Author(s)

John Ruscio

References

Ruscio (2008) & Ruscio and Mullen (2012) & Ruscio and Gera (2013)

```
x1 <- rnorm(25)
x2 <- x1 - rnorm(25, mean = 1)
x3 <- x2 - rnorm(25, mean = 1)
y <- cbind(c(x1, x2, x3), c(rep(1, 25), rep(2, 25), rep(3, 25)))
AAPD1(y)
```

CalcAAPD2

Description

Calculates the A statistic for the average absolute paired deviation for two or more correlated samples. Note: This function is not meant to be called by the user, but it is called by AAPD2.

Usage

CalcAAPD2(y, weights = FALSE)

Arguments

У	Matrix of cases (rows) by scores (column 1) and group codes (column 2) (matrix).
weights	Weight of each case. Set to TRUE to weight cases; if so, column 3 contains case weights (default = FALSE).

Value

a The A statistic.

Author(s)

John Ruscio

References

Ruscio (2008) & Ruscio and Mullen (2012) & Ruscio and Gera (2013)

```
x1 <- rnorm(25)
x2 <- x1 - rnorm(25, mean = 1)
x3 <- x2 - rnorm(25, mean = 1)
y <- cbind(x1, x2, x3)
AAPD2(y)
```

CalcIK1

CalcIK1

Description

Calculates the A statistic while singling out one group for two or more groups. Note: This function is not meant to be called by the user, but it is called by IK1.

Usage

CalcIK1(y, ref = 1, weights = FALSE)

Arguments

У	Matrix of cases (rows) by scores (column 1) and group codes (column 2) (matrix).
ref	Reference group (to compare to all others) (scalar, default = 1).
weights	Weight of each case. Set to TRUE to weight cases; if so, column 3 contains case weights (default = FALSE).

Value

A statistic.
A s

Author(s)

John Ruscio

References

Ruscio (2008) & Ruscio and Mullen (2012) & Ruscio and Gera (2013)

```
x1 <- rnorm(25)
x2 <- x1 - rnorm(25, mean = 1)
x3 <- x2 - rnorm(25, mean = 1)
y <- cbind(c(x1, x2, x3), c(rep(1, 25), rep(2, 25), rep(3, 25)))
CalcIK1(y)
```

CalcIK2

Description

Calculates the A statistic while singling out one group for two or more correlated samples. Note: This function is not meant to be called by the user, but it is called by IK2.

Usage

CalcIK2(y, ref = 1, weights = FALSE)

Arguments

У	Matrix of cases (rows) by scores (column 1) and group codes (column 2) (matrix).
ref	Reference group (to compare to all others) (scalar, default = 1).
weights	Weight of each case. Set to TRUE to weight cases; if so, column 3 contains case weights (default = FALSE).

Value

а	The A statistic.
a	The A statistic.

Author(s)

John Ruscio

References

Ruscio (2008) & Ruscio and Mullen (2012) & Ruscio and Gera (2013)

```
x1 <- rnorm(25)
x2 <- x1 - rnorm(25, mean = 1)
x3 <- x2 - rnorm(25, mean = 1)
y <- cbind(x1, x2, x3)
CalcIK2(y)
```

CalcOrd1

CalcOrd1

Description

Calculates the ordinal comparison of the A statistic for two or more groups. Note: This function is not meant to be called by the user, but it is called by AOrd1.

Usage

CalcOrd1(y, weights = FALSE, increase = FALSE)

Arguments

у	Matrix of cases (rows) by scores (column 1) and group codes (column 2) (matrix).
weights	Weight of each case. Set to TRUE to weight cases; if so, column 3 contains case weights (default = FALSE).
increase	Set to TRUE if scores are predicted to increase with group codes (default = FALSE).

Value

'he A	statistic.
	'he A

Author(s)

John Ruscio

References

Ruscio (2008) & Ruscio and Mullen (2012) & Ruscio and Gera (2013)

```
x1 <- rnorm(25)
x2 <- x1 - rnorm(25, mean = 1)
x3 <- x2 - rnorm(25, mean = 1)
y <- cbind(c(x1, x2, x3), c(rep(1, 25), rep(2, 25), rep(3, 25)))
CalcOrd1(y)
```

CalcOrd2

Description

Calculates the ordinal comparison of the A statistic for two or more correlated samples. Note: This function is not meant to be called by the user, but it is called by AOrd2.

Usage

CalcOrd2(y, weights = FALSE, increase = FALSE)

Arguments

У	Matrix of cases (rows) by scores (column 1) and group codes (column 2) (matrix).
weights	Weight of each case. Set to TRUE to weight cases; if so, column 3 contains case weights (default = FALSE).
increase	Set to TRUE if scores are predicted to increase with group codes (default = FALSE).

Value

ıe A	statistic.
1	ie A

Author(s)

John Ruscio

References

Ruscio (2008) & Ruscio and Mullen (2012) & Ruscio and Gera (2013)

Examples

x1 <- rnorm(25) x2 <- x1 - rnorm(25, mean = 1) x3 <- x2 - rnorm(25, mean = 1) y <- cbind(x1, x2, x3) CalcOrd2(y)

IK1

Description

IK1

Calculates the confidence interval for the A statistic while singling out one group for two or more groups.

Usage

```
IK1(y, ref = 1, weights = FALSE, n.bootstrap = 1999,
conf.level = .95, ci.method = 1, seed = 1)
```

Arguments

У	Matrix of cases (rows) by scores (column 1) and group codes (column 2) (matrix).
ref	Reference group (to compare to all others) (scalar, default = 1).
weights	Weight of each case. Set to TRUE to weight cases; if so, column 3 contains case weights (default = FALSE).
n.bootstrap	Number of bootstrap samples (scalar, default = 1999).
conf.level	Confidence level (scalar, default = .95).
ci.method	Method used to construct confidence interval (scalar, default = 1 (for BCA), user can also call 2 (for percentile).
seed	Random number seed (scalar, default = 1).

Value

A vector containing the A statistic, its estimated standard error, and the upper and lower bounds of the confidence interval.

Author(s)

John Ruscio

References

Ruscio (2008) & Ruscio and Mullen (2012) & Ruscio and Gera (2013)

```
x1 <- rnorm(25)
x2 <- x1 - rnorm(25, mean = 1)
x3 <- x2 - rnorm(25, mean = 1)
y <- cbind(c(x1, x2, x3), c(rep(1, 25), rep(2, 25), rep(3, 25)))
IK1(y)
```

IK2

Description

IK2

Calculates the confidence interval for the A statistic while singling out one group for two or more correlated samples.

Usage

```
IK2(y, ref = 1, weights = FALSE, n.bootstrap = 1999,
conf.level = .95, ci.method = 1, seed = 1)
```

Arguments

У	Matrix of cases (rows) by scores (column 1) and group codes (column 2) (matrix).
ref	Reference group (to compare to all others) (scalar, default = 1).
weights	Weight of each case. Set to TRUE to weight cases; if so, column 3 contains case weights (default = FALSE).
n.bootstrap	Number of bootstrap samples (scalar, default = 1999).
conf.level	Confidence level (scalar, default = .95).
ci.method	Method used to construct confidence interval (scalar, default = 1 (for BCA), user can also call 2 (for percentile).
seed	Random number seed (scalar, default = 1).

Value

A vector containing the A statistic, its estimated standard error, and the upper and lower bounds of the confidence interval.

Author(s)

John Ruscio

References

Ruscio (2008) & Ruscio and Mullen (2012) & Ruscio and Gera (2013)

```
x1 <- rnorm(25)
x2 <- x1 - rnorm(25, mean = 1)
x3 <- x2 - rnorm(25, mean = 1)
y <- cbind(x1, x2, x3)
IK2(y)
```

0rd1

Description

Calculates the confidence interval for the ordinal comparison of the A statistic for two or more groups.

Usage

```
Ord1(y, weights = FALSE, increase = FALSE, n.bootstrap = 1999,
conf.level = .95, ci.method = 1, seed = 1)
```

Arguments

У	Matrix of cases (rows) by scores (column 1) and group codes (column 2) (ma- trix).
weights	Weight of each case. Set to TRUE to weight cases; if so, column 3 contains case weights (default = FALSE).
increase	Set to TRUE if scores are predicted to increase with group codes (default = FALSE).
n.bootstrap	Number of bootstrap samples (scalar, default = 1999).
conf.level	Confidence level (scalar, default = .95).
ci.method	Method used to construct confidence interval (scalar, default = 1 (for BCA), user can also call 2 (for percentile).
seed	Random number seed (scalar, default = 1).

Value

A vector containing the A statistic, its estimated standard error, and the upper and lower bounds of the confidence interval.

Author(s)

John Ruscio

References

Ruscio (2008) & Ruscio and Mullen (2012) & Ruscio and Gera (2013)

```
x1 <- rnorm(25)
x2 <- x1 - rnorm(25, mean = 1)
x3 <- x2 - rnorm(25, mean = 1)
y <- cbind(c(x1, x2, x3), c(rep(1, 25), rep(2, 25), rep(3, 25)))
Ord1(y)
```

0rd2

Description

Calculates the confidence interval for the ordinal comparison of the A statistic for two or more correlated samples.

Usage

```
Ord2(y, weights = FALSE, increase = FALSE, n.bootstrap = 1999,
conf.level = .95, ci.method = 1, seed = 1)
```

Arguments

У	Matrix of cases (rows) by scores (column 1) and group codes (column 2) (ma- trix).
weights	Weight of each case. Set to TRUE to weight cases; if so, column 3 contains case weights (default = FALSE).
increase	Set to TRUE if scores are predicted to increase with group codes (default = FALSE).
n.bootstrap	Number of bootstrap samples (scalar, default = 1999).
conf.level	Confidence level (scalar, default = .95).
ci.method	Method used to construct confidence interval (scalar, default = 1 (for BCA), user can also call 2 (for percentile).
seed	Random number seed (scalar, default = 1).

Value

A vector containing the A statistic, its estimated standard error, and the upper and lower bounds of the confidence interval.

Author(s)

John Ruscio

References

Ruscio (2008) & Ruscio and Mullen (2012) & Ruscio and Gera (2013)

```
x1 <- rnorm(25)
x2 <- x1 - rnorm(25, mean = 1)
x3 <- x2 - rnorm(25, mean = 1)
y <- cbind(x1, x2, x3)
Ord2(y)
```

RemoveMissing RemoveMissing

Description

Checks for missing data and performs listwise deletion if any is detected.

Usage

```
RemoveMissing(data)
```

Arguments

data

For a between subjects design, a matrix of cases (rows) by scores (column 1) and group codes (column 2). For a within subjects design, a matrix of scores with each sample in its own column (matrix).

Value

Data matrix with any missing data removed using listwise deletion of cases.

Author(s)

John Ruscio

References

Ruscio (2008) & Ruscio and Mullen (2012) & Ruscio and Gera (2013)

```
x1 <- c(rnorm(25), NA)
x2 <- x1 - rnorm(26, mean = 1)
x3 <- x2 - rnorm(26, mean = 1)
data <- cbind(c(x1, x2, x3), c(rep(1, 26), rep(2, 26), rep(3, 26)))
A(data, 1, 2)</pre>
```

Index

A, 2 A1, 3 A2, <mark>4</mark> AAD1, 5 AAD2, 6 AAPD1, 7 AAPD2, 8 CalcA1,9 CalcA2, 10 CalcAAD1, 11 CalcAAD2, 12 CalcAAPD1, 13 CalcAAPD2, 14 CalcIK1, 15CalcIK2, 16 CalcOrd1, 17 CalcOrd2, 18 IK1, 19 IK2, <mark>20</mark> Ord1, 21 Ord2, 22

RemoveMissing, 23