
Package ‘Rdpack’
April 9, 2025

Type Package

Title Update and Manipulate Rd Documentation Objects

Version 2.6.4

Description Functions for manipulation of R documentation objects,
including functions reprompt() and ereprompt() for updating 'Rd'
documentation for functions, methods and classes; 'Rd' macros for
citations and import of references from 'bibtex' files for use in
'Rd' files and 'roxygen2' comments; 'Rd' macros for evaluating and
inserting snippets of 'R' code and the results of its evaluation or
creating graphics on the fly; and many functions for manipulation of
references and Rd files.

URL https://geobosh.github.io/Rdpack/ (doc),

https://github.com/GeoBosh/Rdpack (devel)

BugReports https://github.com/GeoBosh/Rdpack/issues

Depends R (>= 2.15.0), methods

Imports tools, utils, rbibutils (>= 1.3)

Suggests grDevices, testthat, rstudioapi, rprojroot, gbRd

License GPL (>= 2)

LazyLoad yes

RoxygenNote 7.1.1

NeedsCompilation no

Author Georgi N. Boshnakov [aut, cre]
(<https://orcid.org/0000-0003-2839-346X>),

Duncan Murdoch [ctb]

Maintainer Georgi N. Boshnakov <georgi.boshnakov@manchester.ac.uk>

Repository CRAN

Date/Publication 2025-04-09 01:10:01 UTC

1

https://geobosh.github.io/Rdpack/
https://github.com/GeoBosh/Rdpack
https://github.com/GeoBosh/Rdpack/issues
https://orcid.org/0000-0003-2839-346X

2 Contents

Contents
Rdpack-package . 3
append_to_Rd_list . 9
char2Rdpiece . 11
compare_usage1 . 12
c_Rd . 13
deparse_usage . 15
ereprompt . 17
format_funusage . 18
get_bibentries . 19
get_sig_text . 21
get_usage_text . 23
insert_all_ref . 24
insert_citeOnly . 26
insert_ref . 27
inspect_args . 30
inspect_Rd . 31
inspect_signatures . 32
inspect_slots . 33
inspect_usage . 34
list_Rd . 35
makeVignetteReference . 36
parse_pairlist . 38
parse_Rdname . 40
parse_Rdpiece . 41
parse_Rdtext . 42
parse_usage_text . 43
predefined . 44
promptPackageSexpr . 46
promptUsage . 47
Rdapply . 50
Rdo2Rdf . 52
Rdo_append_argument . 54
Rdo_collect_aliases . 55
Rdo_empty_sections . 56
Rdo_fetch . 57
Rdo_flatinsert . 59
Rdo_get_argument_names . 60
Rdo_get_insert_pos . 61
Rdo_get_item_labels . 62
Rdo_insert . 63
Rdo_insert_element . 64
Rdo_is_newline . 64
Rdo_locate . 65
Rdo_locate_leaves . 67
Rdo_macro . 68
Rdo_modify . 69

Rdpack-package 3

Rdo_modify_simple . 70
Rdo_piecetag . 71
Rdo_remove_srcref . 72
Rdo_reparse . 73
Rdo_sections . 74
Rdo_set_section . 76
Rdo_show . 77
Rdo_tag . 78
Rdo_tags . 79
rdo_text_restore . 80
Rdo_which . 81
Rdpack_bibstyles . 82
Rdreplace_section . 83
Rd_combo . 84
rebib . 85
reprompt . 87
RStudio_reprompt . 93
S4formals . 94
update_aliases_tmp . 95
viewRd . 95

Index 97

Rdpack-package Update and Manipulate Rd Documentation Objects

Description

Functions for manipulation of R documentation objects, including functions reprompt() and ere-
prompt() for updating ’Rd’ documentation for functions, methods and classes; ’Rd’ macros for
citations and import of references from ’bibtex’ files for use in ’Rd’ files and ’roxygen2’ comments;
’Rd’ macros for evaluating and inserting snippets of ’R’ code and the results of its evaluation or
creating graphics on the fly; and many functions for manipulation of references and Rd files.

Details

Package: Rdpack
Type: Package
Version: 2.6.4
Date:
License: GPL (>= 2)
LazyLoad: yes
Built: R 4.4.3; ; 2025-04-08 20:11:12 UTC; windows

Package Rdpack provides a number of functions for maintenance of documentation in R packages.
Although base R and package methods have functions for creation of skeleton documentation, if a
function gets a new argument or a generic gets a new method, then updating existing documentation

4 Rdpack-package

is somewhat inconvenient. This package provides functions that update parts of the Rd documenta-
tion that can be dealt with automatically and leave manual changes untouched. For example, usage
sections for functions are updated and if there are undescribed arguments, additional items are put
in the ‘arguments’ section.

A set of functions and macros support inclusion of references and citations from BibTeX files in R
documentation (Rd and roxygen2). These tools use only facilities provided by base R and package
rbibutils (Boshnakov and Putman 2020).

There are also convenience macros for inclusion of evaluated examples and graphs, which hide
some of the hassle of doing this directly with the underlying \Sexpr’s.

The subsections below give additional details, see also the vignettes.

Creating and updating Rd files:
The main function provided by this package is reprompt. There is also a function promptPackageSexpr
for creating initial skeleton for overall package description such as this help page.
reprompt produces a skeleton documentation for the requested object, similarly to functions like
prompt, promptMethods, and promptClass. Unlike those functions, reprompt updates existing
documentation (installed or in an Rd object or file) and produces a skeleton from scratch as a
last resort only. If the documentation object describes more than one function, all descriptions
are updated. Basically, reprompt updates things that are generated automatically, leaving manual
editing untouched.
The typical use of reprompt is with one argument, as in

reprompt(infile = "./Rdpack/man/reprompt.Rd")
reprompt(reprompt)
reprompt("reprompt")

reprompt updates the documentation of all objects described in the Rd object or file, and writes
the updated Rd file in the current working directory, see reprompt for details. To describe a new
function in an existing Rd file, just add something like myfun() and run reprompt to insert the
correct signature, alias, etc. This works also for replacement functions, see reprompt for details.
ereprompt updates the Rd documentation in a file, overwrites it and opens it in an editor. It
calls reprompt to do the actual job but has different defaults. Which editor is opened, is system
dependent, see the edit and ereprompt for futher details.
Users who work on Rd files in RStudio can use add-in “Reprompt” to invoke reprompt conve-
niently on an Rd file or on a selected object in an R source code file, see RStudio_reprompt.
This add-in was contributed by Duncan Murdoch.
Users of Emacs/ESS have various options, depending on their workflow. One approach is to
define a key to call ereprompt on the file being edited, see georgisemacs for an example setup.
promptPackageSexpr creates a skeleton for a package overview in file name-package.Rd. Then
the file can be edited as needed. This function needs to be called only once for a package since
automatic generation of information in name-package.Rd is achieved with Sexpr’s at build time,
not with verbatim strings (promptPackage used to insert verbatim strings but in recent versions
of R it also uses macros.).
For example, the source of this help page is file ‘Rdpack-package.Rd’. It was initially produced
using

promptPackageSexpr("Rdpack")

https://github.com/GeoBosh/georgisemacs

Rdpack-package 5

The factual information at the beginning of this help topic (the index above, the version and other
stuff that can be determined automatically) is kept automatically up to date.

References and Citations:
Another set of functions is for management of bibliographic references in Rd files. The old
approach based on function rebib is fully functional, see below, but the recommended way to
insert references and citations is based on Rd macros.
The provided Rd macros are fully portable and, in particular, work in Rd files and roxygen2 com-
ments, see insertRef and vignette vignette("Inserting_bibtex_references", "Rdpack")
for details and examples.
The Bibtex source for the references and citations produced by the Rd macros is file "REFER-
ENCES.bib", which should be located in the root of the package installation directory. Rdpack
needs also to be mentioned in two places in file ‘DESCRIPTION’. These one-off preparation steps
are enumerated below:

1. Put the following line in file ‘DESCRIPTION’:

RdMacros: Rdpack

(If there is already a line starting with ’RdMacros:’, add Rdpack to the list on that line.)
2. Add Rdpack to the list of imports (Imports: field) in file ‘DESCRIPTION’.
3. Add the following line to file ‘NAMESPACE’:

importFrom(Rdpack,reprompt)

Alternatively, if devtools is managing your NAMESPACE file, the equivalent roxygen2 line
is:

#' @importFrom Rdpack reprompt

4. Create file "REFERENCES.bib" in subdirectory "inst/" of the package and put the BibTeX
references in that file.

The Rd macro \insertRef takes two arguments: a BibTeX key and the name of a package. Thus,
\insertRef{key}{package} inserts the reference whose key is key from "REFERENCES.bib"
of the specified package (almost always the one being documented).
Citations can be done with Rd macro \insertCite, which inserts citation(s) for one or more
BibTeX keys and records the keys. \insertCiteOnly is similar to \insertCite but does not
record the keys. \insertNoCite records the keys but does not produce citations.
\insertAllCited creates a bibliography including all references recorded by \insertCite and
\insertNoCite. It is usually put in section “References”, something like:

\references{
\insertAllCited{}

}

in an Rd file. Don’t align the backslash with the second ’e’ of @references, since roxygen2 may
interpret it as verbatim text, not macro.
The analogous documentation chunk in roxygen2 might look like this:

#' @references
#' \insertAllCited{}

6 Rdpack-package

Bibliography styles for lists of references are supported as well. Currently the only alternative
offered is to use long names (Georgi N. Boshnakov) in place of the default style (Boshnakov GN).
More comprehensive alternatives can be included if needed or requested.
Convenience functions makeVignetteReference and vigbib generate Bibtex entries for vignettes.

Previewing documentation pages:
It is convenient during development to be able to view the rendered version of the document page
being edited. The function viewRd renders a documentation file in a source package and displays
it as text or in a browser. It renders references properly in any workflow, including devtools
development mode (Wickham et al. 2018) in Emacs/ESS, Rstudio, Rgui. This function is a good
candidate to be assigned to a key in editors which support this.
I created this function (in 2017) since the functions provided by devtools and Emacs/ESS are
giving errors when processing pages containing Rd macros.

Static Management of References:
In the alternative approach, the function rebib updates the bibliographic references in an Rd file.
Rdpack uses a simple scheme for inclusion of bibliographic references. The key for each reference
is in a TeX comment line, as in:

\references{
...
% bibentry: key1
% bibentry: key2
...

}

rebib puts each reference after the line containing its key. It does nothing if the reference has
been put by a previous call of rebib. If the Bibtex entry for some references changes, it may be
necessary to update them in the Rd file, as well. Call rebib with force = TRUE to get this effect.
There is also a facility to include all references from the Bibtex file, see the documentation of
rebib for details.

Inserting evaluated examples:
Sometimes the documentation of an object becomes more clear if accompanied by snippets of
R code and their results. The standard Rd macro \Sexpr caters for a number of possibilities
to evaluate R code and insert the results and the code in the documentation. The Rd macro
\printExample provided by package Rdpack builds on it to print a snippet of R code and the
results of its evaluation, similarly to console output but the code is not prefixed and the results are
prefixed with comment symbols. For example, \printExample{2+2; a <- 2*3; a} produces
the following in the rendered documentation:

2 + 2
##: [1] 4
a <- 2 * 3
a
##: [1] 6

The help page of promptUsage contains a number of examples created with \printExample. The
corresponding Rd file can be obtained from the package tarball or from https://github.com/
GeoBosh/Rdpack/blob/master/man/promptUsage.Rd.

https://github.com/GeoBosh/Rdpack/blob/master/man/promptUsage.Rd
https://github.com/GeoBosh/Rdpack/blob/master/man/promptUsage.Rd

Rdpack-package 7

The argument of \printExample must be on a single line with versions of R before R 3.6.0.
\printExample is typically placed in section Details of an object’s documentation, see section
Details of get_usage for a number of examples produced mostly with \printExample.
The macro \runExamples can be used as a replacement of section Examples. For example, if the
following code is put at the top level in an Rd file (i.e. not in a section):

\runExamples{2+2; a <- 2*3; a}

then it will be evaluated and replaced by a normal section examples:

\examples{
2 + 2
##: 4
a <- 2 * 3
a
##: 6
}

This generated examples section is processed by the standard R tools (almost) as if it was there
from the outset. In particular, the examples are run by the R’s quality control tools and tangled
along with examples in other documentation files.
In R versions before 3.6.0 R CMD check used to give a warning about unknown \Sexpr section
at top level.

Creating and including graphs:
Figures can be inserted with the help of the standard Rd markup command \figure. The Rd
macro \insertFig provided by package Rdpack takes a snipped of R code, evaluates it and
inserts the plot produced by it (using \figure). \insertFig takes three arguments: a filename,
the package name and the code to evaluate to produce the figure. For example,

\insertFig{cars.png}{mypackage}{x <- cars$speed; y <- cars$dist; plot(x,y)}

will evaluate the code, save the graph in file "man/figures/cars.png" subdirectory of package
"mypackage", and include the figure using \figure. Subdirectory "figures" is created if it
doesn’t exist. Currently the graphs are saved in "png" format only. In older versions of R the
code should be on a single line for the reasons explained in the discussion of \printExample.
The sister macro \makeFig creates the graph in exactly the same way as \insertFig but does
not insert it. This can be done with a separate \figure command. This can be used if additional
options are desired for different output formats, see the description of \figure in "Writing R
extensions".

Other functions that may be useful are Rdo2Rdf, Rdapply and Rd_combo. Here is also brief infor-
mation about some more technical functions that may be helpful in certain circumstances.

get_usage generates usage text for functions and methods. The functions can be located in envi-
ronments or other objects. This may be useful for description of function elements of compound
objects.

c_Rd concatenates Rd pieces, character strings and lists to create a larger Rd piece or a complete
Rd object. list_Rd is similar to c_Rd but provides additional features for convenient assembling
of Rd objects.

parse_Rdpiece is a technical function for parsing pieces of Rd source text but it has an argument
to return formatted help text which may be useful when one wishes to show it to the user.

8 Rdpack-package

Rdo_set_section can be used to set a section, such as "\author".

The remaining functions in the package are for programming with Rd objects.

Note

All processing is done on the parsed Rd objects, i.e. objects of class "Rd" or pieces of such objects
(Murdoch 2010).

The following terminology is used (todo: probably not yet consistently) throughout the documen-
tation.

"Rd object" - an object of class Rd, or part of such object.

"Rd piece" - part of an object of class Rd. Fragment is also used but note that parse_Rd defines
fragment more restrictively.

"Rd text", "Rd source text", "Rd format" - these refer to the text of the Rd files.

Author(s)

Georgi N. Boshnakov [aut, cre] (<https://orcid.org/0000-0003-2839-346X>), Duncan Murdoch [ctb]

Maintainer: Georgi N. Boshnakov <georgi.boshnakov@manchester.ac.uk>

References

Note: Reference ZZZ (2018) does not exist. It is a test that simple math in BibTeX entries works.

—

Georgi N. Boshnakov, Chris Putman (2020). rbibutils: Convert Between Bibliography Formats.
https://CRAN.R-project.org/package=rbibutils.

Duncan Murdoch (2010). “Parsing Rd files.” https://developer.r-project.org/parseRd.
pdf.

Hadley Wickham, Jim Hester, Winston Chang (2018). devtools: Tools to Make Developing R
Packages Easier. R package version 1.13.5, https://CRAN.R-project.org/package=devtools.

A. ZZZ (2018). “A relation between several fundamental constants: eiπ = −1; Also, a test that
slash is fine: Something/Something.” A non-existent journal with the formula L2 in its name & an
ampersand which is preceded by a backslash in the bib file.. This reference does not exist. It is a
test/demo that simple formulas in BibTeX files are OK. A formula in field ’note’: c2 = a2 + b2.

See Also

ereprompt, reprompt, promptPackageSexpr, rebib,

get_usage,

viewRd, vigbib, makeVignetteReference,

vignette("Inserting_bibtex_references", package = "Rdpack"),

vignette("Inserting_figures_and_evaluated_examples", package = "Rdpack")

https://CRAN.R-project.org/package=rbibutils
https://developer.r-project.org/parseRd.pdf
https://developer.r-project.org/parseRd.pdf
https://CRAN.R-project.org/package=devtools

append_to_Rd_list 9

Examples

The examples below show typical use but are not executable.
For executable examples see the help pages of
reprompt, promptPackageSexpr, and rebib.

To make the examples executable, replace "myfun" with a real
function, and similarly for classes and paths to files.

Not run:
update the doc. from the Rd source and save myfun.Rd
in the current directory (like prompt)
reprompt(infile="path/to/mypackage/man/myfun.Rd")

update doc of myfun() from the installed doc (if any);
if none is found, create it like prompt
reprompt("myfun")
reprompt(myfun) # same

update doc. for S4 methods from Rd source
reprompt(infile="path/to/mypackage/man/myfun-methods.Rd")

update doc. for S4 methods from installed doc (if any);
if none is found, create it like promptMethods
reprompt("myfun", type = "methods")
reprompt("myfun-methods") # same

update doc. for S4 class from Rd source
reprompt(infile="path/to/mypackage/man/myclass-class.Rd")

update doc. of S4 class from installed doc.
if none is found, create it like promptClass
reprompt("myclass-class")
reprompt("myclass", type = "class") # same

create a skeleton "mypackage-package.Rd"
promptPackageSexpr("mypackage")

update the references in "mypackage-package.Rd"
rebib(infile="path/to/mypackage/man/mypackage-package.Rd", force=TRUE)

End(Not run)

append_to_Rd_list Add content to the element of an Rd object or fragment at a given
position

Description

Add content to the element of an Rd object or fragment at a given position.

10 append_to_Rd_list

Usage

append_to_Rd_list(rdo, x, pos)

Arguments

rdo an Rd object

x the content to append, an Rd object or a list of Rd objects.

pos position at which to append x, typically an integer but may be anything accepted
by the operator "[[".

Details

The element of rdo at position pos is replaced by its concatenation with x. The result keeps the
"Rd_tag" of rdo[[pos]].

Argument pos may specify a position at any depth of the Rd object.

This function is relatively low level and is mainly for use by other functions.

Value

the modified rdo object

Author(s)

Georgi N. Boshnakov

Examples

#rdoseq <- utils:::.getHelpFile(help("seq"))
rdoseq <- Rdo_fetch("seq", "base")
iusage <- which(tools:::RdTags(rdoseq) == "\\usage")
iusage
attr(rdoseq[[iusage]], "Rd_tag")

append a new line after the last usage line
rdoseq2 <- append_to_Rd_list(rdoseq, list(Rdo_newline()), iusage)

Suppose that we wish to describe the function 'sequence' in the same Rd file.
We append an usage statement for 'sequence()', without worrying about its
actual signature.
rdoseq2 <- append_to_Rd_list(rdoseq2, list(Rdo_Rcode("sequence()")), iusage)
Rdo_show(rdoseq2)

the two operations can be done in one step
rdoseq3 <- append_to_Rd_list(rdoseq, list(Rdo_newline(), Rdo_Rcode("sequence()")), iusage)
Rdo_show(rdoseq3)

now run reprompt() to update rdoseq3, namely:
(1) it corrects the signature of 'sequence' in section \usage.
(2) reports new argument "nvec"
(3) inserts \item for the new argument(s) in section \arguments.

char2Rdpiece 11

reprompt(rdoseq3, filename=NA)

char2Rdpiece Convert a character vector to Rd piece

Description

Convert a character vector to Rd piece.

Usage

char2Rdpiece(content, name, force.sec = FALSE)

Arguments

content a character vector.

name name of an Rd macro, a string.

force.sec TRUE or FALSE, see ‘Details’.

Details

Argument content is converted to an Rd piece using name to determine the format of the result.

The Rd tag of content is set as appropriate for name. More specifically, if name is the name of a
macro (without the leading ‘\’) whose content has a known "Rdtag", that tag is used. Otherwise the
tag is set to "TEXT".

If force.sec is TRUE, name is treated as the name of a top level section of an Rd object. A top level
section is exported as one argument macro if it is a standard section (detected with is_Rdsecname)
and as the two argument macro "\section" otherwise.

If force.sec is FALSE, the content is exported as one argument macro without further checks.

Note

This function does not attempt to escape special symbols like ‘%’.

Author(s)

Georgi N. Boshnakov

Examples

add a keyword section
a1 <- char2Rdpiece("graphics", "keyword")
a1
"keyword" is a standard Rd top level section, so 'force.sec' is irrelevant
a2 <- char2Rdpiece("graphics", "keyword", force.sec = TRUE)
identical(a1, a2)

12 compare_usage1

an element suitable to be put in a "usage" section
char2Rdpiece("log(x, base = exp(1))", "usage")

a user defined section "Todo"
char2Rdpiece("Give more examples for this function.", "Todo", force.sec = TRUE)

compare_usage1 Compare usage entries for a function to its actual arguments

Description

Compare usage entries for a function to its actual arguments.

Usage

compare_usage1(urdo, ucur)

Arguments

urdo usage text for a function or S3 method from an Rd object or file.

ucur usage generated from the actual object.

Details

Compares the usage statements for functions in the Rd object or file urdo to the usage inferred from
the actual definitions of the functions. The comparison is symmetric but the interpretation assumes
that ucur may be more recent.

Note: do not compare the return value to TRUE with identical or isTRUE. The attribute makes
the returned value not identical to TRUE in any case.

Value

TRUE if the usages are identical, FALSE otherwise. The return value has attribute "details", which
is a list providing details of the comparison. The elements of this list should be referred by name,
since if one of urdo or ucur is NULL or NA, the list contains only the fields "obj_removed",
"obj_added", "rdo_usage", "cur_usage", and "alias".

identical_names

a logical value, TRUE if the ‘name’ is the same in both objects.

obj_removed names present in urdo but not in ucur

obj_added names present in ucur but not in urdo

identical_argnames

a logical value, TRUE if the argument names in both objects are the same.
identical_defaults

a logical value, TRUE if the defaults for the arguments in both objects are the
same.

c_Rd 13

identical_formals

a logical value, TRUE if the formals are the same, i.e. fields identical_argnames
and identical_defaults are both TRUE.

added_argnames names of arguments in ucur but not in urdo.
removed_argnames

names of arguments in urdo but not in ucur.
names_unchanged_defaults

names of arguments whose defaults are the same.

rdo_usage a copy of urdo.

cur_usage a copy of ucur.

alias alias of the name of the object, see ‘Details’.

Author(s)

Georgi N. Boshnakov

See Also

inspect_usage

c_Rd Concatenate Rd objects or pieces

Description

Concatenates Rd objects or pieces

Usage

c_Rd(...)

Arguments

... objects to be concatenated, Rd objects or character strings, see ‘Details’.

Details

The arguments may be a mixture of lists and character strings. The lists are typically "Rd" objects
or pieces. The character strings may also be elements of "Rd" objects carrying "Rd_tag" attributes.
The "Rd_tag" attribute of character strings for which it is missing is set to "TEXT". Finally, each
character element of "\dots" is enclosed in list.

Eventually all arguments become lists and they are concatenated using c(). If any of the arguments
is of class "Rd", the class of the result is set to "Rd". Otherwise, the "Rd_tag" of the result is set to
the first (if any) non-null "Rd_tag" in the arguments.

The structure of "Rd" objects is described by Murdoch (2010).

14 c_Rd

Value

An Rd object or a list whose attribute "Rd_tag" is set as descibed in ‘Details’

Author(s)

Georgi N. Boshnakov

References

Duncan Murdoch (2010). “Parsing Rd files.” https://developer.r-project.org/parseRd.
pdf.

See Also

list_Rd

Examples

a1 <- char2Rdpiece("Dummyname", "name")
a2 <- char2Rdpiece("Dummyallias1", "alias")
a3 <- char2Rdpiece("Dummy title", "title")
a4 <- char2Rdpiece("Dummy description", "description")

The following are equivalent
(gbRd::Rdo_empty() creates an empty list of class 'Rd')
if(requireNamespace("gbRd")){
b1 <- c_Rd(gbRd::Rdo_empty(), list(a1), list(a2), list(a3), list(a4))
c1 <- c_Rd(gbRd::Rdo_empty(), list(a1, a2, a3, a4))
d1 <- c_Rd(gbRd::Rdo_empty(), list(a1, a2), list(a3, a4))
identical(c1, b1)
identical(c1, d1)
Rdo_show(b1)

insert a newline
d1n <- c_Rd(gbRd::Rdo_empty(), list(a1, a2), Rdo_newline(), list(a3, a4))
str(d1n)
}

When most of the arguments are character strings
the function 'list_Rd' may be more convenient.
u1 <- list_Rd(name = "Dummyname", alias = "Dummyallias1",

title = "Dummy title", description = "Dummy description",
Rd_class = TRUE)

Rdo_show(u1)

https://developer.r-project.org/parseRd.pdf
https://developer.r-project.org/parseRd.pdf

deparse_usage 15

deparse_usage Convert f_usage objects to text appropriate for usage sections in Rd
files

Description

Converts f_usage objects to text appropriate for usage sections in Rd files. Handles S3 methods.

Usage

deparse_usage(x)
deparse_usage1(x, width = 72)
S3 method for class 'f_usage'
as.character(x, ...)

Arguments

x an object from class "f_usage". For deparse_usage, x can also be a list of
"f_usage" objects.

width maximal width of text on a line.

... ignored.

Details

Both, deparse_usage1 and the as.character method for class "f_usage", convert an "f_usage"
object to a character string suitable for Rd documentation. The as.character method is the user
level function (it just calls deparse_usage1), deparse_usage1 is internal function for program-
ming. In the example below the first command creates an "f_usage" object, then the second con-
verts it to character string.

(a <- pairlist2f_usage1(formals(cor), "cor"))
##: name = cor
##: S3class =
##: S4sig =
##: infix = FALSE
##: fu = TRUE
##: argnames = x y use method
##: defaults : y = NULL
##: use = "everything"
##: method = c("pearson", "kendall", "spearman")

cat(as.character(a))
##: cor(x, y = NULL, use = "everything",
##: method = c("pearson", "kendall", "spearman"))

16 deparse_usage

Each usage entriy is formatted and, if necessary, split over several lines. The width (number of
characters) on a line can be changed with argument width.

deparse_usage can be used when x is a list of "f_usage" objects. It calls deparse_usage1 with
each of them and returns a character vector with one element for each component of x. When x is
an object from class "f_usage", deparse_usage is equivalent to deparse_usage1.

Value

For deparse_usage1 and as.character.f_usage, a named character vector of length one (the
name is the function name).

For deparse_usage, a named character vector with one entry for the usage text for each function.

Author(s)

Georgi N. Boshnakov

See Also

pairlist2f_usage1

Examples

cur_wd <- getwd()
tmpdir <- tempdir()
setwd(tmpdir)

prepare a list of "f_usage" objects
fnseq <- reprompt(seq) # get and save the help page of "seq"
rdoseq <- tools::parse_Rd(fnseq) # parse the Rd file
ut <- get_usage_text(rdoseq) # get the contents of the usage section
cat(ut, "\n") # of seq() (a character string)
utp <- parse_usage_text(ut) # parse to a list of "f_usage" objects

deparse the "f_usage" list - each statement gets a separate string
cat(deparse_usage(utp), sep = "\n")

explore some of the usage entries individually;
the generic seq() has a boring signature
utp[[1]]
as.character(utp[[1]])
deparse_usage1(utp[[1]]) # same

the default S3 method is more interesting
utp[[2]]
cat(deparse_usage1(utp[[2]]))
cat(as.character(utp[[2]])) # same

unlink(fnseq)
setwd(cur_wd)
unlink(tmpdir)

ereprompt 17

ereprompt Update an Rd file and open it in an editor

Description

Update an Rd file and open it in an editor. This is a wrapper for reprompt with different defaults for
some parameters.

Usage

ereprompt(..., edit = TRUE, filename = TRUE)

Arguments

... passed on to reprompt, see its documentation for details.

edit if TRUE, the default, open an editor when finished.

filename if TRUE, the default, replace and/or edit the original Rd file.

Details

ereprompt calls reprompt to do the actual job but has different defaults for the arguments described
on this page. By default, it replaces the original Rd file with the updated documentation and opens
it in an editor.

Value

called for the side effect of updating Rd documentation file and opening it in an editor

Author(s)

Georgi N. Boshnakov

See Also

reprompt which does the actual work

Examples

this assumes that the current working directory is
in any subdirectory of the development directory of Rdpack
Not run:
ereprompt(infile = "reprompt.Rd")

End(Not run)

18 format_funusage

format_funusage Format the usage text of functions

Description

Formats the usage text of a function so that each line contains no more than a given number of
characters.

Usage

format_funusage(x, name = "", width = 72, realname)

Arguments

x a character vector containing one element for each argument of the function, see
‘Details’.

name the name of the function whose usage is described, a string.

width maximal width of each line of output.

realname the printed form of name, see ‘Details’, a string.

Details

format_funusage formats the usage text of a function for inclusion in Rd documentation files. If
necessary, it splits the text into more lines in order to fit it within the requested width.

Each element of argument x contains the text for one argument of function name in the form arg or
arg = default. format_funusage does not look into the content of x, it does the necessary pasting
to form the complete usage text, inserting new lines and indentation to stay within the specified
width. Elements of x are never split. If an argument (i.e., element of x) would cause the width to be
exceeded, the entire argument is moved to the following line.

The text on the second and subsequent lines of each usage item starts in the column just after the
opening parenthesis which follows the name of the function on the first line.

In descriptions of S3 methods and S4 methods, argument name may be a TeX macro like \method{print}{ts}.
In that case the number of characters in name has little bearing on the actual number printed. In this
case argument realname is used for counting both the number of characters on the first line of the
usage message and the indentation for the subsequent lines.

Value

The formatted text as a length one character vector.

Note

Only the width of realname is used (for counting). The formatted text contains name.

The width of strings is determined by calling nchar with argument type set to "width".

get_bibentries 19

Author(s)

Georgi N. Boshnakov

See Also

deparse_usage1

Examples

this function is essentially internal,
see deparse_usage1 and as.character.f_usage which use it.

get_bibentries Get all references from a Bibtex file

Description

Get all references from a Bibtex file.

Usage

get_bibentries(..., package = NULL, bibfile = "REFERENCES.bib",
url_only = FALSE, stop_on_error = TRUE)

Arguments

... arguments to be passed on to the file getting functions, character strings, see
‘Details’.

package name of a package, a character string or NULL.

bibfile name of a Bibtex file, a character string.

url_only if TRUE, restrict percent escaping to BibTeX field "URL".

stop_on_error if TRUE stop on error, otherwise issue a warning and return an empty bibentryRd
object.

Details

get_bibentries parses the specified file. and sets its names attribute to the keys of the bib
elements (read.bib() does this since version version 0.4.0 of bibtex, as well). Here is what
get_bibentries does on top of read.bib (the details are further below):

• get_bibentries deals with percent signs in URL’s.

• if the current working directory is in the development directory of package, get_bibentries
will first search for the bib file under that directory.

20 get_bibentries

bibfile should normally be the base name of the Bibtex file. Calling get_bibentries without
any "\dots" arguments results in looking for the Bibtex file in the current directory if package is
NULL or missing, and in the installation directory of the specified package, otherwise. Argument
". . . " may be used to specify directories. If package is missing or NULL, the complete path is
obtained with file.path(..., bibfile). Otherwise package must be a package name and the
file is taken from the installation directory of the package. Again, argument ". . . " can specify
subdirectory as in system.file.

If the current working directory is in the development directory of package, the bib file is first
sought there before resorting to the installation directory.

Although the base R packages do not have files REFERENCES.bib, argument package can be set to
one of them, e.g. "base". This works since package bibtex provides bib files for the core packages.

By default, get_bibentries escapes unescaped percent signs in all fields of bibtex objects. To
restrict this only to field "url", set argument url_only to FALSE.

get_bibentries returns an object from class "bibentryRd", which inherits from bibentry. The
printing method for "bibentryRd" unescapes percent signs in URLs for some styles where the
escapes are undesirable.

Value

a bibentryRd object inheriting from bibentry

Author(s)

Georgi N. Boshnakov

References

There are no references for Rd macro \insertAllCites on this help page.

Examples

r <- get_bibentries(package = "Rdpack")
r
print(r, style = "html")

Bib from base R packages are disabled in Rdpack v2 (notify the
maintainer of Rdpack or raise an issue on github if you wish this back).
##
b <- get_bibentries(package = "stats")
print(b[[1]], style = "R")
print(b[[1]], style = "citation")

here the url field contains percent encoding
fn_url <- system.file("examples", "url_with_percents.bib", package = "Rdpack")
u <- get_bibentries(bibfile = fn_url)

the links produced by all of the following are valid
and can be put in a browser
print(u, style = "html")
print(u, style = "bibtex")

get_sig_text 21

print(u, style = "R")
print(u, style = "text")
print(u, style = "citation")

The link here contains escapes but when put in a LaTeX document
which uses the JSS style it generates correct clickable link,
(see Details section)
print(u, style = "latex")

here the journal field contains percent encoding
fn_other <- system.file("examples", "journal_with_percents.bib", package = "Rdpack")
j <- get_bibentries(bibfile = fn_url)
print(j, style = "html")
print(j, style = "bibtex")
print(j, style = "R")
print(j, style = "text")
print(j, style = "citation")

print(j, style = "latex")

get_sig_text Produce the textual form of the signatures of available methods for an
S4 generic function

Description

Produce the textual form of the signatures of available methods for an S4 generic function.

Usage

get_sig_text(rdo, package = NULL)

Arguments

rdo an Rd object.

package if of class "character", give only methods defined by package, otherwise give
all methods.

Details

Signatures are found using function findMethodSignatures from package "methods".

Here we find all methods for show() defined in package "methods" and print the first few of them:

fn <- utils::help("show-methods", package = "methods")
rdo <- utils:::.getHelpFile(fn)
head(get_sig_text(rdo))
##: [1] "signature(object = \"ANY\")"
##: [2] "signature(object = \"MethodDefinition\")"

22 get_sig_text

##: [3] "signature(object = \"MethodDefinitionWithTrace\")"
##: [4] "signature(object = \"MethodSelectionReport\")"
##: [5] "signature(object = \"MethodWithNext\")"
##: [6] "signature(object = \"MethodWithNextWithTrace\")"

Value

A character vector with one element for each method.

Note

todo: It would be better to call promptMethods() to get the signatures but in version R-2.13.x I had
trouble with argument ‘where’ (could not figure out how to use it to restrict to functions from a
package; also, promptMethods() seemed to call the deprecated function getMethods()). Check how
these things stand in current versions of R, there may be no problem any more (checked, in 2.14-0
it is the same).

Author(s)

Georgi N. Boshnakov

Examples

load another package with some S4 methods ("methods" is already loaded)
require("stats4")

rdo <- Rdo_fetch("show", package = "methods")
alternatively:
#fn <- help("show-methods", package = "methods")
#rdo <- utils:::.getHelpFile(fn)

this will find all methods for "show" in currently loaded packages
(print only some of them)
head(get_sig_text(rdo))

this will select only the ones from package "stats4"
get_sig_text(rdo, package = "stats4")

this is also fine (interactively) but need to choose
the appropriate element of "fn" if length(fn) > 1
#fn <- help("show-methods")

this finds nothing
#fn <- help("logLik-methods", package = "methods")
#fn
Rdo_fetch("logLik-methods", package = "methods")

this does
#fn <- help("logLik-methods", package = "stats4")
#rdo <- utils:::.getHelpFile(fn)
rdo2 <- Rdo_fetch("logLik-methods", package = "stats4")

get_usage_text 23

get_sig_text(rdo2)
get_sig_text(rdo2, package = "stats4")

only default method defined
using this:
setGeneric("f1", function(x, y){NULL})
since the following gives error in pkgdown:
#f1 <- function(x, y){NULL}
#setGeneric("f1")

fn <- tempfile()

reprompt("f1", filename = fn)
rdo <- tools::parse_Rd(fn)
get_sig_text(rdo)

setClass("aRdpack")
setClass("bRdpack")

several methods defined
setGeneric("f4", function(x, y){NULL})
setMethod("f4", c("numeric", "numeric"), function(x, y){NULL})
setMethod("f4", c("aRdpack", "numeric"), function(x, y){NULL})
setMethod("f4", c("bRdpack", "numeric"), function(x, y){NULL})
setMethod("f4", c("aRdpack", "bRdpack"), function(x, y){NULL})

reprompt("f4", filename = fn)
rdo <- tools::parse_Rd(fn)
get_sig_text(rdo)

unlink(fn)

get_usage_text Get the text of the usage section of Rd documentation

Description

Get the text of the usage section of Rd documentation.

Usage

get_usage_text(rdo)

Arguments

rdo an Rd object or a character string

Details

If rdo is a string, it is parsed to obtain an Rd object.

The content of section "\usage" is extracted and converted to string.

24 insert_all_ref

Value

a string

Note

todo: get_usage_text can be generalised to any Rd section but it is better to use a different ap-
proach since print.Rd() does not take care for some details (escaping %, for example). Also, the
functions that use this one assume that it returns R code, which may not be the case if the usage
section contains Rd comments.

Author(s)

Georgi N. Boshnakov

Examples

get the Rd object documenting Rdo_macro
#h <- utils::help("Rdo_macro", lib.loc = .libPaths())
#rdo <- utils:::.getHelpFile(h)
rdo <- Rdo_fetch("Rdo_macro", "Rdpack")
extract the usage section and print it:
ut <- get_usage_text(rdo)
cat(ut, sep = "\n")

insert_all_ref Insert references cited in packages

Description

Insert references cited in packages.

Usage

insert_all_ref(refs, style = "", empty_cited = FALSE)

Arguments

refs a matrix specifying key-package pairs of the references to insert. Can also be a
cached environment, see Details.

style a bibstyle, see Details.

empty_cited if TRUE, empty the list of currently cited items.

insert_all_ref 25

Details

insert_all_ref is the workhorse behind several Rd macros for inclusion of references in Rd
documentation.

Argument refs is a two-column character matrix. The first column specifies bibtex keys. To specify
more than one key in a single element, separate them by commas. The second column specifies the
package in which to look for the keys.

A key equal to "*" requests all keys in the corresponding package.

insert_all_ref drops duplicated keys, collects the references, and converts them to Rd textual
representation for inclusion in Rd documentation files.

refs can be a cached environment. This is for internal use and not documented.

Value

a character string containing a textual representation of the references, suitable for inclusion in an
Rd file

Author(s)

Georgi N. Boshnakov

References

Currently there are no citations on this help page. Nevetheless, I have put \insertAllCited{} just
after this paragraph to show the message that it prints when there are no citations. This seems better
than printing nothing but it may be argued also that there should be a warning as well.

There are no references for Rd macro \insertAllCites on this help page.

Examples

a reference from package Rdpack
cat(insert_all_ref(matrix(c("Rpack:bibtex", "Rdpack"), ncol = 2)), "\n")

more than one reference from package Rdpack, separate the keys with commas
cat(insert_all_ref(matrix(c("parseRd,Rpack:bibtex", "Rdpack"), ncol = 2)), "\n")

all references from package Rdpack
cat(insert_all_ref(matrix(c("*", "Rdpack"), ncol = 2)), "\n")

all references from package Rdpack and rbibutils
m <- matrix(c("*", "Rdpack", "*", "rbibutils"), ncol = 2, byrow = TRUE)
cat(insert_all_ref(m), "\n")

26 insert_citeOnly

insert_citeOnly Generate citations from bibtex keys

Description

Generate citations from bibtex keys.

Usage

insert_citeOnly(keys, package = NULL, before = NULL, after = NULL,
bibpunct = NULL, ..., cached_env = NULL,
cite_only = FALSE, dont_cite = FALSE)

Arguments

keys a character string containing bibtex key(s) prefixed with the symbol @, inter-
mixed with free text. The format is the same as for Rd macro \insertCite. Put
;textual at the end of the string to get a textual citation. Similarly, ;nobrackets
requests parenthesised citation without the enclosing parentheses. Alternatively,
keys can contain one or more keys, separated by commas.

package name of an R package.

before see citeNatbib.

after see citeNatbib.

bibpunct see citeNatbib.

... further arguments; for internal use.

cached_env for internal use.

cite_only for internal use.

dont_cite for internal use.

Details

This is the function behind \insertCite and related macros. Argument "keys" has the syntax of
the first argument of \insertCite, see insertRef for full details.

Value

a character vector containing the references with Rd markup

Author(s)

Georgi N. Boshnakov

See Also

insert_ref for description of all available Rd macros

insert_ref 27

Examples

insert_citeOnly("@see also @Rpackage:rbibutils and @parseRd", package = "Rdpack")
(see also Boshnakov and Putman 2020 and Murdoch 2010)

insert_citeOnly("@see also @Rpackage:rbibutils and @parseRd;nobrackets",
package = "Rdpack")

see also Boshnakov and Putman 2020 and Murdoch 2010

insert_citeOnly("@see also @Rpackage:rbibutils and @parseRd;textual",
package = "Rdpack")

see also Boshnakov and Putman (2020) and Murdoch (2010)

insert_ref Insert bibtex references in Rd and roxygen2 documentation

Description

Package Rdpack provides Rd macros for inserting references and citations from bibtex files into R
documentation. Function insert_ref() is the workhorse behind this mechanism. The description
given on this page should be sufficient, for more details see the vignette.

Usage

insert_ref(key, package = NULL, ..., cached_env = NULL)

Arguments

key the bibtex key of the reference, a character string.

package the package in which to look for the bibtex file.

... further arguments to pass on to get_bibentries(). The only one of interest to
users is bibfile, whose default is "REFERENCES.bib", see get_bibentries.

cached_env environment, used to avoid repeatedly passing the bib file from scratch, mainly
used by the Rd macros.

Details

insert_ref extracts a bibliograhic reference from a bibtex file, converts it to Rd format and returns
a single string with embedded newline characters. It is the workhorse in the provided mechanism
but most users do not even need to know about insert_ref.

Package Rdpack provides several Rd macros for inserting references and citations in the docu-
mentation of a package. All macros work in both, manually written Rd files and in roxygen2
documentation chunks. The macros look for references in file "REFERENCES.bib" in the root of
the installation directory of the package. When a package is in development mode under devtools,
"inst/REFERENCES.bib" in the development directory of the package is checked first. See also
get_bibentries but note that while direct calls to insert_ref() can specify a different file, the
filename and the places where it is looked for are fixed for the Rd macros.

28 insert_ref

The description below assumes that Rdpack has been added to file DESCRIPTION, as described in
Rdpack-package and vignette "Inserting_bibtex_references". The Rd macros are put in the
text of documentation sources (‘Rd’ files or ‘roxygen2’ chunks).

Rd macro insertRef:
\insertRef{key}{package} inserts the reference with bibtex key key from file "REFERENCES.bib"
in package package. Argument ‘package’ can be any installed R package, not necessarily the one
of the documentation object, as long as it contains file "REFERENCES.bib" in the root of its instal-
lation directory. The references are partially processed when the package is built.
References inserted with \insertRef appear in the place where the macro is put, usually in a
dedicated references section (\references in Rd files, @references in roxygen chunks).
For example, section ‘References’ of this help page shows (among other things)) the rendered
results of the following lines in the Rd source file:

\insertRef{Rpackage:rbibutils}{Rdpack}

\insertRef{parseRd}{Rdpack}

\insertRef{bibutils6.10}{rbibutils}

A roxygen2 documentation chunk might look like this:

#' @references
#' \insertRef{Rpackage:rbibutils}{Rdpack}
#'
#' \insertRef{parseRd}{Rdpack}
#'
#' \insertRef{bibutils6.10}{rbibutils}

The first reference has label Rpackage:rbibutils and is taken from file "REFERENCES.bib" in
package Rdpack. The third reference is from the file "REFERENCES.bib" in package rbibutils.
For more details see vignette "Inserting_bibtex_references".

Rd macro insertCite:
\insertCite{key}{package} cites the key and records it for use by \insertAllCited, see
below. key can contain more keys separated by commas.

\insertCite{parseRd,Rpackage:rbibutils}{Rdpack} (Murdoch 2010; Boshnakov and Putman 2020)
\insertCite{Rpackage:rbibutils}{Rdpack} (Boshnakov and Putman 2020)
\insertCite{bibutils6.10}{rbibutils} (Putnam 2020)

By default the citations are parenthesised (Murdoch 2010). To get textual citations, like Murdoch
(2010), put the string ;textual at the end of the key. The references in the last two sentences were
produced with \insertCite{parseRd}{Rdpack} and \insertCite{parseRd;textual}{Rdpack},
respectively. This also works with several citations, e.g.
\insertCite{parseRd,Rpackage:rbibutils;textual}{Rdpack} produces: Murdoch (2010);
Boshnakov and Putman (2020).
To mix the citations with other text, such as ‘see also’ and ‘chapter 3’, write the list of keys as free
text, starting it with the symbol @ and prefixing each key with it. The @ symbol will not appear in
the output. For example, the following code

insert_ref 29

\insertCite{@see also @parseRd and @Rpackage:rbibutils}{Rdpack},

\insertCite{@see also @parseRd; @Rpackage:rbibutils}{Rdpack},

\insertCite{@see also @parseRd and @Rpackage:rbibutils;textual}{Rdpack}.

produces:

(see also Murdoch 2010 and Boshnakov and Putman 2020),
(see also Murdoch 2010; Boshnakov and Putman 2020),
see also Murdoch (2010) and Boshnakov and Putman (2020).

In the parenthesised form, adding ;nobrackets at the end of the list of keys causes the enclosing
parentheses to be dropped. This is useful if you wish to use markup for the text surrounding the
references. For example,

(\emph{see also} \insertCite{@@parseRd; @Rpackage:rbibutils;nobrackets}{Rdpack}).

gives: (see also Murdoch 2010; Boshnakov and Putman 2020). Without ‘;nobrackets’ the result
would be (see also (Murdoch 2010; Boshnakov and Putman 2020)).

Rd macro insertNoCite:
The macro \insertNoCite{key}{package} records one or more references for \insertAllCited
but does not cite it. Setting key to * will include all references from the specified package. For
example, \insertNoCite{parseRd}{Rdpack} and \insertNoCite{*}{rbibutils} record the
specified references for inclusion by \insertAllCited.

Rd macro insertAllCited:
\insertAllCited inserts all references cited with \insertCite and \insertNoCite. Putting
this macro in the references section will keep the references up to date automatically. The Rd
section may look something like:

\references{
\insertAllCited{}

}

or in roxygen2, the references chunk might look like this:

#' @references
#' \insertAllCited{}

Rd macro insertNoCite:
\insertCiteOnly{key}{package} is as \insertCite but does not include the key in the list of
references for \insertAllCited.

Value

for insert_ref, a character string

30 inspect_args

Author(s)

Georgi N. Boshnakov

References

For illustrative purposes there are two sets of citations below The first set of references is obtained
with \insertRef for each reference:

Duncan Murdoch (2010). “Parsing Rd files.” https://developer.r-project.org/parseRd.
pdf.

Georgi N. Boshnakov, Chris Putman (2020). rbibutils: Convert Between Bibliography Formats.
https://CRAN.R-project.org/package=rbibutils.

Putnam C (2020). “Library bibutils, version 6.10.” https://sourceforge.net/projects/bibutils/.

—-

The following references are obtained with a single \insertAllCited{}. The references are sorted
automatically by the surnames of the authors:

Georgi N. Boshnakov, Chris Putman (2020). rbibutils: Convert Between Bibliography Formats.
https://CRAN.R-project.org/package=rbibutils.

Duncan Murdoch (2010). “Parsing Rd files.” https://developer.r-project.org/parseRd.
pdf.

Chris Putnam (2020). “Library bibutils, version 6.10.” https://sourceforge.net/projects/
bibutils/.

See Also

Rdpack-package for overview,

vignette("Inserting_bibtex_references", package = "Rdpack") for further details on the
citation macros

insert_citeOnly for the function generating citations

Examples

cat(insert_ref("Rpackage:rbibutils", "Rdpack"), "\n")

inspect_args Inspect the argument section of an Rd object

Description

Inspect the argument section of an Rd object.

Usage

inspect_args(rdo, i_usage)

https://developer.r-project.org/parseRd.pdf
https://developer.r-project.org/parseRd.pdf
https://CRAN.R-project.org/package=rbibutils
https://sourceforge.net/projects/bibutils/
https://CRAN.R-project.org/package=rbibutils
https://developer.r-project.org/parseRd.pdf
https://developer.r-project.org/parseRd.pdf
https://sourceforge.net/projects/bibutils/
https://sourceforge.net/projects/bibutils/

inspect_Rd 31

Arguments

rdo an Rd object describing functions.

i_usage see Details.

Details

inspect_args checks if the arguments in the documentation object rdo match the (union of) the
actual arguments of the functions it describes.

If i_usage is missing, it is computed by inspecting the current definitions of the functions de-
scribed in rdo, see inspect_usage. This argument is likely to be supplied if the function calling
inspect_args has already computed it for other purposes.

Value

TRUE if the arguments in the documentation match the (union of) the actual arguments of the
described functions, FALSE otherwise.

The returned logical value has attribute ‘details’ which is a list with the following components.

rdo_argnames arguments described in the documentation object, rdo.

cur_argnames arguments in the current definitions of the described functions.

added_argnames new arguments
removed_argnames

removed (dropped) arguments.

Author(s)

Georgi N. Boshnakov

inspect_Rd Inspect and update an Rd object or file

Description

Inspect and update an Rd object or file.

Usage

inspect_Rd(rdo, package = NULL)

inspect_Rdfun(rdo, alias_update = TRUE)

inspect_Rdmethods(rdo, package = NULL)

inspect_Rdclass(rdo)

32 inspect_signatures

Arguments

rdo an Rd object or file name

package name of a package

alias_update if TRUE, add missing alias entries for functions with usage statements.

Details

These functions check if the descriptions of the objects in rdo are consistent with their current def-
initions and update them, if necessary. The details depend on the type of the documented topic. In
general, the functions update entries that can be produced programmatically, possibly accompanied
with a suggestion to the author to write some additional text.

inspect_Rd checks the \name section of rdo and dispatches to one of the other inspect_XXX
functions depening on the type of the topic.

inspect_Rdfun processes documentation of functions. It checks the usage entries of all functions
documented in rdo and updates them if necessary. It appends "\alias" entries for functions that
do not have them. Entries are created for any arguments that are missing from the "\arguments"
section. Warning is given for arguments in the "\arguments" section that are not present in at least
one usage entry. inspect_Rdfun understands the syntax for S3 methods and S4 methods used in
"usage" sections, as well. The S4 methods may also be in a section as produced by promptMethods.

inspect_Rdmethods checks and updates documentation of an S4 generic function.

inspect_Rdclass checks and updates documentation of an S4 class.

Since method signatures and descriptions may be present in documentation of a class, as well as in
that of methods, the question arises where to put "\alias" entries to avoid duplication. Currently,
alias entries are put in method descriptions.

Author(s)

Georgi N. Boshnakov

inspect_signatures Inspect signatures of S4 methods

Description

Inspect signatures of S4 methods.

Usage

inspect_clmethods(rdo, final = TRUE)

inspect_signatures(rdo, package = NULL, sec = "Methods")

inspect_slots 33

Arguments

rdo an Rd object.
package the name of a package, a character string or NULL.
sec the name of a section to look into, a character string.
final If not TRUE insert text with suggestions, otherwise comment the suggestions

out.

Details

Signatures in documentation of S4 classes and methods are stored somewhat differently. inspect_signatures
inspects signatures in documentation of methods of a function. inspect_clmethods inspects sig-
natures in documentation of a class.

inspect_signatures was written before inspect_clmethods() and was geared towards using
existing code for ordinary functions (mainly parse_usage_text().

If new methods are found, the functions add entries for them in the Rd object rdo.

If rdo documents methods that do not exist, a message inviting the user to remove them manually
is printed but the offending entries remain in the object. At the time of writing, R CMD check does
not warn about this.

Value

an Rd object

Note

todo: need consolidation.

Author(s)

Georgi N. Boshnakov

inspect_slots Inspect the slots of an S4 class

Description

Inspect the slots of an S4 class.

Usage

inspect_slots(rdo, final = TRUE)

Arguments

rdo an Rd object.
final if not TRUE insert text with suggestions, otherwise comment the suggestions

out.

34 inspect_usage

Author(s)

Georgi N. Boshnakov

inspect_usage Inspect the usage section in an Rd object

Description

Inspect the usage section in an Rd object.

Usage

inspect_usage(rdo)

Arguments

rdo an Rd object.

Details

The usage section in the Rd object, rdo, is extracted and parsed. The usage of each function
described in rdo is obtained also from the actual installed function and compared to the one from
rdo.

The return value is a list, with one element for each function usage as returned by compare_usage1.

One of the consequences of this is that an easy way to add a usage description of a function, say fu
to an existing Rd file is to simply add a line fu() to the usage section of that file and run reprompt
on it.

Value

a list of comparison results as described in ‘Details’ (todo: give more details here)

Author(s)

Georgi N. Boshnakov

See Also

inspect_args

list_Rd 35

list_Rd Combine Rd fragments

Description

Combine Rd fragments and strings into one object.

Usage

list_Rd(..., Rd_tag = NULL, Rd_class = FALSE)

Arguments

... named list of objects to combine, see ‘Details’.

Rd_tag if non-null, a value for the Rd_tag of the result.

Rd_class logical; if TRUE, the result will be of class "Rd".

Details

The names of named arguments specify tags for the corresponding elements (not arbitrary tags,
ones that are converted to macro names by prepending backslash to them). This is a convenient
way to specify sections, items, etc, in cases when the arguments have not being tagged by previous
processing. Character string arguments are converted to the appropriate Rd pieces.

Argument ... may contain a mixture of character vactors and Rd pieces.

Value

an Rd object or list with Rd_tag attribute, as specified by the arguments.

Author(s)

Georgi N. Boshnakov

See Also

c_Rd

Examples

see also the examples for c_Rd

dummyfun <- function(x, ...) x

u1 <- list_Rd(name = "Dummyname", alias = "dummyfun",
title = "Dummy title", description = "Dummy description",
usage = "dummyfun(x)",
value = "numeric vector",
author = "A. Author",

36 makeVignetteReference

Rd_class=TRUE)
Rdo_show(u1)

call reprompt to fill the arguments section (and correct the usage)
fn <- tempfile("dummyfun", fileext = "Rd")
reprompt(dummyfun, filename = fn)

check that the result can be parsed and show it.
Rdo_show(tools::parse_Rd(fn))

unlink(fn)

makeVignetteReference Make bibtex references for vignettes

Description

Make bibtex references for vignettes

Usage

makeVignetteReference(package, vig = 1, verbose = TRUE, title, author,
type = "pdf", bibtype = "Article", key = NULL)

vigbib(package, verbose = TRUE, ..., vig = NULL)

Arguments

package a character string, the name of an installed package.

vig an integer number or a character string identifying a vignette.

verbose if TRUE, print the references in Bibtex format.

title a character string, title of the vignette, see Details.

author a character string, title of the vignette, see Details.

type a character string, type of the vignette, such as "pdf" or "html". Currently
ignored.

bibtype a character string, Bibtex type for the reference, defaults to "Article".

key a character string specifying a key for the Bibtex entry. If missing, suitable key
is generated automatically.

... arguments passed by vigbib() to makeVignetteReference().

makeVignetteReference 37

Details

vigbib() generates Bibtex references for all vignettes in a package. makeVignetteReference()
produces a Bibtex entry for a particular vignette.

There seems to be no standard way to cite vignettes in R packages. For vignettes that are com-
plete journal papers (most notably in the Journal of Statistical Software), the authors would usu-
ally prefer the papers to be cited, rather than the vignette. In any case, consulting the output of
citation("a_package") is the best starting point. If the vignette has been extended substantially
after the paper was published, cite both.

In many cases it is sufficient to give the command that opens the vignette, e.g.:

vignette("Inserting_bibtex_references", package = "Rdpack").

makeVignetteReference() makes a Bibtex entry for one vignette. It looks for the available vi-
gnettes using vignette(package=package). Argument vig can be a character string identifying
the vignette by the name that would be used in a call to vignette(). It can also be an integer, iden-
tifying the vignette by the index (in the order in which the vignettes are returned by vignette()).
By default the first vignette is returned. If vig is not suitable, a suitable list of alternatives is printed.

For vigbib() it is sufficient to give the name of a package. It accepts all arguments of makeVignetteReference()
except vig (actually, supplying vig is equivallent to calling makeVignetteReference() directly).

The remaining arguments can be used to overwrite some automatically generated entries. For ex-
ample, the vignette authors may not be the same as the package authors.

Value

a bibentry object containing the generated references (the Bibtex entries are also printed, so that
they can be copied to a bib file)

Author(s)

Georgi N. Boshnakov

Examples

NOTE (2020-01-21): the following examples work fine, but are not
rendered correctly by pkgdown::build_site(), so there may be errors
on the site produced by it, https://geobosh.github.io/Rdpack/.

vigbib("Rdpack")
makeVignetteReference("Rdpack", vig = 1)
makeVignetteReference("Rdpack", vig = "Inserting_bibtex_references")
the first few characters of the name suffice:
makeVignetteReference("Rdpack", vig = "Inserting_bib")

this gives an error but also prints the available vignettes:
makeVignetteReference("Matrix", vig = "NoSuchVignette")

vigbib("utils")
makeVignetteReference("utils", vig = 1)
commented out since can be slow:
high <- installed.packages(priority = "high")
highbib <- lapply(rownames(high), function(x) try(Rdpack:::vigbib(x, verbose = FALSE)))

38 parse_pairlist

parse_pairlist Parse formal arguments of functions

Description

Parse formal arguments of functions and convert them to f_usage objects.

Usage

parse_pairlist(x)

pairlist2f_usage1(x, name, S3class = "", S4sig = "", infix = FALSE,
fu = TRUE)

Arguments

x a pairlist representing the arguments of a function.

name function name.

S3class S3 class, see ‘Details’

S4sig S4 signature, see Details.

infix if TRUE the function usage is in infix form, see Details.

fu if TRUE the object is a function, otherwise it is something else (e.g. a variable
or a constant like pi and Inf).

Details

These functions are mostly internal.

parse_pairlist parses the pairlist object, x, into a list with two components. The first component
contains the names of the arguments. The second component is a named list containing the default
values, converted to strings. Only arguments with default values have entries in the second compo-
nent (so, it may be of length zero). If x is empty or NULL, both components have length zero. An
example:

parse_pairlist(formals(system.file))
##: $argnames
##: [1] "..." "package" "lib.loc" "mustWork"

##: $defaults
##: package lib.loc mustWork
##: "\"base\"" "NULL" "FALSE"

pairlist2f_usage1() creates an object of S3 class "f_usage". The object contains the result of
parsing x with parse_pairlist(x) and a number of additional components which are copies of
the remaining arguments to the function (without any processing). The components are listed in

parse_pairlist 39

section Values. S3class is set to an S3 class for for S3 methods, S4sig is the signature of an S4
method (as used in Rd macro \S4method). infix is TRUE for the rare occations when the function
is primarily used in infix form.

Class "f_usage" has a method for as.character() which generates a text suitable for inclusion
in Rd documentation.

pairlist2f_usage1(formals(summary.lm), "summary", S3class = "lm")
##: name = summary
##: S3class = lm
##: S4sig =
##: infix = FALSE
##: fu = TRUE
##: argnames = object correlation symbolic.cor ...
##: defaults : correlation = FALSE
##: symbolic.cor = FALSE

Value

For parse_pairlist, a list with the following components:

argnames the names of all arguments, a character vector

defaults a named character vector containing the default values, converted to character
strings. Only arguments with defaults have entries in this vector.

For pairlist2f_usage1, an object with S3 class "f_usage". This is a list as for parse_pairlist
and the following additional components:

name function name, a character string.

S3class S3 class, a character string; "" if not an S3 method.

S4sig S4 signature; "" if not an S4 method.

infix a logical value, TRUE for infix operators.

fu indicates the type of the object, usually TRUE, see Details.

Author(s)

Georgi N. Boshnakov

See Also

promptUsage accepts f_usage objects, get_usage

Examples

parse_pairlist(formals(lm))
parse_pairlist(formals(system.file))
s_lm <- pairlist2f_usage1(formals(summary.lm), "summary", S3class = "lm")
s_lm
as.character(s_lm)

40 parse_Rdname

parse_Rdname Parse the name section of an Rd object

Description

Parse the name section of an Rd object.

Usage

parse_Rdname(rdo)

Arguments

rdo an Rd object

Details

The content of section "\name" is extracted. If it contains a hyphen, ‘-’, the part before the hyphen
is taken to be the topic (usually a function name), while the part after the hyphen is the type. If the
name does not contain hyphens, the type is set to the empty string.

Value

a list with two components:

fname name of the topic, usually a function

type type of the topic, such as "method"

Author(s)

Georgi N. Boshnakov

Examples

u1 <- list_Rd(name = "Dummyname", alias = "Dummyallias1",
title = "Dummy title", description = "Dummy description",
Rd_class=TRUE)

parse_Rdname(u1)

u2 <- list_Rd(name = "dummyclass-class", alias = "Dummyclass",
title = "Class dummyclass",
description = "Objects and methods for something.",
Rd_class=TRUE)

parse_Rdname(u2)

parse_Rdpiece 41

parse_Rdpiece Parse a piece of Rd source text

Description

Parse a piece of Rd source text.

Usage

parse_Rdpiece(x, result = "")

Arguments

x the piece of Rd text, a character vector.

result if "text", converts the result to printable text (e.g. to be shown to the user),
otherwise returns an Rd object.

Details

parse_Rdpiece parses a piece of source Rd text. The text may be an almost arbitrary piece that may
be inserted in an Rd source file, except that it should not be a top level section (use parse_Rdtext
for sections). Todo: it probably can be also a parsed piece, check!

This is somewhat tricky since parse_Rd does not accept arbitrary piece of Rd text. It handles
either a complete Rd source or a fragment, defined (as I understand it) as a top level section. To
circumvent this limitation, this function constructs a minimal complete Rd source putting argument
x in a section (currently "Note") which does not have special formatting on its own. After parsing,
it extracts only the part corresponding to x.

parse_Rdpiece by default returns the parsed Rd piece. However, if result="text", then the text
is formatted as the help system would do when presenting help pages in text format.

TODO: add an argument for macros?

Value

a parsed Rd piece or its textual representation as described in Details

Author(s)

Georgi N. Boshnakov

Examples

the following creates Rd object rdo
dummyfun <- function(x) x
u1 <- list_Rd(name = "Dummyname", alias = "dummyfun",

title = "Dummy title", description = "Dummy description",
usage = "dummyfun(x,y)",
value = "numeric vector",

42 parse_Rdtext

author = "A. Author",
Rd_class = TRUE)

fn <- tempfile("dummyfun", fileext = "Rd")
reprompt(dummyfun, filename = fn)
rdo <- tools::parse_Rd(fn)

let's prepare a new item
rd <- "\\item{...}{further arguments to be passed on.}"
newarg <- parse_Rdtext(rd, section = "\\arguments")

now append 'newarg' to the arguments section of rdo
iarg <- which(tools:::RdTags(rdo) == "\\arguments")
rdoa <- append_to_Rd_list(rdo, newarg, iarg)

Rdo_show(rdoa)

for arguments and other frequent tasks, there are specialised functions
dots <- paste0("\\", "dots")
rdob <- Rdo_append_argument(rdo, dots, "further arguments to be passed on.")

Rdo_show(reprompt(rdob, filename = fn))

unlink(fn)

parse_Rdtext Parse Rd source text as the contents of a section

Description

Parse Rd source text as the contents of a given section.

Usage

parse_Rdtext(text, section = NA)

Arguments

text Rd source text, a character vector.

section the section name, a string.

Details

If section is given, then parse_Rdtext parses text as appropriate for the content of section
section. This is achieved by inserting text as an argument to the TeX macro section. For
example, if section is "\usage", then a line "\usage{" is inserted at the begiinning of text and a
closing "}" at its end.

If section is NA then parse_Rdtext parses it without preprocessing. In this case text itself will
normally be a complete section fragment.

parse_usage_text 43

Value

an Rd fragment

Note

The text is saved to a temporary file and parsed using parse_Rd. This is done for at least two
reasons. Firstly, parse_Rd works most reliably (at the time of writing this) from a file. Secondly,
the saved file may be slightly different (escaped backslashes being the primary example). It would
be a nightmare to ensure that all concerned functions know if some Rd text is read from a file or
not.

The (currently internal) function .parse_Rdlines takes a character vector, writes it to a file (using
cat) and calls parse_Rd to parse it.

Author(s)

Georgi N. Boshnakov

See Also

parse_Rdpiece

parse_usage_text Parse usage text

Description

Parse usage text.

Usage

parse_1usage_text(text)
parse_usage_text(text)

Arguments

text conceptually, the content of the usage section of one or more Rd objects, a char-
acter vector, see Details.

Details

For parse_usage_text, text is a character vector representing the contents of the usage section of
an Rdo object. parse_usage_text does some preprocessing of text then calls parse_1usage_text
for each usage statement.

The preprocessing changes "\dots" to "..." and converts S3- and S4-method descriptions to a
form suitable for parse(). The text is then parsed (with parse) and "srcref" attribute removed
from the parsed object.

todo: currently no checks is made for Rd comments in text.

44 predefined

parse_1usage_text processes the usage statement of one object and calls pairlist2f_usage1 to
convert it to an object from S3 class "f_usage".

Value

for parse_1usage_text, an object from S3 class "f_usage", see pairlist2f_usage1 for its struc-
ture.

for parse_usage_text, a list containing one element for each usage entry, as prepared by parse_1usage_text

Author(s)

Georgi N. Boshnakov

predefined Tables of predefined sections and types of pieces of Rd objects

Description

Tables of predefined sections and types of pieces of Rd objects.

Usage

Rdo_predefined_sections

Rdo_piece_types

rdo_top_tags

Details

The Rd syntax defines several tables (Murdoch 2010). Rdpack stores them in the variables de-
scribed here.

Rdo_predefined_sections is a named character vector providing the types of the top level sec-
tions in an Rd object.

Rdo_piece_types is a named character vector giving the types of the core (all possible?) Rd
macros.

NOTE: These objects are hard coded and need to be updated if the specifications of the Rd format
are updated.

todo: write functions that go through existing Rd documentation to discover missing or wrong
items.

predefined 45

Value

for Rdo_predefined_sections, the name-value pairs are given in the following table. For exam-
ple, Rdo_predefined_sections["examples"] results in RCODE.

name VERB description TEXT
alias VERB examples RCODE
concept TEXT usage RCODE
docType TEXT Rdversion VERB
title TEXT synopsis VERB
name VERB section TEXT
alias VERB arguments TEXT
concept TEXT keyword TEXT
docType TEXT note TEXT
title TEXT format TEXT
name VERB source TEXT
alias VERB details TEXT
concept TEXT value TEXT
docType TEXT references TEXT
title TEXT author TEXT
name VERB seealso TEXT

for Rdo_piece_types, the name-value pairs are:

name VERB alias VERB concept TEXT
docType TEXT title TEXT description TEXT
examples RCODE usage RCODE Rdversion VERB
synopsis VERB Sexpr RCODE RdOpts VERB
code RCODE dontshow RCODE donttest RCODE
testonly RCODE dontrun VERB env VERB
kbd VERB option VERB out VERB
preformatted VERB samp VERB special VERB
url VERB verb VERB deqn VERB
eqn VERB renewcommand VERB newcommand VERB

for rdo_top_tags, the values are:

\name \Rdversion \docType \alias \encoding
\concept \title \description \usage \format
\source \arguments \details \value \references
\section \note \author \seealso \examples
\keyword #ifdef #ifndef \newcommand \renewcommand
COMMENT TEXT

Note that most, but not all, are prefixed with a backslash.

References

Duncan Murdoch (2010). “Parsing Rd files.” https://developer.r-project.org/parseRd.
pdf.

https://developer.r-project.org/parseRd.pdf
https://developer.r-project.org/parseRd.pdf

46 promptPackageSexpr

promptPackageSexpr Generates a shell of documentation for an installed package

Description

Generates a shell of documentation for an installed package. The content is similar to ‘prompt-
Package’ but information that can be computed is produced with Sexpr’s so that it is always up to
date.

Usage

promptPackageSexpr(package, filename = NULL, final = TRUE,
overview = FALSE, bib = TRUE)

Arguments

package name of a package, a string

filename name of a file where to write the generated Rd content, a string. The default
should be sufficient in most cases.

final logical; if TRUE the content should be usable without manual editing.

overview logical; if TRUE creates sections with hints what to put in them, otherwise such
sections are written to the file but are commented out.

bib If TRUE, create a comment line in the references section that will cause rebib
to import all references from the default bib file.

Details

The generated skeleton is functionally (almost) equivalent to that produced by promptPackage.
The difference is that while promptPackage computes some information and inserts it verbatim in
the skeleton, promptPackageSexpr inserts Sexpr’s for the computation of the same information at
package build time.

In this way there is no need to manually update information like the version of the package. The
index of functions (which contains their descriptions) does not need manual updating, as well.

promptPackageSexpr needs to be called only once to create the initial skeleton. Then the Rd file
can be edited as needed.

If the Rd file is generated with the option bib = TRUE (or the appropriate lines are added to the
refernces section manually) the references can be updated at any time by a call of rebib.

todo: At the moment final=FALSE has the effect described for overview. At the time of writing
this (2011-11-18) I do not remember if this is intentional or the corresponding ‘if’ clause contains
| by mistake.

Value

the name of the file (invisibly)

promptUsage 47

Note

The automatically generated information is that of the installed (or at least built) package. Usually
this is not a problem (and this is the idea of the function) but it means that if a developer is adding
documentation for previously undocumented functions, they will appear in the ’Index’ section only
after the package is installed again. Similarly, if the description file of the package is changed, the
package needs to be installed again for the changes to appear in the overview. Since the documen-
tation is installed together with the package this is no surprise, of course. This may only cause a
problem if documentation is produced with R CMD Rd2pdf before the updated version is installed.

This function is not called repromptXXX since the idea is that it is called only once and then the Rd
file can be edited freely, see also ‘Details’.

Author(s)

Georgi N. Boshnakov

promptUsage Generate usage text for functions and methods

Description

Generates usage text for a function, S3 method or S4 method. The text is suitably formatted for
inclusion in the usage section of Rd documentation.

Usage

get_usage(object, name = NULL, force.function = FALSE, ...,
S3class = "", S4sig = "", infix = FALSE, fu = TRUE,
out.format = "text")

promptUsage(..., usage)

Arguments

object a function object or a character name of one, can be anonymous function.

name the name of a function, a string.

force.function enforce looking for a function.

S3class the S3 class of the function, a character vector.

out.format if "text", return the result as a character vector.

S4sig (the signature of an S4 method, as used in Rd macro \S4method).

infix if TRUE the function is an infix operator.

fu if TRUE the object is a function, otherwise it is something else (e.g. a variable
or a constant like pi and Inf).

usage an usage object, see Details.

... for promptUsage, arguments to be passed on to get_usage; for get_usage,
currently not used.

48 promptUsage

Details

get_usage() takes a function object, or the name of one, and creates text suitable for inclusion in
the usage section of Rd documentation. The usage is generated from the function object. When in
interactive R session, use cat() to print the result for copying and pasting into Rd documentation
or saving to a file (otherwise, if the usage text contains backslashes, they may appear duplicated).
Long text is wrapped on two or more lines. For example,

cat(get_usage(lm))
##: lm(formula, data, subset, weights, na.action, method = "qr",
##: model = TRUE, x = FALSE, y = FALSE, qr = TRUE, singular.ok = TRUE,
##: contrasts = NULL, offset, \dots)

Argument "name" can be used to specify a print name for the function. This is most often needed
for S3 methods. Compare

cat(get_usage(summary.lm))
##: summary.lm(object, correlation = FALSE, symbolic.cor = FALSE, \dots)

and

cat(get_usage(summary.lm, name = "summary"))
##: summary(object, correlation = FALSE, symbolic.cor = FALSE, \dots)

The call is just summary() in the latter. This fairly reflects the fact that S3 methods are normally
called via the generic, but adding some explanatory text around the command is usually a good
idea. For programmatically generated usage sections in help pages, argument S3class can be used
to get the standard Rd markup for S3 methods.

cat(get_usage(summary.lm, "summary", S3class = "lm"))
##: \method{summary}{lm}(object, correlation = FALSE, symbolic.cor = FALSE, \dots)

(Note that \method can only be used in Usage sections.)

When object is an anonymous function, argument name is compulsory. For example, cat(get_usage(function(x
= 3, y = "a"){}, "f"))

get_usage() can also be used to insert dynamically signatures of functions located in other objects,
such as environments and lists, see the examples.

If a function is used as an infix operator, set infix = TRUE.

get_usage("+", infix = TRUE)
##: [1] "e1 + e2"
get_usage("%in%", infix = TRUE)
##: [1] "x %in% table"

The name of the operator may be in a variable:

op <- "+"
get_usage(op, infix = TRUE)
##: [1] "e1 + e2"

promptUsage 49

Backticks are ok, as well,

get_usage(`+`, infix = TRUE)
##: [1] "e1 + e2"

But if a backticked operator is in a variable, surprise springs:

op <- `+`
get_usage(op, infix = TRUE)
##: [1] "e1 op e2"

In this case, don’t use backticks or, if you must, evaluate the argument:

op <- `+`
get_usage(eval(op), name = "+", infix = TRUE)
##: [1] "e1 + e2"

promptUsage() is mostly for internal use. It is like get_usage() with an additional argument,
usage, used to pass a specially parsed argument list of class "f_usage", produced by other func-
tions in Rdpack. In particular it could have been generated by a previous call to get_usage().

Value

a character string or an object of S3 class "f_usage", see pairlist2f_usage1 for its format.

Note

For an S3 or S4 generic, use the name of the function, not the object, see the examples.

These functions are for usage descriptions as they appear in the "usage" section of Rd files. De-
scriptions of S4 methods for "Methods" sections are dealt with by other functions.

Author(s)

Georgi N. Boshnakov

See Also

parse_pairlist

Examples

u <- get_usage(lm) # a long usage text
cat(u)

if there are additional arguments in S3 methods,
use names of the functions, not the objects, e.g.
get_usage("droplevels", S3class = "data.frame")
get_usage(name = "droplevels", S3class = "data.frame")
(both give "\method{droplevels}{data.frame}(x, except = NULL, \dots)")

50 Rdapply

but this gives the args of the generic: "\method{droplevels}{data.frame}(x, \dots)"
get_usage(droplevels, S3class = "data.frame")

a list containing some functions
summaries <- list(xbar = function(x) mean(x), rho = function(x, y) cor(x,y))
get_usage(summaries$xbar, name = "xbar")
get_usage(summaries$rho, name = "rho")

functions in an environment
esummaries <- list2env(summaries)
get_usage(esummaries$xbar, name = "xbar")
get_usage(esummaries$rho, name = "rho")

Rdapply Apply a function over an Rd object

Description

Apply a function recursively over an Rd object, similarly to rapply but keeping attributes.

Usage

Rdapply(x, ...)

Rdtagapply(object, FUN, rdtag, classes = "character", how = "replace",
...)

rattr(x, y)

Arguments

x the Rd object on which to apply a function.

object the Rd object on which to apply a function.

FUN The function to apply, see details

rdtag apply FUN only to elements whose Rd_tag attribute is rdtag.

y an Rd object with the same structure as x, see ‘Details’.

... arguments to pass to rapply, see ‘Details’.

classes a character vector, passed on to rapply, see ‘Details’.

how a character string, passed on to rapply, see ‘Details’.

Details

Rdapply works like rapply but preserves the attributes of x and (recursively) any sublists of it.
Rdapply first calls rapply, passing all arguments to it. Then it restores recursively the attributes by
calling rattr.

Rdapply 51

Note that the object returned by rapply is assumed to have identical structure to the original object.
This means that argument how of rapply must not be "unlist" and normally will be "replace".
Rdtagapply gives sensible default values for classes and how. See the documentation of rapply
for details and the possible choices for classes, how or other arguments passed to it via "\dots".

Rdtagapply is a convenience variant of Rdapply for the common task of modifying or examining
only elements with a given Rd_tag attribute. Since the Rd equation macros \eqn and \deqn are
assigned Rd tag "VERB" but are processed differently from other "VERB" pieces, pseudo-tags
"mathVERB" and "nonmathVERB" are provided, such that "mathVERB" is for actions on the first
argument of the mathematical macros \eqn and \deqn, while "nonmathVERB" is for actions on
"VERB" macros in all other contexts. There is also a pseudo-tag "nonmath" for anything that is not
math.

rattr is an auxilliary function which takes two Rd objects (with identical structure) and recursively
examines them. It makes the attributes of any lists in the first argument identical to the correspond-
ing attributes in the second.

Value

For Rdapply and Rdtagapply, an Rd object with some of its leaves replaced as specified above.

For rattr, the object x with attributes of any list elements of it set to the corresponding attributes
of y.

Note

todo: may be it is better to rename the argument FUN of Rdtagapply to f, which is its name in
rapply.

Author(s)

Georgi N. Boshnakov

See Also

rapply

Examples

create an Rd object for the sake of example
u1 <- list_Rd(name = "Dummyname", alias = "dummyfun",

title = "Dummy title", description = "Dummy description",
usage = "dummyfun(x)",
value = "numeric vector",
author = "A. Author",
examples = "\na <- matrix(1:6,nrow=2)\na %*% t(a)\nt(a) %*% a",
Rd_class=TRUE)

correct R code for examples but wrong for saving in Rd files
Rdo_show(u1)

escape percents everywhere except in comments
(actually, .anypercent escapes only unescaped percents)

52 Rdo2Rdf

rdo <- Rdapply(u1, Rdpack:::.anypercent, classes = "character", how = "replace")

syntactically wrong R code for examples but ok for saving in Rd files
Rdo_show(rdo)

Rdo2Rdf does this by default for examples and other R code,
so code can be kept syntactically correct while processing.
(reprompt() takes care of this too as it uses Rdo2Rdf for saving)

fn <- tempfile("u1", fileext="Rd")
Rdo2Rdf(u1, file = fn)

the saved file contains escaped percents but they disappear in parsing:
file.show(fn)
Rdo_show(tools::parse_Rd(fn))

if you think that sections should start on new lines,
the following makes the file a little more human-friendly
(by inserting new lines).

u2 <- Rdpack:::.Rd_tidy(u1)
Rdo2Rdf(u2, file = fn)
file.show(fn)

unlink(fn)

Rdo2Rdf Convert an Rd object to Rd file format

Description

Converts an Rd object to Rd format and saves it to a file or returns it as a character vector. It escapes
percents where necessary and (optionally) backslashes in the examples section.

Usage

Rdo2Rdf(rdo, deparse = FALSE, ex_restore = FALSE, file = NULL,
rcode = TRUE, srcfile = NULL)

Arguments

rdo an Rd object or a character vector, see ‘Details’.
deparse logical, passed to the print method for Rd objects, see ‘Details’.
ex_restore logical, if TRUE escapes backslashes where necessary.
file a filename where to store the result. If NULL or "missing", the result is returned

as a character vector.
rcode if TRUE, duplicate backslahes in RCODE elements, see Details.
srcfile NULL or a file name, see ’Details’.

Rdo2Rdf 53

Details

The description here is rather technical and incomplete. In any case it concerns almost exclusively
Rd files which use escape sequences containing multiple consecutive backslashes or escaped curly
braces (such things appear in regular expressions, for example).

In principle, this function should be redundant, since the print and as.character methods for
objects of class "Rd" would be expected to do the job. I was not able to get the desired result that
way (the deparse option to print did not work completely for me either).

Arguments ex_restore and rcode were added on an ad-hoc basis. rcode is more recent and causes
Rdo2Rdf to duplicate backslashes found in any element Rd_tag-ed with "RCODE". ex_restore
does the same but only for the examples section. In effect, if rcode is TRUE, ex_restore is
ignored.

The initial intent of this function (and the package Rdpack as a whole was not to refer to the Rd
source file. However, there is some flexibility in the Rd syntax that does not allow the source file
to be restored identically from the parsed object. This concerns mainly backslahes (and to some
extent curly braces) which in certain contexts may or may not be escaped and the parsed object is
the same. Although this does not affect functionality, it may be annoying if the escapes in sections
not examined by reprompt were changed.

If srcfile is the name of a file, the file is parsed and the Rd text of sections of rdo that are identical
to sections from srcfile is taken directly from srcfile, ensuring that they will be identical to the
original.

Value

NULL, if file is not NULL. Otherwise the Rd formatted text as a character vector.

Note

Here is an example when the author’s Rd source cannot be restored exactly from the parsed object.

In the Rd source "author" has two backslashes here: \author.

In the Rd source "author" has one backslash here: \author.

Both sentences are correct and the parsed file contains only one backslash in both cases. If reprompt
looks only at the parsed object it will export one backslash in both cases. So, further reprompt()-ing
will not change them again. This is if reprompt is called with sec_copy = FALSE. With the default
sec_copy = TRUE, reprompt calls Rdo2Rdf with argument srcfile set to the name of the Rd file
and since reprompt does not modify section "Note", its text is copied from the file and the author’s
original preserved.

However, the arguments of \eqn are parse_Rd-ed differently (or so it seems) even though they are
also in verbatim.

Author(s)

Georgi N. Boshnakov

54 Rdo_append_argument

Examples

this keeps the backslashes in "author" (see Note above)
reprompt(infile="./man/Rdo2Rdf.Rd")

this outputs "author" preceded by one backslash only.
reprompt(infile="./man/Rdo2Rdf.Rd", sec_copy = FALSE)

Rdo_append_argument Append an item for a new argument to an Rd object

Description

Append an item for a new argument to an Rd object.

Usage

Rdo_append_argument(rdo, argname, description = NA, indent = " ", create = FALSE)

Arguments

rdo an Rd object.

argname name of the argument, a character vector.

description description of the argument, a character vector.

indent a string, typically whitespace.

create not used (todo: remove?)

Details

Appends one or more items to the section describing arguments of functions in an Rd object. The
section is created if not present.

If description is missing or NA, a "todo" text is inserted.

The inserted text is indented using the string indent.

The lengths of argname and description should normally be equal but if description is of length
one, it is repeated to achieve this when needed.

Value

an Rd object

Author(s)

Georgi N. Boshnakov

Rdo_collect_aliases 55

Examples

the following creates Rd object rdo
dummyfun <- function(x) x
fn <- tempfile("dummyfun", fileext = ".Rd")
reprompt(dummyfun, filename = fn)
rdo <- tools::parse_Rd(fn)

add documentation for arguments
that are not in the signature of 'dummyfun()'
dottext <- "further arguments to be passed on."
dots <- paste0("\\", "dots")
rdo2 <- Rdo_append_argument(rdo, dots, dottext, create = TRUE)
rdo2 <- Rdo_append_argument(rdo2, "z", "a numeric vector")

reprompt() warns to remove documentation for non-existing arguments:
Rdo_show(reprompt(rdo2, filename = fn))

unlink(fn)

Rdo_collect_aliases Collect aliases or other metadata from an Rd object

Description

Collect aliases or other metadata from an Rd object.

Usage

Rdo_collect_aliases(rdo)

Rdo_collect_metadata(rdo, sec)

Arguments

rdo an Rd object

sec the kind of metadata to collect, a character string, such as "alias" and "keyword".

Details

Rdo_collect_aliases finds all aliases in rdo and returns them as a named character vector. The
name of an alias is usually the empty string, "", but it may also be "windows" or "unix" if the alias
is wrapped in a #ifdef directive with the corresponding first argument.

Rdo_collect_metadata is a generalisation of the above. It collects the metadata from section(s)
sec, where sec is the name of a section without the leading backslash. sec is assumed to be a
section containing a single word, such as "keyword", "alias", "name".

Currently Rdo_collect_metadata is not exported.

56 Rdo_empty_sections

Value

a named character vector, as described in Details.

Author(s)

Georgi N. Boshnakov

See Also

tools:::.Rd_get_metadata

Examples

this example originally (circa 2012) was:
infile <- file.path(R.home(), "src/library/base/man/timezones.Rd")
but the OS conditional alias in that file has been removed.
So, create an artificial example:
infile <- system.file("examples", "tz.Rd", package = "Rdpack")

file.show(infile)
rd <- tools::parse_Rd(infile)

The functions described here handle "ifdef" and similar directives.
This detects OS specific aliases (windows = "onlywin" and unix = "onlyunix"):
Rdo_collect_aliases(rd)
Rdpack:::Rdo_collect_metadata(rd, "alias") # same

In contrast, the following do not find "onlywin" and "onlyunix":
sapply(rd[which(tools:::RdTags(rd)=="\alias")], as.character)
tools:::.Rd_get_metadata(rd, "alias")

Rdpack:::Rdo_collect_metadata(rd, "name")
Rdpack:::Rdo_collect_metadata(rd, "keyword")

Rdo_empty_sections Find or remove empty sections in Rd objects

Description

Find or remove empty sections in Rd objects

Usage

Rdo_empty_sections(rdo, with_bs = FALSE)

Rdo_drop_empty(rdo, sec = TRUE)

Rdo_fetch 57

Arguments

rdo an Rd object or Rd source text.

with_bs if TRUE return the section names with the leading backslash.

sec not used

Details

The function checkRd is used to determine which sections are empty.

Value

For Rdo_empty_sections, the names of the empty sections as a character vector.

For Rdo_drop_empty, the Rd object stripped from empty sections.

Author(s)

Georgi N. Boshnakov

Examples

dummyfun <- function(x) x
rdo8 <- list_Rd(name = "Dummyname", alias = "dummyfun",

title = "Dummy title", description = "Dummy description",
usage = "dummyfun(x,y)",
value = "numeric vector",
author = "",
details = "",
note = "",
Rd_class=TRUE)

Rdo_empty_sections(rdo8) # "details" "note" "author"

rdo8a <- Rdo_drop_empty(rdo8)
Rdo_empty_sections(rdo8a) # character(0)

Rdo_fetch Get help pages as Rd objects

Description

Get a help page as an Rd object from an installed or source package.

Usage

Rdo_fetch(Rd_name = character(0), package, dir = ".", installed = TRUE)

58 Rdo_fetch

Arguments

Rd_name names of one or more Rd help pages. name here is the name of an Rd file stripped
from the extension.

package the package from which to get the Rd object, a character string.

dir a character string giving the root directory of a source package. Used only if
package is missing.

installed if TRUE, the default, the Rd object is taken unconditionally from the installed
package. If FALSE, the help page may be taken from a source tree, if appropriate
(typically if package is in ‘developer’s mode under devtools, see Details).

Details

If Rd_name is a character string (typical use case), the corresponding help page is returned as an
object from class "Rd". If the length of Rd_name is greater than one, the result is a Rd_named list
containing the corresponding "Rd" objects. The default Rd_name = character(0) requests all Rd
pages in the package.

Note that Rd_name does not contain the extention ".Rd" but the names in the returned list do.

Argument package names the package from which to fetch the documentation object. With the
default installed = TRUE the object is taken unconditionally from the installed package. To get it
from the source tree of a package, use argument "dir" instead. The default, "", for dir is suitable
for workflows where the working directory is the root of the desired package.

Argument installed concerns primarily development under package "devtools". "devtools"
intercepts and modifies several base R commands, concerning access to system files and getting
help, with the aim of rerouting them to the source trees of packages under developer’s mode. If
argument installed is TRUE, the default, the requested pages are taken from the installed package,
even if it is in development mode. If argument installed is FALSE, the Rd objects are taken from
the corresponding source tree, if the specified package is under developer’s mode, and from the
installed package otherwise.

Argument Rd_name is the name used in the \name section of Rd files.

When working off the source tree of a package, Rdo_fetch processes the Rd files, so roxygen2
users need to update them if necessary.

Value

if length(Rd_name) = 1, an object of class "Rd", otherwise a list of "Rd" objects.

Author(s)

Georgi N. Boshnakov

Examples

get a single help page
rdo <- Rdo_fetch("viewRd", package = "Rdpack")
Rdo_show(rdo)

get a list of help pages

Rdo_flatinsert 59

rdo <- Rdo_fetch(c("viewRd", "reprompt"), package = "Rdpack")
names(rdo)

Rdo_flatinsert Insert or remove content in an Rd fragment

Description

Insert or remove content in an Rd fragment.

Usage

Rdo_flatinsert(rdo, val, pos, before = TRUE)

Rdo_flatremove(rdo, from, to)

Arguments

rdo an Rd object.

val the value to insert.

pos position.

before if TRUE, insert the new content at pos, pushing the element at pos forward.

from beginning of the region to remove.

to end of the region to remove.

Details

Rdo_flatinsert inserts val at position pos, effectively by concatenation.

Rdo_flatremove removes elements from from to to.

Value

the modified rdo

Author(s)

Georgi N. Boshnakov

60 Rdo_get_argument_names

Rdo_get_argument_names

Get the names of arguments in usage sections of Rd objects

Description

Get the names of arguments in usage sections of Rd objects.

Usage

Rdo_get_argument_names(rdo)

Arguments

rdo an Rdo object.

Details

All arguments names in the "arguments" section of rdo are extracted. If there is no such section,
the results is a character vector of length zero.

Arguments which have different descriptions for different OS’es are included and not duplicated.

Arguments which have descriptions for a particular OS are included, irrespectively of the OS of the
running R process. (todo: introduce argument to control this?)

Value

a character vector

Author(s)

Georgi N. Boshnakov

See Also

Rdo_get_item_labels

Examples

##---- Should be DIRECTLY executable !! ----

Rdo_get_insert_pos 61

Rdo_get_insert_pos Find the position of an "Rd_tag"

Description

Find the position of an "Rd_tag".

Usage

Rdo_get_insert_pos(rdo, tag)

Arguments

rdo an Rd object

tag the "Rd_tag" to search for, a string

Details

This function returns a position in rdo, where the next element carrying "Rd_tag" tag should be
inserted. The position is determined as follows.

If one or more elements of rdo have "Rd_tag" tag, then the position is one plus the position of the
last such element.

If there are no elements with "Rd_tag" tag, the position is one plus the length of rdo, unless tag is
a known top level Rd section. In that case, the position is such that the standard ordering of sections
in an Rd object is followed. This is set in the internal variable .rd_sections.

Value

an integer

Author(s)

Georgi N. Boshnakov

Examples

#h <- help("Rdo_macro")
#rdo <- utils:::.getHelpFile(h)
rdo <- Rdo_fetch("Rdo_macro", "Rdpack")

ialias <- which(tools:::RdTags(rdo) == "\\alias")
ialias
next_pos <- Rdo_get_insert_pos(rdo, "\\alias") # 1 + max(ialias)
next_pos
stopifnot(next_pos == max(ialias) + 1)

ikeyword <- which(tools:::RdTags(rdo) == "\\keyword")
ikeyword

62 Rdo_get_item_labels

next_pos <- Rdo_get_insert_pos(rdo, "\\keyword") # 1 + max(ikeyword)
next_pos
stopifnot(next_pos == max(ikeyword) + 1)

Rdo_get_item_labels Get the labels of items in an Rd object

Description

Get the labels of items in an Rd object.

Usage

Rdo_get_item_labels(rdo)

Arguments

rdo an Rd object.

Details

Rdo_get_item_labels(rdo) gives the labels of all "\item"s in rdo. Argument rdo is often a
section or other Rd object fragment, see the examples.

Value

a character vector

Author(s)

Georgi N. Boshnakov

Examples

infile <- system.file("examples", "tz.Rd", package = "Rdpack")
rd <- tools::parse_Rd(infile)

get item labels found anywhere in the Rd object
(items <- Rdo_get_item_labels(rd))

search only in section "arguments" (i.e., get argument names)
(note [[1]] - there is only one arguments section)
pos.args <- Rdo_locate_core_section(rd, "\\arguments")[[1]]
(args <- Rdo_get_item_labels(rd[[pos.args$pos]]))

search only in section "value"
pos.val <- Rdo_locate_core_section(rd, "\\value")[[1]]
(vals <- Rdo_get_item_labels(rd[[pos.val$pos]]))

There are no other items in 'rd', so this gives TRUE:
all.equal(items, c(args, vals)) # TRUE

Rdo_insert 63

Rdo_insert Insert a new element in an Rd object possibly surrounding it with new
lines

Description

Insert a new element in an Rd object possibly surrounding it with new lines.

Usage

Rdo_insert(rdo, val, newline = TRUE)

Arguments

rdo an Rd object

val the content to insert, an Rd object.

newline a logical value, controls the insertion of new lines before and after val, see
‘Details’.

Details

Argument val is inserted in rdo at an appropriate position, see Rdo_get_insert_pos for detailed
explanation.

If newline is TRUE, newline elements are inserted before and after val but only if they are not
already there.

Typically, val is a section of an Rd object and rdo is an Rd object which is being constructed or
modified.

Value

an Rd object

Author(s)

Georgi N. Boshnakov

64 Rdo_is_newline

Rdo_insert_element Insert a new element in an Rd object

Description

Insert a new element at a given position in an Rd object.

Usage

Rdo_insert_element(rdo, val, pos)

Arguments

rdo an Rd object

val the content to insert.

pos position at which to insert val, typically an integer but may be anything accepted
by the operator "[[".

Details

val is inserted at position pos, between the elements at positions pos-1 and pos. If pos is equal to
1, val is prepended to rdo. If pos is missing or equal to the length of rdo, val is appended to rdo.

todo: allow vector pos to insert deeper into the object.

todo: character pos to insert at a position specified by "tag" for example?

todo: more guarded copying of attributes?

Value

an Rd object

Author(s)

Georgi N. Boshnakov

Rdo_is_newline Check if an Rd fragment represents a newline character

Description

Check if an Rd fragment represents a newline character

Usage

Rdo_is_newline(rdo)

Rdo_locate 65

Arguments

rdo an Rd object

Details

This is a utility function that may be used to tidy up Rd objects.

It returns TRUE if the Rd object represents a newline character, i.e. it is a character vector of length
one containing the string "\n". Attributes are ignored.

Otherwise it returns FALSE.

Value

TRUE or FALSE

Author(s)

Georgi N. Boshnakov

Rdo_locate Find positions of elements in an Rd object

Description

Find positions of elements for which a function returns TRUE. Optionally, apply another function
to the selected elements and return the results along with the positions.

Usage

Rdo_locate(object, f = function(x) TRUE, pos_only = TRUE,
lists = FALSE, fpos = NULL, nested = TRUE)

Arguments

object an Rd object

f a function returning TRUE if an element is desired and FALSE otherwise.

pos_only if TRUE, return only the positions; if this argument is a function, return also the
result of applying the function to the selected element, see Details.

lists if FALSE, examine only leaves, if TRUE, examine also lists, see Details.

fpos a function with two arguments, object and position, it is called and the value is
returned along with the position, see Details.

nested a logical value, it has effect only when lists is TRUE, see ‘Details’.

66 Rdo_locate

Details

With the default setting of lists = FALSE, the function f is applied to each leave (a character string)
of the Rd object. If lists = TRUE the function f is applied also to each branch (a list). In this case,
argument nested controls what happens when f returns TRUE. If nested is TRUE, each element of
the list is also inspected recursively, otherwise this is not done and, effectively, the list is considered
a leaf. If f does not return TRUE, the value of nested has no effect and the elements of the list are
inspected.

The position of each object for which f returns TRUE is recorded as a numeric vector.

fpos and pos_only provide two ways to do something with the selected elements. Argument fpos
is more powerful than pos_only but the latter should be sufficient and simpler to use in most cases.

If fpos is a function, it is applied to each selected element with two arguments, object and the
position, and the result returned along with the position. In this case argument pos_only is ignored.
If fpos is NULL the action depends on pos_only.

If pos_only = TRUE, Rdo_locate returns a list of such vectors (not a matrix since the positions of
the leaves are, in general, at different depths).

If pos_only is a function, it is applied to each selected element and the result returned along with
the position.

Value

a list with one entry for each selected element. Each entry is a numeric vector or a list with two
elements:

pos the position, a vector of positive integers,

value the result of applying the function to the element at pos.

Note

The following needs additional thought.

In some circumstances an empty list, tagged with Rd_tag may turn up, e.g. list() with Rd_tag="\dots"
in an \arguments section.

On the one hand this is a list. On the other hand it may be considered a leaf. It is not clear if any
attempt to recurse into such a list should be made at all.

Author(s)

Georgi N. Boshnakov

See Also

Rdo_sections and Rdo_locate_core_section which locate top level sections

Examples

todo: put examples here!

Rdo_locate_leaves 67

Rdo_locate_leaves Find leaves of an Rd object using a predicate

Description

Apply a function to the character leaves of an Rd object and return the indices of those for which
the result is TRUE.

Usage

Rdo_locate_leaves(object, f = function(x) TRUE)

Arguments

object the object to be examined, usually a list.

f a function (predicate) returning TRUE for elements with the desired property.

Details

object can be any list whose elements are character strings or lists. The structure is examined
recursively. If object is a character vector, it is enclosed in a list.

This function provides a convenient way to locate leaves of an Rd object with a particular content.
The function is not limited to Rd objects but it assumes that the elements of object are either lists
or charater vectors and currently does not check if this is the case.

todo: describe the case of list() (Rd_tag’ed.)

Value

a list of the positions of the leaves for which the predicate gives TRUE. Each position is an integer
vector suitable for the "[[" operator.

Author(s)

Georgi N. Boshnakov

Examples

dummyfun <- function(x) x

fn <- tempfile("dummyfun", fileext = "Rd")
reprompt(dummyfun, filename = fn)
rdo <- tools::parse_Rd(fn)

f <- function(x) Rdo_is_newline(x)

nl <- Rdo_locate_leaves(rdo, f)

length(nl) # there are quite a few newline leaves!

68 Rdo_macro

unlink(fn)

Rdo_macro Format Rd fragments as macros (todo: a baffling title!)

Description

Format Rd fragments as macros, generally by putting them in a list and setting the "Rd_tag" as
needed.

Usage

Rdo_macro(x, name)

Rdo_macro1(x, name)

Rdo_macro2(x, y, name)

Rdo_item(x, y)

Rdo_sigitem(x, y, newline = TRUE)

Arguments

x an object.
y an object.
name the "Rd_tag", a string.
newline currently ignored.

Details

Rdo_macro1 wraps x in a list with "Rd_tag" name. This is the representation of Rd macros with one
argument.

Rdo_macro2 basically wraps a possibly transformed x and y in a list with "Rd_tag" name. More
specifically, if x has a non-NULL "Rd_tag", x is wrapped in list. Otherwise x is left as is, unless x
is a character string, when it is converted to a text Rd element and wrapped in list. y is processed
in the same way. This is the representation of Rd macros with two arguments.

Rdo_macro returns an object with "Rd_tag" name, constructed as follows. If x is not of class "char-
acter", its attribute "Rd_tag" is set to name and the result returned without further processing. Oth-
erwise, if it is of class "character", x is tagged as an Rd "TEXT" element. It is then wrapped in a
list but only if name is one of "\eqn" or "\deqn". Finally, Rdo_macro1 is called on the transformed
object.

Rdo_item is equivalent to Rdo_macro2 with name set to "\item".

Rdo_sigitem is for items which have the syntax used in description of signatures. In that case the
first argument of "\item" is wrapped in "\code". If y is missing, a text inviting the author to provide
a description of the function for this signature is inserted.

Rdo_modify 69

Value

An Rd element with appropriately set Rd_tag, as described in ‘Details’.

Author(s)

Georgi N. Boshnakov

Rdo_modify Replace or modify parts of Rd objects

Description

Replace or modify parts of Rd objects.

Usage

Rdo_modify(rdo, val, create = FALSE, replace = FALSE, top = TRUE)

Rdo_replace_section(rdo, val, create = FALSE, replace = TRUE)

Arguments

rdo an Rd object.

val an Rd fragment.

create if TRUE, create a new section, see ‘Details’.

replace a logical, if TRUE val replaces the old content, otherwise val is concatenated
with it, see ‘Details’.

top a logical, if TRUE examine also the "Rd_tag" of rdo, see ‘Details’.

Details

Argument rdo is an Rd object (complete or a fragment) to be modified. val is an Rd fragment to
use for modification.

Basically, val is appended to (if replace is FALSE) or replaces (if replace is TRUE) the content
of an element of rdo which has the same "Rd_tag" as val.

Argument top specifies whether to check the "Rd_tag" of rdo itself, see below.

Here are the details.

If top is TRUE and rdo and val have the same (non-NULL) "Rd_tag", then the action depends on
replace (argument create is ignored in this case). If replace is TRUE, val is returned. Otherwise
rdo and val are, effectively, concatenated. For example, rdo may be the "arguments" section of an
Rd object and val may also be an "arguments" section containing new arguments.

Otherwise, an element with the "Rd_tag" of val is searched in rdo using tools:::RdTags(). If
such elements are found, the action again depends on replace.

70 Rdo_modify_simple

1. If replace is a character string, then the first element of rdo that is a list whose only element
is identical to the value of replace is replaced by val. If such an element is not present and
create is TRUE, val is inserted in rdo. If create is FALSE, rdo is not changed.

2. If replace is TRUE, the first element found is replaced with val.

3. If replace is FALSE, val is appended to the first element found.

If no element with the "Rd_tag" of val is found the action depends on create. If create is TRUE,
then val is inserted in rdo, effectively creating a new section. If create is FALSE, an error is
thrown.

Rdo_replace_section is like Rdo_modify with argument top fixed to TRUE and the default for
argument replace set to TRUE. It hardly makes sense to call Rdo_replace_section with replace
= FALSE but a character value for it may be handy in some cases, see the examples.

Value

an Rd object or fragment, as described in ‘Details’

Author(s)

Georgi N. Boshnakov

Examples

a <- tools::parse_Rd("./man/promptUsage.Rd")
char2Rdpiece("documentation", "keyword")

this changes a keyword from Rd to documentation
Rdo_replace_section(a, char2Rdpiece("documentation", "keyword"), replace = "Rd")

Rdo_modify_simple Simple modification of Rd objects

Description

Simple modification of Rd objects.

Usage

Rdo_modify_simple(rdo, text, section, ...)

Arguments

rdo an Rd object.

text a character vector

section name of an Rd section, a string.

... additional arguments to be passed to Rdo_modify.

Rdo_piecetag 71

Details

Argument text is used to modify (as a replacement of or addition to) the content of section section
of rdo.

This function can be used for simple modifications of an Rd object using character content without
converting it separately to Rd.

text is converted to Rd with char2Rdpiece(text, section). The result is passed to Rdo_modify,
together with the remaining arguments.

Value

an Rd object

Author(s)

Georgi N. Boshnakov

See Also

Rdo_modify

Rdo_piecetag Give information about Rd elements

Description

Give information about Rd elements.

Usage

Rdo_piecetag(name)

Rdo_sectype(x)

is_Rdsecname(name)

Arguments

name the name of an Rd macro, a string.
x the name of an Rd macro, a string.

Details

Rdo_piecetag gives the "Rd_tag" of the Rd macro name.

Rdo_sectype gives the "Rd_tag" of the Rd section x.

is_Rdsecname(name) returns TRUE if name is the name of a top level Rd section.

The information returned by these functions is obtained from the charater vectors Rdo_piece_types
and Rdo_predefined_sections.

72 Rdo_remove_srcref

Author(s)

Georgi N. Boshnakov

See Also

Rdo_piece_types and Rdo_predefined_sections

Examples

Rdo_piecetag("eqn") # ==> "VERB"
Rdo_piecetag("code") # ==> "RCODE"

Rdo_sectype("usage") # ==> "RCODE"
Rdo_sectype("title") # ==> "TEXT"

Rdo_sectype("arguments")

Rdo_remove_srcref Remove srcref attributes from Rd objects

Description

Removes srcref attributes from Rd objects.

Usage

Rdo_remove_srcref(rdo)

Arguments

rdo an Rd object

Details

srcref attrbutes (set by parse_Rd) may be getting in the way during manipulation of Rd objects,
such as comparisons, addition and replacement of elements. This function traverses the argument
and removes the srcref attribute from all of its elements.

Value

an Rd object with no srcref attributes.

Author(s)

Georgi N. Boshnakov

Rdo_reparse 73

Rdo_reparse Reparse an Rd object

Description

Reparse an Rd object.

Usage

Rdo_reparse(rdo)

Arguments

rdo an Rd object

Details

Rdo_reparse saves rdo to a temporary file and parses it with parse_Rd. This ensures that the
Rd object is a "canonical" one, since one and the same Rd file can be produced by different (but
equivalent) Rd objects.

Also, the functions in this package do not attend to attribute "srcref" (and do not use it) and reparsing
takes care of this. (todo: check if there is a problem if the tempfile disappears.)

(Murdoch 2010; Francois 2014)

References

Romain Francois (2014). bibtex: bibtex parser. R package version 0.4.0.

Duncan Murdoch (2010). “Parsing Rd files.” https://developer.r-project.org/parseRd.
pdf.

Examples

the following creates Rd object rdo
dummyfun <- function(x) x
fn <- tempfile("dummyfun", fileext = "Rd")

reprompt(dummyfun, filename = fn)
rdo <- tools::parse_Rd(fn)

dottext <- "further arguments to be passed on."

dots <- paste0("\\", "dots")
rdo2 <- Rdo_append_argument(rdo, dots, dottext, create = TRUE)
rdo2 <- Rdo_append_argument(rdo2, "z", "a numeric vector")

Rdo_show(Rdo_reparse(rdo2))

https://developer.r-project.org/parseRd.pdf
https://developer.r-project.org/parseRd.pdf

74 Rdo_sections

the following does ot show the arguments. (todo: why?)
(see also examples in Rdo_append_argument)
Rdo_show(rdo2)

unlink(fn)

Rdo_sections Locate the sections in Rd objects

Description

Locate the Rd sections in an Rd object and return a list of their positions and names.

Usage

Rdo_sections(rdo)

Rdo_locate_core_section(rdo, sec)

Arguments

rdo an Rd object.

sec the name of a section, a character string. For builtin sections the leading back-
slash should be included.

Details

Rdo_sections locates all sections at the top level in an Rd object. This includes the predefined
sections and the user defined sections. Sections wrapped in #ifdef directives are also found.

Rdo_sections returns a list with one entry for each section in rdo. This entry is a list with compo-
nents "pos" and "title" giving the position (suitable for use in "[[") and the title of the section.
For user defined sections the actual name is returned, not "section".

The names of the sections are returned as single strings without attributes. The titles of predefined
sections are single words but user defined sections may have longer titles and sometimes contain
basic markup.

Rdo_locate_core_section works similarly but returns only the results for section sec. Currently
it simply calls Rdo_sections and returns only the results for sec.

Note that for consistency Rdo_locate_core_section does not attempt to simplify the result in the
common case when there is only one instance of the requested section—it is put in a list of length
one.

(Murdoch 2010) (Francois 2014)

Rdo_sections 75

Value

A list giving the positions and titles of the sections in rdo as described in ’Details’. The format is
essentially that of Rdo_locate, the difference being that field "value" from that function is renamed
to "title" here.

pos the position, a vector of positive integers,

title a standard section name, such as "\name" or, in the case of "\section", the actual
title of the section.

Note

I wrote Rdo_sections and Rdo_locate_core_section after most of the core functionality was
tested. Currently these functions are underused—they can replace a number of internal and exported
functions.

Author(s)

Georgi N. Boshnakov

References

Romain Francois (2014). bibtex: bibtex parser. R package version 0.4.0.

Duncan Murdoch (2010). “Parsing Rd files.” https://developer.r-project.org/parseRd.
pdf.

See Also

Rdo_locate

Examples

infile <- system.file("examples", "tz.Rd", package = "Rdpack")
rd <- tools::parse_Rd(infile)

Locate all top level sections in rd
sections <- Rdo_sections(rd)
How many sections there are in rd?
length(sections)
What are their titles?
sapply(sections, function(x) x$title)

The names of builtin sections include the backslash
Rdo_locate_core_section(rd, "\\title")

Locate a user defined secion
Rdo_locate_core_section(rd, "Further information")

The names of builtin sections include the backslash
Rdo_locate_core_section(rd, "\\details")

https://developer.r-project.org/parseRd.pdf
https://developer.r-project.org/parseRd.pdf

76 Rdo_set_section

All appearances of the requested section are returned
Rdo_locate_core_section(rd, "\\alias")
Rdo_locate_core_section(rd, "\\keyword")

Rdo_set_section Replace a section in an Rd file

Description

Replace a section in an Rd file.

Usage

Rdo_set_section(text, sec, file, ...)

Arguments

text the new text of the section, a character vector.

sec name of the section.

file name of the file.

... arguments to be passed on to Rdo_modify.

Details

Parses the file, replaces the specified section with the new content and writes the file back. The text
is processed as appropriate for the particular section (sec).

For example:

Rdo_set_section("Georgi N. Boshnakov", "author", "./man/Rdo2Rdf.Rd")

(Some care is needed with the author field for "xxx-package.Rd" files, such as "Rdpack-package.Rd",
where the Author(s) field has somewhat different layout.)

By default Rdo_set_section does not create the section if it does not exist, since this may not be
desirable for some Rd files. The "..." arguments can be used to change this, they are passed on to
Rdo_modify, see its documentation for details.

Value

This function is used mainly for the side effect of changing file. It returns the Rd formatted text
as a character vector.

Author(s)

Georgi N. Boshnakov

See Also

Rdo_modify

Rdo_show 77

Examples

fnA <- tempfile("dummyfun", fileext = "Rd")
dummyfun <- function(x) x
reprompt(dummyfun, filename = fnA)
Rdo_show(tools::parse_Rd(fnA))

set the author section, create it if necessary.
Rdo_set_section("A.A. Author", "author", fnA, create = TRUE)
Rdo_show(tools::parse_Rd(fnA))

replace the author section
Rdo_set_section("Georgi N. Boshnakov", "author", fnA)
Rdo_show(tools::parse_Rd(fnA))

unlink(fnA)

Rdo_show Convert an Rd object to text and show it

Description

Render an Rd object as text and show it.

Usage

Rdo_show(rdo)

Arguments

rdo an Rd object

Details

Rdo_show renders the help page represented by rdo as text and shows it with file.show().

Rdo_show is a simplified front end to utils::Rd2txt. See viewRd for more complete rendering,
including of references and citations.

Value

Invisible NULL. The function is used for the side effect of showing the text representation of rdo.

Author(s)

Georgi N. Boshnakov

See Also

viewRd

78 Rdo_tag

Examples

create a minimal Rd object
u1 <- list_Rd(name = "Dummyname", alias = "Dummyallias1",

title = "Dummy title", description = "Dummy description",
Rd_class = TRUE)

Not run:
run this interactively:
Rdo_show(u1)

End(Not run)

Rdo_tag Set the Rd_tag of an object

Description

Set the Rd_tag of an object.

Usage

Rdo_comment(x = "%%")

Rdo_tag(x, name)

Rdo_verb(x)

Rdo_Rcode(x)

Rdo_text(x)

Rdo_newline()

Arguments

x an object, appropriate for the requested Rd_tag.

name the tag name, a string.

Details

These functions simply set attribute "Rd_tag" of x, effectively assuming that the caller has prepared
it as needed.

Rdo_tag sets the "Rd_tag" attribute of x to name. The other functions are shorthands with a fixed
name and no second argument.

Rdo_comment tags an Rd element as comment.

Rdo_newline gives an Rd element representing an empty line.

Rdo_tags 79

Value

x with its "Rd_tag" set to name (Rdo_tag), "TEXT" (Rdo_text), "VERB" (Rdo_verb) or "RCODE"
(Rdo_Rcode).

Author(s)

Georgi N. Boshnakov

Rdo_tags Give the Rd tags at the top level of an Rd object

Description

Give the Rd tags at the top level of an Rd object.

Usage

Rdo_tags(rdo, nulltag = "")

Arguments

rdo an Rd object.

nulltag a value to use when Rd_tag is missing or NULL.

Details

The "Rd_tag" attributes of the top level elements of rdo are collected in a character vector. Ar-
gument nulltag is used for elements without that attribute. This guarantees that the result is a
character vector.

Rdo_tags is similar to the internal function tools:::RdTags. Note that tools:::RdTags may
return a list in the rare cases when attribute Rd_tags is not present in all elements of rdo.

Value

a character vector

Author(s)

Georgi N. Boshnakov

See Also

Rdo_which, Rdo_which_tag_eq, Rdo_which_tag_in

Examples

##---- Should be DIRECTLY executable !! ----

80 rdo_text_restore

rdo_text_restore Ensure exported fragments of Rd are as the original

Description

For an Rd object imported from a file, this function ensures that fragments that were not not changed
during the editing of the object remain unchanged in the exported file. This function is used by
reprompt() to ensure exactly that.

Usage

rdo_text_restore(cur, orig, pos_list, file)

Arguments

cur an Rd object

orig an Rd object

pos_list a list of srcref objects specifying portions of files to replace, see ’Details’.

file a file name, essentially a text representation of cur.

Details

This is essentially internal function. It exists because, in general, it is not possible to restore the
original Rd file from the Rd object due to the specifications of the Rd format. The file exported from
the parsed Rd file is functionally equivalent to the original but equivalent things for the computer
are not necessarily equally pleasant for humans.

This function is used by reprompt when the source is from a file and the option to keep the source
of unchanged sections as in the original.

todo: needs clean up, there are unnecessary arguments in particular.

Value

the main result is the side effect of replacing sections in file not changed by reprompt with the
original ones.

Author(s)

Georgi N. Boshnakov

See Also

reprompt

Rdo_which 81

Rdo_which Find elements of Rd objects for which a condition is true

Description

Find elements of Rd objects for which a condition is true.

Usage

Rdo_which(rdo, fun)

Rdo_which_tag_eq(rdo, tag)

Rdo_which_tag_in(rdo, tags)

Arguments

rdo an Rd object.

fun a function to evaluate with each element of rdo.

tag a character string.

tags a character vector.

Details

These functions return the indices of the (top level) elements of rdo which satisfy a condition.

Rdo_which finds elements of rdo for which the function fun gives TRUE.

Rdo_which_tag_eq finds elements with a specific Rd_tag.

Rdo_which_tag_in finds elements whose Rd_tag’s are among the ones specified by tags.

Value

a vector of positive integers

Author(s)

Georgi N. Boshnakov

See Also

Rdo_locate which searches recursively the Rd object.

82 Rdpack_bibstyles

Examples

get the help page for topoc seq()
rdo_seq <- tools::Rd_db("base")[["seq.Rd"]]
find location of aliases in the topic
(ind <- Rdo_which_tag_eq(rdo_seq, "\alias"))
extract the first alias
rdo_seq[[ind[1]]]
Not run:
extract all aliases
rdo_seq[ind]

End(Not run)

db_bibtex <- tools::Rd_db("bibtex")
names(db_bibtex)
Rdo object for read.bib()
rdo_read.bib <- db_bibtex[["read.bib.Rd"]]
Rdo_tags(rdo_read.bib)
##
which elements of read.bib are aliases?
Rdo_which_tag_eq(rdo_read.bib, "\alias")
rdo_read.bib[[3]]
##
which elements of read.bib contain R code?
Rdo_which(rdo_read.bib, function(x) any(Rdo_tags(x) == "RCODE"))
rdo_read.bib[[5]]
which contain prose?
Rdo_which(rdo_read.bib, function(x) any(Rdo_tags(x) == "TEXT"))

Rdpack_bibstyles Set up a custom style for references in help pages

Description

Set up a custom style for references in help pages.

Usage

Rdpack_bibstyles(package, authors)

Arguments

package the name of a package, a character string.

authors if equal to "LongNames", use full names of authors in reference lists, see Details.

Rdreplace_section 83

Details

This is the initial implementation of support for styles for lists of bibliography references.

Currently setting authors to "LongNames" will cause the references to appear with full names, eg
John Smith rather than in the default Smith J style.

Package authors can request this feature by adding the following line to their .onLoad function (if
their package has one):

Rdpack::Rdpack_bibstyles(package = pkg, authors = "LongNames")

of just copy the following definition in a package that does not have .onLoad :

.onLoad <- function(lib, pkg){
Rdpack::Rdpack_bibstyles(package = pkg, authors = "LongNames")
invisible(NULL)

}

After building and installing the package the references should be using long names.

Value

in .onLoad(), the function is used purely to set up a bibstyle as discussed in Details.

Internally, Rdpack uses it to extract styles set up by packages:

- if called with argument package only, the style requested by that package;

- if called with no arguments, a list of all styles.

Author(s)

Georgi N. Boshnakov

Rdreplace_section Replace the contents of a section in one or more Rd files

Description

Replace the contents of a section in one or more Rd files.

Usage

Rdreplace_section(text, sec, pattern, path = "./man", exclude = NULL, ...)

Arguments

text the replacement text, a character string.
sec the name of the section without the leading backslash, as for Rdo_set_section.
pattern regular expression for R files to process, see Details.
path the directory were to look for the Rd files.
exclude regular expression for R files to exclude, see Details.
... not used.

84 Rd_combo

Details

Rdreplace_section looks in the directory specified by path for files whose names match pat and
drops those whose names match exclude. Then it replaces section sec in the files selected in this
way.

Rdreplace_section is a convenience function to replace a section (such as a keyword or author)
in several files in one go. It calls Rdo_set_section to do the work.

Value

A vector giving the full names of the processed Rd files, but the function is used for the side effect
of modifying them as described in section Details.

Author(s)

Georgi N. Boshnakov

See Also

Rdo_set_section

Examples

Not run:
replace the author in all Rd files except pkgname-package
Rdreplace_section("A. Author", "author", ".*[.]Rd$", exclude = "-package[.]Rd$")

End(Not run)

Rd_combo Manipulate a number of Rd files

Description

Manipulate a number of Rd files.

Usage

Rd_combo(rd, f, ..., .MORE)

Arguments

rd names of Rd files, a character vector.

f function to apply, see Details.

... further arguments to pass on to f.

.MORE another function to be applied for each file to the result of f.

rebib 85

Details

Rd_combo parses each file in rd, applies f to the Rd object, and applies the function .MORE (if
supplied) on the results of f.

A typical value for .MORE is reprompt or another function that saves the resulting Rd object.

todo: Rd_combo is already useful but needs further work.

Examples

Not run:
rdnames <- dir(path = "./man", pattern=".*[.]Rd$", full.names=TRUE)

which Rd files don't have a value section?
counts <- unlist(Rd_combo(rdnames, function(x) length(Rdo_locate_core_section(x, "\value"))))
rdnames[counts == 0]

reprompt all files
Rd_combo(rdnames, reprompt)
for(nam in rdnames) try(reprompt(nam))
for(nam in rdnames) try(reprompt(nam, sec_copy=FALSE))

End(Not run)

rebib Work with bibtex references in Rd documentation

Description

Work with bibtex references in Rd documentation.

Usage

rebib(infile, outfile, ...)

inspect_Rdbib(rdo, force = FALSE, ...)

Arguments

infile name of the Rd file to update, a character string.

outfile a filename for the updated Rd object.

... further arguments to be passed to get_bibentries, see ‘Details’.

rdo an Rd object.

force if TRUE, re-insert previously imported references. Otherwise do not change
such references.

86 rebib

Details

inspect_Rdbib takes an Rd object and processes the references as specified below.

The user level function is rebib. It parses the Rd file infile, calls inspect_Rdbib to process the
references, and writes the modified Rd object to file outfile. If outfile is missing it is set to the
basename of infile. If outfile is the empty string, "", then outfile is set to infile.

The default Bibtex file is "REFERENCES.bib" in the current working directory. Arguments ". . . "
can be used to change the name of the bib file and its location. Argument bibfile can be used to
overwrite the default name of the bib file. Argument package can be used to specify that the bib file
should be taken from the root of the installation directory of package package, see get_bibentries
for details.

The following scheme can be used for incorporation of bibliographic references from BibTeX files.
Note however, that usually it is more convenient to use the approach based on Rd macros like
\insertRef, see insert_ref and the vignette(s).

The Bibtex key for each reference is put in a comment line in the references section, as in

\references{
% bibentry: key1

% bibentry: key2

...
}

At least one space after the colon, ’:’, is required, spaces before "bibentry:" are ignored.

Then run rebib() on the file, see the example section for a way to run rebib() on all files in one
go.

Each reference is inserted immediately after the comment line specifying it and a matching com-
ment line marking its end is inserted.

Before inserting a reference, a check for the matching ending line is made, and if such a line is
found, the reference is not inserted. This means that to add new references it is sufficient to give
their keys, as described above and run the function again. References that are already there will not
be duplicated.

The inserted reference may also be edited, if necessary. As long as the two comment lines enclos-
ing it are not removed, the reference will not be overwritten by subsequent calls of the functions
described here. Any text outside the markers delineating references inserted by this mechanism is
left unchanged, including references inserted by other means.

To include all references from the bib file, the following line can be used:

% bibentry:all

Notice that there is no space after the colon in this case. In this case a marker is put after the last
reference and the whole thing is considered one block. So, if the end marker is present and force
is FALSE, none will will be changed. Otherwise, if force is TRUE, the whole block of references
will be removed and all references currently in the bib file will be inserted.

The main purpose of bibentry:all is for use in a package overview file. The reference section in
the file "package-package" generated by promptPackageSexpr uses this feature (but the user still
needs to call rebib to insert the references).

reprompt 87

Value

for inspect_Rdbib, the modified Rd object.

rebib is used mainly for the side effect of creating a file with the references updated. It returns the
Rd object created by parsing and modifying the Rd file.

Author(s)

Georgi N. Boshnakov

See Also

insert_ref and the vignette(s) for the recommended way to import BibTeX references and cita-
tions.

Examples

Not run:
update references in all Rd files in the package's 'man' directory
#
rdnames <- dir(path = "./man", pattern=".*[.]Rd$", full.names=TRUE)
lapply(rdnames, function(x) rebib(x, package="Rdpack"))

End(Not run)

reprompt Update the documentation of a topic

Description

Examine the documentation of functions, methods or classes and update it with additional argu-
ments, aliases, methods or slots, as appropriate. This is an extention of the promptXXX() family of
functions.

Usage

reprompt(object, infile = NULL, Rdtext = NULL, final = TRUE,
type = NULL, package = NULL, methods = NULL, verbose = TRUE,
filename = NULL, sec_copy = TRUE, edit = FALSE, ...)

Arguments

object the object whose documentation is to be updated, such as a string, a function, a
help topic, a parsed Rd object, see ‘Details’.

infile a file name containing Rd documentation, see ‘Details’.

Rdtext a character string with Rd formatted text, see ‘Details’.

final logical, if TRUE modifies the output of prompt so that the package can be built.

88 reprompt

type type of topic, such as "methods" or "class", see ‘Details’.

package package name; document only objects defined in this package, especially useful
for methods, see ‘Details’.

methods used for documentation of S4 methods only, rarely needed even for them. This
argument is passed on to promptMethods, see its documentation for details.

verbose if TRUE print messages on the screen.

filename name of the file for the generated Rd content; if NULL, a suitable file name is
generated, if TRUE it will be set to infile, if FALSE the Rd text is returned, see
‘Details’.

... currently not used.

sec_copy if TRUE copy Rd contents of unchanged sections in the result, see Details.

edit if TRUE call file.edit just before returning. This argument is ignored if filename
is FALSE.

Details

The typical use of reprompt is with one argument, as in

reprompt(infile = "./Rdpack/man/reprompt.Rd")
reprompt(reprompt)
reprompt("reprompt")

reprompt updates the requested documentation and writes the new Rd file in the current working
directory. When argument infile is used, the descriptions of all objects described in the input file
are updated. When an object or its name is given, reprompt looks first for installed documentation
and processes it in the same way as in the case of infile. If there is no documentation for the
object, reprompt creates a skeleton Rd file similar to the one produced by the base R functions
from the prompt family (if final = TRUE, the default, it modifies the output of prompt(), so that
the package can be built).

To document a function, say myfun, in an existing Rd file, just add myfun() to the usage section in
the file and call reprompt() on that file. Put quotes around the function name if it is non-syntactic.
For replacement functions (functions with names ending in <-) reprompt() will insert the proper
usage statement. For example, if the signature of xxx<- is (x, ..., value) then both, "xxx<-"()
and xxx() <- value will be replaced by xxx(x, ...) <- value.

For S4 methods and classes the argument "package" is often needed to restrict the output to methods
defined in the package of interest.

reprompt("myfun-methods")

reprompt("[<--methods", package = "mypackage")
reprompt("[<-", type = "methods", package = "mypackage") # same

reprompt("myclass", type = "class", package = "mypackage")
reprompt("myclass-class", package = "mypackage") # same

reprompt 89

Without the "package" argument the reprompt for "[<-" would give all methods defined by loaded
packages at the time of the call.

Currently reprompt functionality is not implemented for topic "package" but if object has the
form "name-package" (or the equivalent with argument topic) and there is no documentation for
package?name, reprompt calls promptPackageSexpr to create the required shell. Note that the
shell produced by promptPackageSexpr does not need ‘reprompting’ since the automatically gen-
erated information is included by \Sexpr’s, not literal strings.

Below are the details.

Typically, only one of object, infile, and Rdtext is supplied. Warning messages are issued if
this is not the case.

The object must have been made available by the time when reprompt() is issued. If the object is
in a package this is typically achieved by a library() command.

object may be a function or a name, as accepted by the ? operator. If it has the form "name-class"
and "name-methods" a documentation shell for class "name" or the methods for generic function
"name" will be examined/created. Alternatively, argument type may be set to "class" or "methods"
to achieve the same effect.

infile specifies a documentation file to be updated. If it contains the documentation for one or
more functions, reprompt examines their usage statements and updates them if they have changed.
It also adds arguments to the "arguments" section if not all arguments in the usage statements
have entries there. If infile describes the methods of a function or a class, the checks made are
as appropriate for them. For example, new methods and/or slots are added to the corresponding
sections.

It is all too easy in interactive use to forget to name the infile argument, compare
reprompt("./man/reprompt.Rd") vs. reprompt(infile = "./man/reprompt.Rd")).
A convenience feature is that if infile is missing and object is a character string ending in ".Rd"
and containing a forward slash (i.e. it looks like Rd file in a directory), then it is taken to be infile.

Rdtext is similar to infile but the Rd content is taken from a character vector.

If Rd content is supplied by infile or Rdtext, reprompt uses it as a basis for comparison. Other-
wise it tries to find installed documentation for the object or topic requested. If that fails, it resorts
to one of the promptXXX functions to generate a documentation shell. If that also fails, the requested
object or topic does not exist.

If the above succeeds, the function examines the current definition of the requested object(s), meth-
ods, or class and amends the documentation with any additional items it finds.

For Rd objects describing one or more functions, the usage expressions are checked and replaced,
if they have changed. Arguments appearing in one or more usage expressions and missing from
section "Arguments" are amended to it with content "Describe ..." and a message is printed. Argu-
ments no longer in the usage statements are NOT removed but a message is issued to alert the user.
Alias sections are inserted for any functions with "usage" but without "alias" section.

If filename is a character string, it is used as is, so any path should be included in the string.
Argument filename usuallly is omitted since the automatically generated file name is suitable in
most cases. Exceptions are functions with non-standard names (such as replacement functions
whose names end in "<-") for which the generated file names may not be acceptable on some
operating systems.

90 reprompt

If filename is missing or NULL, a suitable name is generated as follows. If infile is supplied,
filename is set to a file with the same name in the current working directory (i.e. any path infor-
mation in infile is dropped). Otherwise, filename is obtained by appending the name tag of the
Rd object with ".Rd".

If filename is TRUE, it is set to infile or, if infile is missing or NULL, a suitable name is generated
as above. This can be used to change infile in place.

If filename is FALSE, the Rd text is returned as a character vector and not written to a file.

If edit is TRUE, the reprompted file is opened in an editor, see also ereprompt (‘e’ for ‘edit’) which
is like reprompt but has as default edit = TRUE and some other related settings.

file.edit() is used to call the editor. Which editor is opened depends on the OS and on the user
configuration. RStudio users will probably prefer the ’Reprompt’ add-in or the underlying function
RStudio_reprompt. Emacs users would normally have set up emacsclient as their editor and this
is automatically done by EMACS/ESS (even on Windows).

If argument sec_copy is TRUE (the default), reprompt will, effectively, copy the contents of (some)
unchanged sections, thus ensuring that they are exactly the same as in the original. This needs
additional work, since parsing an Rd file and then exporting the created Rd object to an Rd file does
not necessarilly produce an identical Rd file (some escape sequences may be changed in the process,
for example). Even though the new version should be functionally equivalent to the original, such
changes are usually not desirable. For example, if such changes creep into the Details section
(which reprompt never changes) the user may be annoyed or worried.

Value

if filename is a character string or NULL, the name of the file to which the updated shell was written.

Otherwise, the Rd text is returned as a character vector.

Note

The arguments of reprompt are similar to prompt, with some additions. As in prompt, filename
specifies the output file. In reprompt a new argument, infile, specifies the input file containing
the Rd source.

When reprompt is used to update sources of Rd documentation for a package, it is best to supply the
original Rd file in argument infile. Otherwise, if the original Rd file contains \Sexpr commands,
reprompt may not be able to recover the original Rd content from the installed documentation.
Also, the fields (e.g. the keywords) in the installed documentation may not be were you expect
them to be. (This may be addressed in a future revision.)

While reprompt adds new items to the documentation, it never removes existing content. It only
issues a suggestion to remove an item, if it does not seem necessary any more (e.g. a removed
argument from a function definition).

reprompt handles usage statements for S3 and S4 methods introduced with any of the macros
\method, \S3method and \S4method, as in \method{fun}{class}(args...). reprompt under-
stands also subsetting ans subassignment operators. For example, suppose that the \arguments
section of file "bracket.Rd" contains these directives (or any other wrong signatures):

\method{[}{ts}()
\method{[[}{Date}()

reprompt 91

Then reprompt("./bracket.Rd") will change them to

\method{[}{ts}(x, i, j, drop = TRUE)
\method{[[}{Date}(x, \dots, drop = TRUE)

This works for the assignment operators and functions, as well. For example, any of these

\method{`[<-`}{POSIXlt}()
\method{[}{POSIXlt}(x, j) <- value

will be converted by reprompt to the standard form

\method{[}{POSIXlt}(x, i, j) <- value

Note that the quotes in `[<-` above.

Usage statements for functions are split over two or more lines if necessary. The user may edit them
afterwards if the automatic splitting is not appropriate, see below.

The usage section of Rd objects describing functions is left intact if the usage has not changed. To
force reprompt to recreate the usage section (e.g. to reformat long lines), invalidate the usage of
one of the described functions by removing an argument from its usage expression. Currently the
usage section is recreated completely if the usage of any of the described functions has changed.
Manual formatting may be lost in such cases.

Author(s)

Georgi N. Boshnakov

See Also

ereprompt which by default calls the editor on the original file

Examples

note: usage of reprompt() is simple. the examples below are bulky
because they simulate various usage scenarios with commands,
while in normal usage they would be due to editing.

change to a temporary directory to avoid clogging up user's
cur_wd <- getwd()
tmpdir <- tempdir()
setwd(tmpdir)

as for prompt() the default is to save in current dir as "seq.Rd".
the argument here is a function, reprompt finds its doc and
updates all objects described along with `seq'.
(In this case there is nothing to update, we have not changed `seq'.)

fnseq <- reprompt(seq)

92 reprompt

let's parse the saved Rd file (the filename is returned by reprompt)
rdoseq <- tools::parse_Rd(fnseq) # parse fnseq to see the result.
Rdo_show(rdoseq)

we replace usage statements with wrong ones for illustration.
(note there is an S3 method along with the functions)
dummy_usage <- char2Rdpiece(paste("seq()", "\\method{seq}{default}()",

"seq.int()", "seq_along()", "seq_len()", sep="\n"),
"usage")

rdoseq_dummy <- Rdo_replace_section(rdoseq, dummy_usage)
Rdo_show(rdoseq_dummy) # usage statements are wrong

reprompt(rdoseq_dummy, file = "seqA.Rd")
Rdo_show(tools::parse_Rd("seqA.Rd")) # usage ok after reprompt

define function myseq()
myseq <- function(from, to, x){

if(to < 0) {
seq(from = from, to = length(x) + to)

} else seq(from, to)
}

we wish to describe myseq() along with seq();
it is sufficient to put myseq() in the usage section
and let reprompt() do the rest
rdo2 <- Rdo_modify_simple(rdoseq, "myseq()", "usage")
reprompt(rdo2, file = "seqB.Rd") # updates usage of myseq

show the rendered result:
Rdo_show(tools::parse_Rd("seqB.Rd"))

Run this if you wish to see the Rd file:
file.show("seqB.Rd")

reprompt(infile = "seq.Rd", filename = "seq2.Rd")
reprompt(infile = "seq2.Rd", filename = "seq3.Rd")

Rd objects for installed help may need some tidying for human editing.
#hseq_inst <- help("seq")
#rdo <- utils:::.getHelpFile(hseq_inst)
rdo <- Rdo_fetch("seq", "base")
rdo
rdo <- Rdpack:::.Rd_tidy(rdo) # tidy up (e.g. insert new lines

for human readers)
reprompt(rdo) # rdo and rdoseq are equivalent
all.equal(reprompt(rdo), reprompt(rdoseq)) # TRUE

clean up
unlink("seq.Rd") # remove temporary files
unlink("seq2.Rd")
unlink("seq3.Rd")
unlink("seqA.Rd")
unlink("seqB.Rd")

RStudio_reprompt 93

setwd(cur_wd) # restore user's working directory
unlink(tmpdir)

RStudio_reprompt Call reprompt based on RStudio editor contents

Description

This function uses the RStudio API to call reprompt on either the current help file in the editor, or
if a name is highlighted in a ‘.R’ file, on that object.

Usage

RStudio_reprompt(verbose = TRUE)

Arguments

verbose If TRUE print progress to console.

Details

This function depends on being run in RStudio; it will generate an error if run in other contexts.

It depends on code being in a package that has already been built, installed, and attached. In
RStudio, this means you should run “Install and Restart” before running this function.

It is automatically installed into RStudio as an add-in called “Reprompt”. Whether invoked directly
or through the add-in, it looks at the file currently being edited in the code editor. If it is an ‘.Rd’
file, it will run reprompt on that file.

If it is an R source file, it will look for a selected object name. It queries the help system to find if
there is already a help page for that name, and if so, works on that. If not, it will try to create one.

Value

NULL, invisibly.

Author(s)

Duncan Murdoch

See Also

reprompt, ereprompt, prompt

94 S4formals

S4formals Give the formal arguments of an S4 method

Description

Give the formal arguments of an S4 method.

Usage

S4formals(fun, ...)

Arguments

fun name of an S4 generic, a string, or the method, see Details.
... further arguments to be passed to getMethod, see Details.

Details

S4formals gives the formal arguments of the requested method. If fun is not of class methodDefinition,
it calls getMethods, passing on all arguments.

Typically, fun is the name of a generic function and the second argument is the signature of the
method as a character vector. Alternatively, fun may be the method itself (e.g. obtained previously
from getMethod) and in that case the "\dots" arguments are ignored. See getMethod for full
details and other acceptable arguments.

Value

a pairlist, like formals

Note

Arguments of a method after those used for dispatch may be different from the arguments of the
generic. The latter may simply have a "\dots" argument there.

todo: there should be a similar function in the "methods" package, or at least use a documented
feature to extract it.

Author(s)

Georgi N. Boshnakov

Examples

require(stats4) # makes plot() S4 generic

S4formals("plot", c(x = "profile.mle", y = "missing"))

m1 <- getMethod("plot", c(x = "profile.mle", y = "missing"))
S4formals(m1)

update_aliases_tmp 95

update_aliases_tmp Update aliases for methods in Rd objects

Description

Update aliases for methods in Rd objects

Usage

update_aliases_tmp(rdo, package = NULL)

Arguments

rdo an Rd object

package the name of a package, a character string.

Details

This is a quick fix. todo: complete it!

Value

the updated Rd object

Author(s)

Georgi N. Boshnakov

viewRd View Rd files in a source package

Description

View Rd files in a source package.

Usage

viewRd(infile, type = getOption("help_type"), stages = NULL)

Arguments

infile name of an Rd file, a character string.

type one of "text" or "html"

stages a character vector specifying which stages of the R installation process to immi-
tate. The default, c("build", "install", "render"), should be fine in most
cases.

96 viewRd

Details

This function can be used to view Rd files from the source directory of a package. The page is
presented in text format or in html browser, according to the setting of argument type. The default
is getOption("help_type").

Value

the function is used for the side effect of showing the help page in a text help window or a web
browser.

Note

Developers with "devtools" can use viewRd() instead of help() for documentation objects that
contain Rd macros, such as insertRef, see vignette:

vignette("Inserting_bibtex_references", package = "Rdpack").

Author(s)

Georgi N. Boshnakov

Index

∗ Rd macros
insert_ref, 27

∗ RdoBuild
append_to_Rd_list, 9
c_Rd, 13
char2Rdpiece, 11
list_Rd, 35
parse_pairlist, 38
Rdo_append_argument, 54
Rdo_empty_sections, 56
Rdo_insert, 63
Rdo_insert_element, 64
Rdo_is_newline, 64
Rdo_macro, 68
Rdo_modify, 69
Rdo_modify_simple, 70
Rdo_set_section, 76
Rdo_tag, 78
Rdreplace_section, 83

∗ RdoProgramming
inspect_Rd, 31
parse_Rdname, 40
parse_Rdpiece, 41
parse_Rdtext, 42
Rdapply, 50
Rdo_flatinsert, 59
Rdo_get_insert_pos, 61
Rdo_get_item_labels, 62
Rdo_piecetag, 71
Rdo_remove_srcref, 72
rdo_text_restore, 80

∗ RdoS4
get_sig_text, 21
inspect_signatures, 32
inspect_slots, 33
update_aliases_tmp, 95

∗ RdoUsage
compare_usage1, 12
deparse_usage, 15

format_funusage, 18
get_usage_text, 23
inspect_args, 30
inspect_usage, 34
parse_usage_text, 43

∗ Rd
insert_ref, 27
predefined, 44
promptPackageSexpr, 46
promptUsage, 47
Rd_combo, 84
Rdo2Rdf, 52
Rdo_collect_aliases, 55
Rdo_locate, 65
Rdo_locate_leaves, 67
Rdo_reparse, 73
Rdo_sections, 74
Rdo_show, 77
Rdo_tags, 79
Rdo_which, 81
rebib, 85
reprompt, 87

∗ bibtex
get_bibentries, 19
insert_ref, 27
makeVignetteReference, 36
Rdpack_bibstyles, 82
rebib, 85

∗ documentation
ereprompt, 17
insert_all_ref, 24
insert_citeOnly, 26
insert_ref, 27
promptUsage, 47
Rdo_fetch, 57
Rdpack_bibstyles, 82
viewRd, 95

∗ methods
S4formals, 94

97

98 INDEX

∗ package
Rdpack-package, 3

∗ programming
get_bibentries, 19

append_to_Rd_list, 9
as.character.f_usage (deparse_usage), 15

c_Rd, 7, 13, 35
char2Rdpiece, 11
citeNatbib, 26
compare_usage1, 12

deparse_usage, 15
deparse_usage1, 19
deparse_usage1 (deparse_usage), 15

edit, 4
ereprompt, 4, 8, 17, 90, 91, 93

formals, 94
format_funusage, 18

get_bibentries, 19, 27, 85, 86
get_sig_text, 21
get_usage, 7, 8, 39
get_usage (promptUsage), 47
get_usage_text, 23
getMethod, 94

insert_all_ref, 24
insert_citeOnly, 26, 30
insert_ref, 26, 27, 86, 87
insertRef, 5, 26
insertRef (insert_ref), 27
inspect_args, 30, 34
inspect_clmethods (inspect_signatures),

32
inspect_Rd, 31
inspect_Rdbib (rebib), 85
inspect_Rdclass (inspect_Rd), 31
inspect_Rdfun (inspect_Rd), 31
inspect_Rdmethods (inspect_Rd), 31
inspect_signatures, 32
inspect_slots, 33
inspect_usage, 13, 34
is_Rdsecname, 11
is_Rdsecname (Rdo_piecetag), 71

list_Rd, 7, 14, 35

makeVignetteReference, 6, 8, 36

pairlist2f_usage1, 16, 44, 49
pairlist2f_usage1 (parse_pairlist), 38
parse_1usage_text (parse_usage_text), 43
parse_pairlist, 38, 49
parse_Rdname, 40
parse_Rdpiece, 7, 41, 43
parse_Rdtext, 41, 42
parse_usage_text, 43
predefined, 44
prompt, 93
promptMethods, 88
promptPackageSexpr, 4, 8, 46, 86, 89
promptUsage, 6, 39, 47

rapply, 50, 51
rattr (Rdapply), 50
Rd_combo, 84
Rdapply, 50
Rdo2Rdf, 52
Rdo_append_argument, 54
Rdo_collect_aliases, 55
Rdo_collect_metadata

(Rdo_collect_aliases), 55
Rdo_comment (Rdo_tag), 78
Rdo_drop_empty (Rdo_empty_sections), 56
Rdo_empty_sections, 56
Rdo_fetch, 57
Rdo_flatinsert, 59
Rdo_flatremove (Rdo_flatinsert), 59
Rdo_get_argument_names, 60
Rdo_get_insert_pos, 61, 63
Rdo_get_item_labels, 60, 62
Rdo_insert, 63
Rdo_insert_element, 64
Rdo_is_newline, 64
Rdo_item (Rdo_macro), 68
Rdo_locate, 65, 75, 81
Rdo_locate_core_section, 66
Rdo_locate_core_section (Rdo_sections),

74
Rdo_locate_leaves, 67
Rdo_macro, 68
Rdo_macro1 (Rdo_macro), 68
Rdo_macro2 (Rdo_macro), 68
Rdo_modify, 69, 71, 76
Rdo_modify_simple, 70
Rdo_newline (Rdo_tag), 78

INDEX 99

Rdo_piece_types, 72
Rdo_piece_types (predefined), 44
Rdo_piecetag, 71
Rdo_predefined_sections, 72
Rdo_predefined_sections (predefined), 44
Rdo_Rcode (Rdo_tag), 78
Rdo_remove_srcref, 72
Rdo_reparse, 73
Rdo_replace_section (Rdo_modify), 69
Rdo_sections, 66, 74
Rdo_sectype (Rdo_piecetag), 71
Rdo_set_section, 76, 84
Rdo_show, 77
Rdo_sigitem (Rdo_macro), 68
Rdo_tag, 78
Rdo_tags, 79
Rdo_text (Rdo_tag), 78
rdo_text_restore, 80
rdo_top_tags (predefined), 44
Rdo_verb (Rdo_tag), 78
Rdo_which, 79, 81
Rdo_which_tag_eq, 79
Rdo_which_tag_eq (Rdo_which), 81
Rdo_which_tag_in, 79
Rdo_which_tag_in (Rdo_which), 81
Rdpack (Rdpack-package), 3
Rdpack-package, 3
Rdpack_bibstyles, 82
Rdreplace_section, 83
Rdtagapply (Rdapply), 50
rebib, 5, 6, 8, 46, 85
reprompt, 4, 8, 17, 80, 87, 93
RStudio_reprompt, 4, 90, 93

S4formals, 94

update_aliases_tmp, 95

viewRd, 6, 8, 77, 95
vigbib, 6, 8
vigbib (makeVignetteReference), 36

	Rdpack-package
	append_to_Rd_list
	char2Rdpiece
	compare_usage1
	c_Rd
	deparse_usage
	ereprompt
	format_funusage
	get_bibentries
	get_sig_text
	get_usage_text
	insert_all_ref
	insert_citeOnly
	insert_ref
	inspect_args
	inspect_Rd
	inspect_signatures
	inspect_slots
	inspect_usage
	list_Rd
	makeVignetteReference
	parse_pairlist
	parse_Rdname
	parse_Rdpiece
	parse_Rdtext
	parse_usage_text
	predefined
	promptPackageSexpr
	promptUsage
	Rdapply
	Rdo2Rdf
	Rdo_append_argument
	Rdo_collect_aliases
	Rdo_empty_sections
	Rdo_fetch
	Rdo_flatinsert
	Rdo_get_argument_names
	Rdo_get_insert_pos
	Rdo_get_item_labels
	Rdo_insert
	Rdo_insert_element
	Rdo_is_newline
	Rdo_locate
	Rdo_locate_leaves
	Rdo_macro
	Rdo_modify
	Rdo_modify_simple
	Rdo_piecetag
	Rdo_remove_srcref
	Rdo_reparse
	Rdo_sections
	Rdo_set_section
	Rdo_show
	Rdo_tag
	Rdo_tags
	rdo_text_restore
	Rdo_which
	Rdpack_bibstyles
	Rdreplace_section
	Rd_combo
	rebib
	reprompt
	RStudio_reprompt
	S4formals
	update_aliases_tmp
	viewRd
	Index

