## ----knitr, include = FALSE--------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----load libraries----------------------------------------------------------- library(ale) library(dplyr) ## ----print var_cars----------------------------------------------------------- print(var_cars) ## ----var_cars summary--------------------------------------------------------- summary(var_cars) ## ----gam_cars----------------------------------------------------------------- gam_cars <- mgcv::gam( mpg ~ cyl + disp + hp + drat + wt + s(qsec) + vs + am + gear + carb + country, data = var_cars ) summary(gam_cars) ## ----ale_cars_1D, fig.width=7, fig.height=14---------------------------------- # # To generate the code, uncomment the following lines. # # For speed, this vignette loads a pre-created ALE object. # # For standard models like gam that store their data, # # there is no need to specify the data argument. # ale_cars_1D <- ALE(gam_cars) # saveRDS(ale_cars_1D, file.choose()) ale_cars_1D <- url('https://github.com/tripartio/ale/raw/main/download/ale_cars_1D.0.5.2.rds') |> readRDS() # Print all plots plot(ale_cars_1D) |> print(ncol = 2) ## ----ale_cars_2D, fig.width=7, fig.height=28---------------------------------- # # To generate the code, uncomment the following lines. # # For speed, this vignette loads a pre-created ALE object. # # For standard models like gam that store their data, # # there is no need to specify the data argument. # ale_cars_2D <- ALE( # gam_cars, # x_cols = list(d2 = TRUE) # ) # saveRDS(ale_cars_2D, file.choose()) ale_cars_2D <- url('https://github.com/tripartio/ale/raw/main/download/ale_cars_2D.0.5.2.rds') |> readRDS() # Print plots plot(ale_cars_2D) |> print( ncol = 2, # By default, at most 20 plots are printed. Set max_print to increase this limit max_print = 100 ) ## ----cars_full, fig.width=7, fig.height=14------------------------------------ # # To generate the code, uncomment the following lines. # # For speed, this vignette loads a pre-created ModelBoot object. # # For standard models like lm that store their data, # # there is no need to specify the data argument. # # 100 bootstrap iterations by default. # mb_cars <- ModelBoot(gam_cars) # saveRDS(mb_cars, file.choose()) mb_cars <- url('https://github.com/tripartio/ale/raw/main/download/mb_cars.0.5.2.rds') |> readRDS() plot(mb_cars) |> print(ncol = 2)