Package 'algaeClassify'

May 14, 2025

Title Tools to Query the 'Algaebase' Online Database, Standardize Phytoplankton Taxonomic Data, and Perform Functional Group Classifications

Version 2.0.4

Date 2025-05-12

Author Vijay Patil [aut, cre], Torsten Seltmann [aut], Nico Salmaso [aut], Orlane Anneville [aut], Marc Lajeunesse [aut], Dietmar Straile [aut]

Maintainer Vijay Patil <vij.patil@gmail.com>

Description Functions that facilitate the use of accepted taxonomic nomenclature, collection of functional trait data, and assignment of functional group classifications to phytoplankton species. Possible classifications include Morpho-functional group (MFG; Salmaso et al. 2015 <doi:10.1111/fwb.12520>) and CSR (Reynolds 1988; Functional morphology and the adaptive strategies of phytoplankton. In C.D. Sandgren (ed). Growth and reproductive strategies of freshwater phytoplankton, 388-433. Cambridge University Press, New York). Versions 2.0.0 and later includes new functions for querying the

'algaebase' online taxonomic database (www.algaebase.org), however these functions require a valid API key that must be acquired from the 'algaebase' administrators.

Note that none of the 'algaeClassify' authors are affiliated with 'algaebase' in any way. Taxo-nomic

names can also be checked against a variety of taxonomic databases using the 'Global Names Resolver' service via its API (<<u>https</u>:

//resolver.globalnames.org/api>). In addition,

currently accepted and outdated synonyms, and higher taxonomy, can be extracted for lists of species from the 'ITIS' database using wrapper functions for the ritis package.

The 'algaeClassify' package is a product of the GEISHA (Global Evaluation of the Impacts of Storms on freshwater Habitat and Structure of phytoplankton Assemblages), funded by CESAB (Centre for Synthesis and Analysis of Biodiversity) and the U.S. Geological Survey John Wesley Powell Center for

Synthesis and Analysis, with data and other support provided by members of GLEON (Global Lake Ecology Observation Network).

DISCLAIMER: This software has been approved for release by the

U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the

functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

Depends R (>= 4.4.0)

URL https://doi.org/10.5066/F7S46Q3F

Imports lubridate, stats, ritis, curl, jsonlite, methods, RCurl

License CC0

Encoding UTF-8

LazyData true

RoxygenNote 7.3.2

NeedsCompilation no

Repository CRAN

Date/Publication 2025-05-14 08:50:08 UTC

Contents

ccum	 3
gaebase_genus_search	 4
gaebase_output_parse	 5
gaebase_search_df	 6
gaebase_species_search	 7
estmatch	8
srTraits	 9
ate_mat	 10
enus_search_itis	 11
enus_species_extract	 11
et_apikey	 12
et_apikey_fromfile	 12
nr_df	 13
nr_simple	 14
is_search_df	 15
kegeneva	 16
ean_naomit	 17
ıfgTraits	 17
fg_csr_convert	 18
ıfg_csr_convert_df	 19
fg_csr_library	 19
hyto_ts_aggregate	 20
umpeff	 21

accum

set_algaebase_apikey_header	22
species_mfg_library	22
species_search_itis	23
species_to_mfg	24
species_to_mfg_df	25
traitranges	25
traits_to_csr	26
traits_to_csr_df	27
traits_to_mfg	28
traits_to_mfg_df	29
-	
	30

Index

accum	Split a dataframe column with binomial name into genus and species columns. Plots change in species richness over time, generates species accumulation curve, and compares SAC against simulated idealized curve assuming all unique taxa have equal probability of being sam- pled at any point in the time series. (author Dietmar Straile)

Description

Split a dataframe column with binomial name into genus and species columns. Plots change in species richness over time, generates species accumulation curve, and compares SAC against simulated idealized curve assuming all unique taxa have equal probability of being sampled at any point in the time series. (author Dietmar Straile)

Usage

```
accum(
    b_data,
    phyto_name = "phyto_name",
    column = NA,
    n = 100,
    save.pdf = FALSE,
    lakename = "",
    datename = "date_dd_mm_yy",
    dateformat = "%d-%m-%y"
)
```

Arguments

b_data	Name of data.frame object
phyto_name	Character string: field containing phytoplankton id (species, genus, etc.)
column	column name or number for field containing abundance (biomass,biovol, etc.). Can be NA if the dataset only contains a species list for each sampling date.
n	number of simulations for randomized ideal species accumulation curve

save.pdf	TRUE/FALSE- should plots be displayed or saved to a pdf?
lakename	optional character string for adding lake name to pdf output
datename	character string name of b_data field containing date
dateformat	character string: posix format for datename column

Value

a two panel plot with trends in richness on top, and cumulative richness vs. simulated accumulation curve on bottom

Examples

```
data(lakegeneva)
#example dataset with 50 rows
head(lakegeneva)
```

accum(b_data=lakegeneva,column='biovol_um3_ml',n=10,save.pdf=FALSE)

```
algaebase_genus_search
```

Search algaebase for information about a genus of phytoplankton

Description

Search algaebase for information about a genus of phytoplankton

Usage

```
algaebase_genus_search(
  genus = NULL,
  apikey = NULL,
  handle = NULL,
  higher = TRUE,
  print.full.json = FALSE,
  newest.only = TRUE,
  long = FALSE,
  exact.matches.only = TRUE,
  return.higher.only = FALSE,
  api_file = NULL
)
```

Arguments

genus	genus name as character string
apikey	valid key for algaebase API as character string
handle	curl handle with API key. Will be created if not present.

higher	boolean should higher taxonomy be included in output?	
print.full.json		
	boolean returns raw json output if TRUE. Default is FALSE (return R data frame)	
newest.only	boolean should results be limited to the most recent matching entry in algaebase?	
long	boolean return long output including full species name and authorship, and entry date from algaebase.	
exact.matches.only		
	boolean should results be limited to exact matches?	
return.higher.only		
	boolean should output only included higher taxonomy?	
api_file	path to text file containing a valid API key	

Value

data frame that may include: accepted.name (currently accepted synonym if different from input name), input.name (name supplied by user), input.match (1 if exact match, else 0), currently.accepted (1=TRUE/0=FALSE), genus.only (1=genus search/0=genus+species search), higher taxonomy (king-dom,phylum,class,order,family), genus, species (always NA for genus search), infraspecies name (always NA for genus search), long.name (includes author and date if given), taxonomic.status (currently accepted, synonym, or unverified), taxon.rank (taxonomic rank of accepted name (genus, species, infraspecies), mod.date (date when entry was last modified in algaebase).

Examples

Not run: algaebase_genus_search("Anabaena") #not run.

algaebase_output_parse

Helper function for parsing output from algaebase

Description

Helper function for parsing output from algaebase

Usage

```
algaebase_output_parse(x, field.name)
```

Arguments

Х	list object containing output from an algaebase query
field.name	character string

Value

selected output variable as character vector

algaebase_search_df Search algaebase for information about a list of phytoplankton names

Description

Search algaebase for information about a list of phytoplankton names

Usage

```
algaebase_search_df(
    df,
    apikey = NULL,
    handle = NULL,
    genus.only = FALSE,
    genus.name = "genus",
    species.name = "species",
    higher = TRUE,
    print.full.json = FALSE,
    long = FALSE,
    exact.matches.only = TRUE,
    api_file = NULL,
    sleep.time = 1
)
```

Arguments

df	data frame containing columns with genus and species names	
apikey	valid key for algaebase API as character string	
handle	curl handle with API key. Will be created if not present.	
genus.only	boolean: should searches be based solely on the genus name?	
genus.name	name of data.frame column that contains genus names	
species.name	name of data.frame column that contains species names	
higher	boolean should higher taxonomy be included in output?	
print.full.json		
	boolean returns raw json output if TRUE. Default is FALSE (return R data frame)	
long	boolean return long output including full species name and authorship, and entry date from algaebase.	
exact.matches.only		
	boolean should results be limited to exact matches?	
api_file	path to text file containing a valid API key	
<pre>sleep.time</pre>	delay between algaebase queries (in seconds). Should be at least 1 second if querying more than 10 names at once.	

Value

data frame that may include: accepted.name (currently accepted synonym if different from input name), input.name (name supplied by user), input.match (1 if exact match, else 0), currently.accepted (1=TRUE/0=FALSE), genus.only (1=genus search/0=genus+species search), higher taxonomy (king-dom,phylum,class,order,family), genus, species (always NA for genus search), infraspecies name (always NA for genus search), long.name (includes author and date if given), taxonomic.status (currently accepted, synonym, or unverified), taxon.rank (taxonomic rank of accepted name (genus, species, infraspecies), mod.date (date when entry was last modified in algaebase).

Examples

```
## Not run:
data(lakegeneva)
#example dataset with 50 rows
new.lakegeneva <- genus_species_extract(lakegeneva,'phyto_name')
lakegeneva.algaebase<-algaebase_search_df(new.lakegeneva[1:10,],higher=TRUE,long=TRUE)
head(lakegeneva.algaebase)
## End(Not run)
```

algaebase_species_search

Retrieve taxonomic information from the algaebase online database (www.algaebase.org) based on a user-specified genus and species name. This function requires a valid API key for algaebase.

Description

Retrieve taxonomic information from the algaebase online database (www.algaebase.org) based on a user-specified genus and species name . This function requires a valid API key for algaebase.

Usage

```
algaebase_species_search(
  genus,
  species,
  apikey = NULL,
  handle = NULL,
  higher = TRUE,
  print.full.json = FALSE,
  newest.only = TRUE,
  long = FALSE,
  exact.matches.only = TRUE,
  api_file = NULL
)
```

Arguments

genus	genus name as character string
species	species name as character string
apikey	valid key for algaebase API as character string
handle	curl handle with API key. Will be created if not present.
higher	boolean should higher taxonomy be included in output?
print.full.jsom	1
	boolean returns raw json output if TRUE. Default is FALSE (return R data frame)
newest.only	boolean should results be limited to the most recent matching entry in algaebase?
long	boolean return long output including full species name and authorship, and entry date from algaebase.
exact.matches.only	
	boolean should results be limited to exact matches?
api_file	path to text file containing a valid API key

Value

data frame that may include: accepted.name (currently accepted synonym if different from input name), input.name (name supplied by user), input.match (1 if exact match, else 0), currently.accepted (1=TRUE/0=FALSE), genus.only (1=genus search/0=genus+species search), higher taxonomy (king-dom,phylum,class,order,family), genus, species (always NA for genus search), infraspecies name (always NA for genus search), long.name (includes author and date if given), taxonomic.status (currently accepted, synonym, or unverified), taxon.rank (taxonomic rank of accepted name (genus, species, infraspecies), mod.date (date when entry was last modified in algaebase).

Examples

```
## Not run: algaebase_species_search("Anabaena flos-aquae") #not run
```

bestmatch fuzzy partial matching between a scientific name and a list of possible matches	le
---	----

Description

fuzzy partial matching between a scientific name and a list of possible matches

Usage

```
bestmatch(enteredName, possibleNames, maxErr = 3, trunc = TRUE)
```

csrTraits

Arguments

enteredName	Character string with name to check
possibleNames	Character vector of possible matches
maxErr	maximum number of different bits allowed for a partial match
trunc	TRUE/FALSE. if true and no match, retry with last three letters truncated

Value

a character string with the best match, or 'multiplePartialMatches'

Examples

```
possibleMatches=c('Viburnum edule','Viburnum acerifolia')
bestmatch(enteredName='Viburnum edulus',possibleNames=possibleMatches)
```

csrTraits	Database of functional	traits for I	MFG	classification,	derived fi	rom
	Rimet et al. 2019					

Description

Database of functional traits for MFG classification, derived from Rimet et al. 2019

Usage

data(mfgTraits)

Format

A data frame with columns:

phyto_name binomial scientific name

genus genus name

species species name

SAV surface area:volume ratio

MLD maximum linear dimension (micrometers)

MSV product of SAV and MLD; unitless

volume.um3 cell or colony biovolume

surface.area.um2 biological unit (cell or colony) surface area accounting for mucilage

Colonial 1/0 indicates colonial growth form

Number.of.cells.per.colony literature-based average colony abundance

Geometrical.shape.of.the.colony Shape descriptions. See Rimet et al. 2019 for abbreviations **traitCSR** CSR classification using traits_to_CSR function and criteria from Reynolds 2006

date_mat

Description

Transform a phytoplankton timeseries into a matrix of abundances for ordination

Usage

```
date_mat(
   phyto.df,
   abundance.var = "biovol_um3_ml",
   summary.type = "abundance",
   taxa.name = "phyto_name",
   date.name = "date_dd_mm_yy",
   format = "%d-%m-%y",
   time.agg = c("day", "month", "year", "monthyear"),
   fun = mean_naomit
)
```

Arguments

phyto.df	Name of data.frame object
abundance.var	Character string: field containing abundance data. Can be NA if the dataset only contains a species list for each sampling date.
summary.type	'abundance' for a matrix of aggregated abundance,'presence.absence' for 1 (present) and 0 (absent).
taxa.name	Character string: field containing taxonomic identifiers.
date.name	Character string: field containing date.
format	Character string: POSIX format string for formatting date column.
time.agg	Character string: time interval for aggregating abundance. default is day.
fun	function for aggregation. default is mean, excluding NA's.

Value

A matrix of phytoplankton abundance, with taxa in rows and time in columns. If time.agg = 'monthyear', returns a 3dimensional matrix (taxa,month,year). If abundance.var = NA, matrix cells will be 1 for present, 0 for absent

Examples

```
data(lakegeneva)
#example dataset with 50 rows
geneva.mat1<-date_mat(lakegeneva,time.agg='month',summary.type='presence.absence')</pre>
```

genus_search_itis

geneva.mat2<-date_mat(lakegeneva,time.agg='month',summary.type='abundance')</pre>

geneva.mat1
geneva.mat2

```
genus_search_itis
```

Wrapper function for several functions in ritis:: Searches ITIS database for matches to a genus name

Description

Wrapper function for several functions in ritis:: Searches ITIS database for matches to a genus name

Usage

genus_search_itis(genus, higher = FALSE)

Arguments

genus	Character string. genus name to search for in ITIS
higher	Boolean. If TRUE, add higher taxonomic classifications to output

Value

input data.frame with matches, current accepted names, synonyms, and higher taxonomy

Examples

```
genus='Anabaena'
genus_search_itis(genus,higher=FALSE)
```

genus_species_extract Split a dataframe column with binomial name into genus and species columns.

Description

Split a dataframe column with binomial name into genus and species columns.

Usage

```
genus_species_extract(phyto.df, phyto.name)
```

Arguments

phyto.df	Name of data.frame object
phyto.name	Character string: field in phyto.df containing species name.

Value

A data.frame with new character fields 'genus' and 'species'

Examples

data(lakegeneva)
#example dataset with 50 rows
head(lakegeneva) #need to split the phyto_name column
new.lakegeneva=genus_species_extract(lakegeneva,'phyto_name')

head(new.lakegeneva)

get_apikey	Get value of algaebase API key from Environment variable Return an
	error if variable not set.

Description

Get value of algaebase API key from Environment variable Return an error if variable not set.

Usage

get_apikey()

Value

api key as character string (invisibly)

get_apikey_fromfile Get value of algaebase API key from a file

Description

Get value of algaebase API key from a file

Usage

get_apikey_fromfile(keyfile)

gnr_df

Arguments

keyfile path to text file

Value

api key as character string (invisibly)

Examples

Not run: apikey<-get_apikey_fromfile("keyfile.txt")</pre>

gnr_df	Wrapper function to apply gnr_simple across a data.frame or list of
	species names

Description

Provides convienent output with a row per name. To streamline merging with original data.

Usage

```
gnr_df(
    df,
    name.column,
    sourceid = NULL,
    best_match = TRUE,
    fuzzy_uninomial = TRUE,
    canonical = TRUE,
    with_context = TRUE,
    higher = FALSE
)
```

Arguments

df	data.frame containing names to check
name.column	integer or character string with column name containing species names
sourceid	integer vector with data source ids. see https://resolver.globalnames.org/sources/
best_match	boolean. Should the best match be returned based on score?
fuzzy_uninomia	1
	boolean. Use fuzzy matching for uninomial names?
canonical	If TRUE, names do not include authorship or date
with_context	If TRUE, Match scores are weighted for taxonomic consistency
higher	boolean: Return higher taxonomic classifications?

Value

new data.frame original names (input_name), 1/0 flag for an exact match, the best match (match_name, and other output from gnr_simple(). Will contain a row of NAs if no matches were found for a name.

Examples

data(lakegeneva)
#example dataset with 50 rows

lakegeneva<- genus_species_extract(lakegeneva,'phyto_name')
lakegeneva\$genus_species <- trimws(paste(lakegeneva\$genus,
lakegeneva\$species))</pre>

```
#checking for matches from all GNRS sources, first 5 rows:
lakegeneva.namematches <- gnr_df(lakegeneva,"genus_species")
lakegeneva.namematches
```

```
gnr_simple
```

checks species names against a variety of online databases supports fuzzy partial matching, using the Global Names Resolver (https://resolver.globalnames.org/)

Description

Provides convienent output with a single result, using a variety of criteria for the best match

Usage

```
gnr_simple(
   name,
   sourceid = NULL,
   best_match = TRUE,
   fuzzy_uninomial = TRUE,
   canonical = TRUE,
   with_context = TRUE,
   higher = FALSE
)
```

Arguments

name	character string binomial scientific name to resolve
sourceid	integer vector with data source ids. see https://resolver.globalnames.org/sources/
best_match	boolean. Should the best match be returned based on score?
fuzzy_uninomial	
	boolean. Use fuzzy matching for uninomial names?
canonical	boolean. return canonical name?
with_context	boolean. Return context (auther of species name?)
higher	boolean: Return higher taxonomic classifications?

itis_search_df

Value

new data.frame with name matches, column indicating match type and scores from Global Names Resolver (https://resolver.globalnames.org/). Will contain a row of NAs if no matches found

Examples

```
#Visit https://resolver.globalnames.org/data_sources to see all possible
#data sources for name checking.
name<-"Aphanazomenon flos-aquae"
#sourceid=3 for ITIS database,195 for Algaebase
gnr_simple(name,sourceid=3) #search for ITIS matches
gnr_simple(name,sourceid=NULL) #search for matches from any source</pre>
```

itis_search_df		•	•	 	us_search_i containing	
	names				_	

Description

Wrapper function for applying genus_search_itis and species_search_itis to a whole data.frame containing scientific names

Usage

```
itis_search_df(df, namecol = NA, higher = FALSE, genus.only = FALSE)
```

Arguments

df	data.frame containing names to check
namecol	integer or character string with column name containing species or genus names
higher	Boolean. If TRUE, add higher taxonomic classifications to output
genus.only	boolean If TRUE, search for matches with just the genus name using genus_search_itis

Value

data.frame with submitted names (orig.name), matched names (matched.name), 1/0 flag indicating that original name is currently accepted (orig.name.accepted), 1/0 flag indicating if search was genus_only (for distinguishing genus_search_itis and species_search_itis results), synonyms if any, and higher taxonomy (if higher=TRUE)

Examples

lakegeneva

example dataset from lake Geneva, Switzerland

Description

example dataset from lake Geneva, Switzerland

Usage

data(lakegeneva)

Format

A data frame with columns:

lake lake name

phyto_name phytoplankton species name

month month of sampling

year year of sampling

date_dd_mm_yy date of sampling

biovol_um3_ml biovolume

mean_naomit

Description

Compute mean value while ignoring NA's

Usage

mean_naomit(x)

Arguments

Х

A numeric vector that may contain NA's

Value

the mean value

Examples

data(lakegeneva)
#example dataset with 50 rows

```
mean_naomit(lakegeneva$biovol_um3_ml)
```

mfgTraits

Functional Trait Database derived from Rimet et al.

Description

Functional Trait Database derived from Rimet et al.

Usage

data(mfgTraits)

Format

A data frame with columns:

phyto_name binomial scientific name

genus genus name

species species name

Mobility.apparatus 1/0 indicates presence/absence of flagella or motility

Size character values 'large' or 'small'; based on 35 micrometer max linear dimension

Colonial 1/0 indicates typical colonial growth form or not

Filament 1/0 indicates filamentous growth form or not

Centric 1/0 indicates diatoms with centric growth form

Gelatinous 1/0 indicates presence/absence of mucilage

Aerotopes 1/0 indicates presence/absence of aerotopes

Class Taxonomic class

Order Taxonomic order

MFG.fromtraits MFG classification using traits_to_mfg function

mfg_csr_convert	Returns a CSR classification based on Morphofunctional group
	(MFG). Correspondence based on Salmaso et al. 2015 and Reynolds et al. 1988
	<i>et ut. 19</i> 00

Description

Returns a CSR classification based on Morphofunctional group (MFG). Correspondence based on Salmaso et al. 2015 and Reynolds et al. 1988

Usage

mfg_csr_convert(mfg)

Arguments

mfg

Character string with MFG name, following Salmaso et al. 2015

Value

A character string with values 'C','S','R','CR','SC','SR', or NA

Examples

mfg_csr_convert("11a-NakeChlor")

mfg_csr_convert_df Returns a CSR classification based on Morphofunctional group (MFG). Correspondence based on Salmaso et al. 2015 and Reynolds et al. 1988

Description

Returns a CSR classification based on Morphofunctional group (MFG). Correspondence based on Salmaso et al. 2015 and Reynolds et al. 1988

Usage

mfg_csr_convert_df(phyto.df, mfg)

Arguments

phyto.df	dataframe containing a character field containing MFG classifications
mfg	Character string with MFG name, following Salmaso et al. 2015

Value

A dataframe with an additional field named CSR, containing CSR classifications or NA

Examples

```
data(lakegeneva)
lakegeneva<-genus_species_extract(lakegeneva,'phyto_name')
lakegeneva<-species_to_mfg_df(lakegeneva)
lakegeneva<-mfg_csr_convert_df(lakegeneva,mfg='MFG')
head(lakegeneva)</pre>
```

mfg_csr_library	MFG-CSR correspondence based on CSR-trait relationships in
	Reynolds et al. 1988 and MFG-trait relationships in Salmaso et al. 2015

Description

MFG-CSR correspondence based on CSR-trait relationships in Reynolds et al. 1988 and MFG-trait relationships in Salmaso et al. 2015

Usage

```
data(mfg_csr_library)
```

Format

A data frame with columns:

MFG full MFG name from Salmaso et al. 2015

CSR CSR classification including intermediate classes

phyto_ts_aggregate Aggregate phytoplankton timeseries based on abundance. Up to 3 grouping variables can be given: e.g. genus, species, stationid, depth range. If no abundance var is given, will aggregate to presence/absence of grouping vars.

Description

Aggregate phytoplankton timeseries based on abundance. Up to 3 grouping variables can be given: e.g. genus, species, stationid, depth range. If no abundance var is given, will aggregate to presence/absence of grouping vars.

Usage

```
phyto_ts_aggregate(
    phyto.data,
    DateVar = "date_dd_mm_yy",
    SummaryType = c("abundance", "presence.absence"),
    AbundanceVar = "biovol_um3_ml",
    GroupingVar1 = "phyto_name",
    GroupingVar2 = NA,
    GroupingVar3 = NA,
    remove.rare = FALSE,
    fun = sum,
    format = "%d-%m-%y"
)
```

Arguments

phyto.data	data.frame
DateVar	character string: field name for date variable. character or POSIX data.
SummaryType	'abundance' for a matrix of aggregated abundance,'presence.absence' for 1 (present) and 0 (absent).
AbundanceVar	character string with field name containing abundance data Can be NA if data is only a species list and aggregated presence/absence is desired.
GroupingVar1	character string: field name for first grouping variable. defaults to spp.
GroupingVar2	character string: name of additional grouping var field
GroupingVar3	character string: name of additional grouping var field

sampeff

remove.rare	TRUE/FALSE. If TRUE, removes all instances of GroupingVar1 that occur < 5 of time periods.
fun	function used to aggregate abundance based on grouping variables
format	character string: format for DateVar POSIXct conversion

Value

a data.frame with grouping vars, date_dd_mm_yy, and abundance or presence/absence

Examples

sampeff	Visually assess change in sampling effort over time (author: Dietmar
	Straile)

Description

Visually assess change in sampling effort over time (author: Dietmar Straile)

Usage

```
sampeff(
   b_data,
   column,
   save.pdf = FALSE,
   lakename = "",
   datecolumn = "date_dd_mm_yy",
   dateformat = "%d-%m-%y"
)
```

Arguments

b_data	Name of data.frame object
column	column name or number for field containing abundance (biomass,biovol, etc.) can be NA for presence absence
save.pdf	TRUE/FALSE Should the output plot be saved to a file? defaults to FALSE
lakename	Character string for labeling output plot
datecolumn	Character String or number specifying dataframe field with date information
dateformat	Character string specifying POSIX data format

Value

a time-series plot of minimum relative abundance over time. This should change systematically with counting effort.

Examples

```
data(lakegeneva)
#example dataset with 50 rows
```

sampeff(lakegeneva,column=6) #column 6 contains biovolume

set_algaebase_apikey_header

Add algaebase API key to curl handle

Description

Add algaebase API key to curl handle

Usage

set_algaebase_apikey_header(apikey = NULL)

Arguments

apikey character string with valid key

Value

curl handle object

species_mfg_library Trait-based MFG classifications for common Eurasion/North American phytoplankton species. See accompanying manuscript for sources

Description

Trait-based MFG classifications for common Eurasion/North American phytoplankton species. See accompanying manuscript for sources

Usage

```
data(species_mfg_library)
```

Format

A data frame with columns:

genus genus namespecies species nameMFG corresponding MFG classification based on Salmaso et al. 2015source literature or online source for MFG classification

References

Algaebase https://www.algaebase.org

Phycokey https://www.cfb.unh.edu/phycokey/phycokey.htm

Western Diatoms of North America https://diatoms.org

CyanoDB 2 http://www.cyanodb.cz/

Nordic Microalgae https://nordicmicroalgae.org

Phytopedia https://phytoplankton.eoas.ubc.ca/

Kapustin, D., Sterlyagova, I. and Patova, E., 2019. Morphology of Chrysastrella paradoxa stomatocysts from the Subpolar Urals (Russia) with comments on related morphotypes. Phytotaxa, 402(6), pp.295-300.

<pre>species_search_itis</pre>	Wrapper function for several functions in ritis:: Searches ITIS
	database for matches to a binomial scientific name outputs matches,
	current accepted names, synonyms, and higher taxonomy

Description

Wrapper function for several functions in ritis:: Searches ITIS database for matches to a binomial scientific name outputs matches, current accepted names, synonyms, and higher taxonomy

Usage

```
species_search_itis(genspp, higher = FALSE)
```

Arguments

genspp	Character string. Binomial scientific name with space between genus and species.
higher	Boolean. If TRUE, add higher taxonomic classifications to output

Value

data.frame with submitted name (orig.name), matched name (matched.name), 1/0 flag indicating that original name is currently accepted (orig.name.accepted), 1/0 flag indicating if search was genus_only (for distinguishing genus_search_itis and species_search_itis results), synonyms if any, and higher taxonomy (if higher=TRUE)

Examples

```
species="Aphanizomenon flosaquae"
species_search_itis(species,higher=FALSE)
```

<pre>species_to_mfg</pre>	Conversion of a single genus and species name to a single MFG. Uses
	species.mfg.library

Description

Conversion of a single genus and species name to a single MFG. Uses species.mfg.library

Usage

```
species_to_mfg(genus, species = "", flag = 1, mfgDbase = NA)
```

Arguments

genus	Character string: genus name
species	Character string: species name
flag	Resolve ambiguous mfg: 1 = return(NA),2= manual selection
mfgDbase	data.frame of species MFG classifications. Defaults to the supplied species.mfg.library data object

Value

a data frame with MFG classification and diagnostic information. ambiguous.mfg=1 if multiple possible mfg matches genus.classification=1 if no exact match was found with genus + species name partial.match=1 if mfg was based on fuzzy matching of taxonomic name.

Examples

```
species_to_mfg('Scenedesmus','bijuga')
#returns "11a-NakeChlor"
```

Description

Wrapper function to apply species_phyto_convert() across a data.frame

Usage

```
species_to_mfg_df(phyto.df, flag = 1, mfgDbase = NA)
```

Arguments

phyto.df	Name of data.frame. Must have character fields named 'genus' and 'species'
flag	Resolve ambiguous MFG: 1 = return(NA), 2 = manual selection
mfgDbase	specify library of species to MFG associations.

Value

input data.frame with a new character column of MFG classifications and diagnostic information

Examples

```
data(lakegeneva)
#example dataset with 50 rows
new.lakegeneva <- genus_species_extract(lakegeneva,'phyto_name')
new.lakegeneva <- species_to_mfg_df(new.lakegeneva)
head(new.lakegeneva)</pre>
```

traitranges

surface/volume ratio and max linear dimension criteria for CSR From Reynolds 1988 and Reynolds 2006

Description

surface/volume ratio and max linear dimension criteria for CSR From Reynolds 1988 and Reynolds 2006

Usage

data(traitranges)

Format

A data frame with columns:

Measurement measurement type
C.min minimum value for C
S.min minimum value for S
R.min minimum value for R
C.max maximum value for C
S.max maximum value for S
R.max maximum value for R
units of measurement
source source for criteria

```
traits_to_csr
```

Assign phytoplankton species to CSR functional groups, based on surface to volume ratio and maximum linear dimension ranges proposed by Reynolds et al. 1988;2006

Description

Assign phytoplankton species to CSR functional groups, based on surface to volume ratio and maximum linear dimension ranges proposed by Reynolds et al. 1988;2006

Usage

```
traits_to_csr(
   sav,
   msv,
   msv.source = "Reynolds 2006",
   traitrange = algaeClassify::traitranges
)
```

Arguments

sav	numeric estimate of cell or colony surface area /volume ratio
msv	numeric product of surface area/volume ratio and maximum linear dimension
msv.source	character string with reference source for distinguishing criteria
traitrange	data frame with trait criteria for c,s,r groups. The included table can be replaced with user-defined criteria if desired. Measurements are: Surface area/volume ratio (sav), maximum linear dimension (mld) and mld*sav (msv).

Value

a character string with one of 5 return values: C,CR,S,R, or SR. CR and SR groups reflect overlap between criteria for the 3 main groups.

traits_to_csr_df

See Also

<https://powellcenter.usgs.gov/geisha> for project information

Examples

traits_to_csr(sav=0.2,msv=10,msv.source='Reynolds 2006',traitrange=traitranges)

traits_to_csr_df	Add CSR functional group classifications to a dataframe of phyto-
	plankton species, based on surface to volume ratio and maximum lin-
	ear dimension ranges proposed by Reynolds et al. 1988;2006

Description

Add CSR functional group classifications to a dataframe of phytoplankton species, based on surface to volume ratio and maximum linear dimension ranges proposed by Reynolds et al. 1988;2006

Usage

```
traits_to_csr_df(
  df,
  sav,
  msv,
  msv.source = "Reynolds 2006",
  traitrange = algaeClassify::traitranges
)
```

Arguments

df	name of dataframe
sav	character string with name of column that contains surface to volume ratio values
msv	character string with name of column that contains maximum linear dimension * surface to volume ratio values
msv.source	character string with reference source for distinguishing criteria
traitrange	data frame with trait criteria for c,s,r groups. The included table can be replaced with user-defined criteria if desired. Measurements are: Surface area/volume ratio (sav), maximum linear dimension (mld) and mld*sav (msv).

Value

a character string with one of 5 return values: C,CR,S,SR, or R

Examples

```
csr.df<-data.frame(msv=10,sav=1)</pre>
```

```
csr.df$CSR<-traits_to_csr_df(csr.df,'msv','sav')</pre>
```

print(csr.df)

traits_to_mfg	Assign MFG based on binary functional traits and taxonomy (Class
	and Order)

Description

Assign MFG based on binary functional traits and taxonomy (Class and Order)

Usage

```
traits_to_mfg(
  flagella = NA,
  size = NA,
  colonial = NA,
  filament = NA,
  centric = NA,
  gelatinous = NA,
  aerotopes = NA,
  class = NA,
  order = NA
)
```

Arguments

flagella	1 if flagella are present, 0 if they are absent.
size	Character string: 'large' or 'small'. Classification criteria is left to the user.
colonial	1 if typically colonial growth form, 0 if typically unicellular.
filament	1 if dominant growth form is filamentous, 0 if not.
centric	1 if diatom with centric growth form, 0 if not. NA for non-diatoms.
gelatinous	1 mucilagenous sheath is typically present, 0 if not.
aerotopes	1 if aerotopes allowing buoyancy regulation are typically present, 0 if not.
class	Character string: The taxonomic class of the species
order	Character string: The taxonomic order of the species

Value

A character string of the species' morphofunctional group

Examples

traits_to_mfg_df	Assign morphofunctional groups to a dataframe of functional traits
	and higher taxonomy

Description

Assign morphofunctional groups to a dataframe of functional traits and higher taxonomy

Usage

```
traits_to_mfg_df(
   dframe,
   arg.names = c("flagella", "size", "colonial", "filament", "centric", "gelatinous",
        "aerotopes", "class", "order")
)
```

Arguments

dframe	An R dataframe containing functional trait information and higher taxonomy
arg.names	Character string of column names corresponding to arguments for traits_to_mfg()

Value

A character vector containing morpho-functional group (MFG) designations

Examples

#check the dataframe
print(func.dframe)

print(func.dframe)

Index

```
* datasets
    csrTraits,9
    lakegeneva, 16
    mfg_csr_library, 19
    mfgTraits, 17
    species_mfg_library, 22
    traitranges, 25
accum, 3
algaebase_genus_search, 4
algaebase_output_parse, 5
algaebase_search_df, 6
algaebase_species_search, 7
bestmatch, 8
csrTraits,9
date_mat, 10
genus_search_itis, 11
genus_species_extract, 11
get_apikey, 12
get_apikey_fromfile, 12
gnr_df, 13
gnr_simple, 14
itis_search_df, 15
lakegeneva, 16
mean_naomit, 17
mfg_csr_convert, 18
mfg_csr_convert_df, 19
mfg_csr_library, 19
mfgTraits, 17
phyto_ts_aggregate, 20
sampeff, 21
set_algaebase_apikey_header, 22
```

```
species_mfg_library, 22
species_search_itis, 23
species_to_mfg, 24
species_to_mfg_df, 25
```

```
traitranges, 25
traits_to_csr, 26
traits_to_csr_df, 27
traits_to_mfg, 28
traits_to_mfg_df, 29
```