
Package ‘aplpack’
October 12, 2022

Title Another Plot Package: 'Bagplots', 'Iconplots', 'Summaryplots',
Slider Functions and Others

Version 1.3.5

Date 2021-09-30

Author Hans Peter Wolf [aut, cre]

Maintainer Hans Peter Wolf <pwolf@wiwi.uni-bielefeld.de>

Depends R (>= 3.0.0)

Suggests tkrplot, jpeg, png, splines, utils, tcltk

Description Some functions for drawing some special plots:
The function 'bagplot' plots a bagplot,
'faces' plots chernoff faces,
'iconplot' plots a representation of a frequency table or a data matrix,
'plothulls' plots hulls of a bivariate data set,
'plotsummary' plots a graphical summary of a data set,
'puticon' adds icons to a plot,
'skyline.hist' combines several histograms of a one dimensional data set in one plot,
'slider' functions supports some interactive graphics,
'spin3R' helps an inspection of a 3-dim point cloud,
'stem.leaf' plots a stem and leaf plot,
'stem.leaf.backback' plots back-to-back versions of stem and leaf plot.

License GPL (>= 2)

URL https://www.uni-bielefeld.de/fakultaeten/wirtschaftswissenschaften/fakultaet/
lehrende-ehemalige/pwolf/wolf_aplpack/index.xml

NeedsCompilation no

Repository CRAN

Date/Publication 2021-09-30 14:20:02 UTC

R topics documented:
bagplot . 2
bagplot.pairs . 5

1

https://www.uni-bielefeld.de/fakultaeten/wirtschaftswissenschaften/fakultaet/lehrende-ehemalige/pwolf/wolf_aplpack/index.xml
https://www.uni-bielefeld.de/fakultaeten/wirtschaftswissenschaften/fakultaet/lehrende-ehemalige/pwolf/wolf_aplpack/index.xml

2 bagplot

boxplot2D . 7
faces . 8
hdepth . 10
iconplot . 11
plothulls . 26
plotsummary . 28
puticon . 30
skyline.hist . 35
slider . 38
slider.bootstrap.lm.plot . 42
slider.brush . 43
slider.hist . 44
slider.lowess.plot . 46
slider.smooth.plot.ts . 47
slider.split.plot.ts . 48
slider.stem.leaf . 49
slider.zoom.plot.ts . 50
spin3R . 51
stem.leaf . 52

Index 54

bagplot bagplot, a bivariate boxplot

Description

compute.bagplot() computes an object describing a bagplot of a bivariate data set. plot.bagplot()
plots a bagplot object. bagplot() computes and plots a bagplot.

Usage

bagplot(x, y, factor = 3, na.rm = FALSE, approx.limit = 300,
show.outlier = TRUE, show.whiskers = TRUE,
show.looppoints = TRUE, show.bagpoints = TRUE,
show.loophull = TRUE, show.baghull = TRUE,
create.plot = TRUE, add = FALSE, pch = 16, cex = 0.4,
dkmethod = 2, precision = 1, verbose = FALSE,
debug.plots = "no", col.loophull="#aaccff",
col.looppoints="#3355ff", col.baghull="#7799ff",
col.bagpoints="#000088", transparency=FALSE,
show.center = TRUE, ...

)
compute.bagplot(x, y, factor = 3, na.rm = FALSE, approx.limit = 300,

dkmethod=2,precision=1,verbose=FALSE,debug.plots="no")
S3 method for class 'bagplot'
plot(x,

show.outlier = TRUE, show.whiskers = TRUE,

bagplot 3

show.looppoints = TRUE, show.bagpoints = TRUE,
show.loophull = TRUE, show.baghull = TRUE,
add = FALSE, pch = 16, cex = 0.4, verbose = FALSE,
col.loophull="#aaccff", col.looppoints="#3355ff",
col.baghull="#7799ff", col.bagpoints="#000088",
transparency=FALSE,
show.center = TRUE, ...)

Arguments

x x values of a data set; in bagplot: an object of class bagplot computed by
compute.bagplot

y y values of the data set

factor factor defining the loop

na.rm if TRUE ’NA’ values are removed otherwise exchanged by median

approx.limit if the number of data points exceeds approx.limit a sample is used to compute
some of the quantities; default: 300

show.outlier if TRUE outlier are shown

show.whiskers if TRUE whiskers are shown
show.looppoints

if TRUE loop points are plottet

show.bagpoints if TRUE bag points are plottet

show.loophull if TRUE the loop is plotted

show.baghull if TRUE the bag is plotted

create.plot if FALSE no plot is created

add if TRUE the bagplot is added to an existing plot

pch sets the plotting character

cex sets characters size

dkmethod 1 or 2, there are two method of approximating the bag, method 1 is very rough
(only based on observations

precision precision of approximation, default: 1

verbose automatic commenting of calculations

debug.plots if TRUE additional plots describing intermediate results are constructed

col.loophull color of loop hull

col.looppoints color of the points of the loop

col.baghull color of bag hull

col.bagpoints color of the points of the bag

transparency see section details

show.center if TRUE the center is shown

... additional graphical parameters

4 bagplot

Details

A bagplot is a bivariate generalization of the well known boxplot. It has been proposed by Rousseeuw,
Ruts, and Tukey. In the bivariate case the box of the boxplot changes to a convex polygon, the bag
of bagplot. In the bag are 50 percent of all points. The fence separates points within the fence from
points outside. It is computed by increasing the the bag. The loop is defined as the convex hull
containing all points inside the fence. If all points are on a straight line you get a classical boxplot.
bagplot() plots bagplots that are very similar to the one described in Rousseeuw et al. Remarks:
The two dimensional median is approximated. For large data sets the error will be very small. On
the other hand it is not very wise to make a (graphical) summary of e.g. 10 bivariate data points. In
case you want to plot multiple (overlapping) bagplots, you may want plots that are semi-transparent.
For this you can use the transparency flag. If transparency==TRUE the alpha layer is set to ’99’
(hex). This causes the bagplots to appear semi-transparent, but ONLY if the output device is PDF
and opened using: pdf(file="filename.pdf", version="1.4"). For this reason, the default is
transparency==FALSE. This feature as well as the arguments to specify different colors has been
proposed by Wouter Meuleman.

Value

compute.bagplot returns an object of class bagplot that could be plotted by plot.bagplot().
An object of the bagplot class is a list with the following elements: center is a two dimensional
vector with the coordinates of the center. hull.center is a two column matrix, the rows are the
coordinates of the corners of the center region. hull.bag and hull.loop contain the coordinates
of the hull of the bag and the hull of the loop. pxy.bag shows you the coordinates of the points of
the bag. pxy.outer is the two column matrix of the points that are within the fence. pxy.outlier
represent the outliers. The vector hdepths shows the depths of data points. is.one.dim is TRUE if
the data set is (nearly) one dimensional. The dimensionality is decided by analysing the result of
prcomp which is stored in the element prdata. xy shows you the data that are used for the bagplot.
In the case of very large data sets subsets of the data are used for constructing the bagplot. A data set
is very large if there are more data points than approx.limit. xydata are the input data structured
in a two column matrix.

Note

Version of bagplot: 10/2012

Author(s)

Peter Wolf

References

P. J. Rousseeuw, I. Ruts, J. W. Tukey (1999): The bagplot: a bivariate boxplot, The American
Statistician, vol. 53, no. 4, 382–387

See Also

boxplot

bagplot.pairs 5

Examples

example: 100 random points and one outlier
dat<-cbind(rnorm(100)+100,rnorm(100)+300)
dat<-rbind(dat,c(105,295))
bagplot(dat,factor=2.5,create.plot=TRUE,approx.limit=300,

show.outlier=TRUE,show.looppoints=TRUE,
show.bagpoints=TRUE,dkmethod=2,
show.whiskers=TRUE,show.loophull=TRUE,
show.baghull=TRUE,verbose=FALSE)

example of Rousseeuw et al., see R-package rpart
cardata <- structure(as.integer(c(2560,2345,1845,2260,2440,
2285, 2275, 2350, 2295, 1900, 2390, 2075, 2330, 3320, 2885,
3310, 2695, 2170, 2710, 2775, 2840, 2485, 2670, 2640, 2655,
3065, 2750, 2920, 2780, 2745, 3110, 2920, 2645, 2575, 2935,
2920, 2985, 3265, 2880, 2975, 3450, 3145, 3190, 3610, 2885,
3480, 3200, 2765, 3220, 3480, 3325, 3855, 3850, 3195, 3735,
3665, 3735, 3415, 3185, 3690, 97, 114, 81, 91, 113, 97, 97,
98, 109, 73, 97, 89, 109, 305, 153, 302, 133, 97, 125, 146,
107, 109, 121, 151, 133, 181, 141, 132, 133, 122, 181, 146,
151, 116, 135, 122, 141, 163, 151, 153, 202, 180, 182, 232,
143, 180, 180, 151, 189, 180, 231, 305, 302, 151, 202, 182,
181, 143, 146, 146)), .Dim = as.integer(c(60, 2)),
.Dimnames = list(NULL, c("Weight", "Disp.")))
bagplot(cardata,factor=3,show.baghull=TRUE,

show.loophull=TRUE,precision=1,dkmethod=2)
title("car data Chambers/Hastie 1992")
points of y=x*x
bagplot(x=1:30,y=(1:30)^2,verbose=FALSE,dkmethod=2)
one dimensional subspace
bagplot(x=1:100,y=1:100)

bagplot.pairs pairs plot with bagplots

Description

bagplot.pairs calls pairs and use bagplot() as panel function. It can be used for the inspection
of data matrices.

Usage

bagplot.pairs(dm, trim = 0.0, main, numeric.only = TRUE,
factor = 3, approx.limit = 300, pch = 16,
cex = 0.8, precision = 1, col.loophull = "#aaccff",
col.looppoints = "#3355ff", col.baghull = "#7799ff",
col.bagpoints = "#000088", ...)

6 bagplot.pairs

Arguments

dm datamatrix, columns contain values of the variables

trim fraction or vector of fractions of data points that should be removed from the
variables before computing

main title of the plot

numeric.only if TRUE only numerical variables will be used. Otherwise an transformation to
numeric will be performed.

factor see help of bagplot

approx.limit see help of bagplot

pch see help of bagplot

cex see help of bagplot

precision see help of bagplot

col.loophull see help of bagplot

col.looppoints see help of bagplot

col.baghull see help of bagplot

col.bagpoints see help of bagplot

... further arguments to be passed to pairs

Details

bagplot.pairs is a cover function which calls pairs and uses bagplot to display the data.

Value

The data which has been used for the plot.

Note

Feel free to have a look inside of bagplot.pairs and to improve it according to your ideas.

Author(s)

Peter Wolf

See Also

bagplot, pairs

Examples

bagplot.pairs(freeny)
bagplot.pairs(trees,col.baghull="green", col.loophull="lightgreen")

boxplot2D 7

boxplot2D Boxplot of projection of two dimensional data

Description

boxplot2D computes summary statistics of a one dimensional projection of a two dimensional data
set and plots a sloped boxplot of the statistics into the scatterplot of the two dimensional data set.

Usage

boxplot2D(xy, add.to.plot = TRUE, box.size = 10, box.shift = 0,
angle = 0, angle.type = "0", tukey.style = TRUE, coef.out = 1.5,
coef.h.out = 3, design = "sl", na.rm=FALSE, ...)

Arguments

xy (nx2)-matrix, two dimensional data set

add.to.plot if TRUE the boxplot is added to the actual plot of the graphics device

box.size height of the box (of the boxplot)

box.shift shift of boxplot perpendicular to the projection direction

angle direction of projection in units defined by angle.type

angle.type "0": angle in (0,2*pi), "1": clock-like: angle.typ.0==2*pi*angle.typ.1/12, "2":
degrees: angle.typ.0==2*pi*angle.typ.2/360, "3": by fraction: delta.y/delta.x

tukey.style if TRUE outliers are defined as described in Tukey (1977)

coef.out outliers are values that are more than coef.out*boxwidth away from the box,
default: coef.out=1.5

coef.h.out heavy outliers are values that are more than coef.h.out*boxwidth away from
the box, default: coef.h.out=3

design if sl then parallelogram else box

na.rm if TRUE ’NA’ values are removed otherwise exchanged by mean

... additional graphical parameters

Note

version 08/2003

Author(s)

Peter Wolf

References

Tukey, J. Exploratory Data Analysis. Addison-Wesley, 1977.

8 faces

See Also

boxplot

Examples

xy<-cbind(1:100, (1:100)+rnorm(100,,5))
par(pty="s")
plot(xy,xlim=c(-50,150),ylim=c(-50,150))
boxplot2D(xy,box.shift=-30,angle=3,angle.typ=1)
boxplot2D(xy,box.shift=20,angle=1,angle.typ=1)
boxplot2D(xy,box.shift=50,angle=5,angle.typ=1)
par(pty="m")

faces Chernoff Faces

Description

faces represent the rows of a data matrix by faces. plot.faces plots faces into a scatterplot.

Usage

faces(xy, which.row, fill = FALSE, face.type = 1, nrow.plot, ncol.plot,
scale = TRUE, byrow = FALSE, main, labels, print.info = TRUE,
na.rm = FALSE, ncolors = 20, col.nose = rainbow(ncolors),
col.eyes = rainbow(ncolors, start = 0.6, end = 0.85),
col.hair = terrain.colors(ncolors), col.face = heat.colors(ncolors),
col.lips = rainbow(ncolors, start = 0, end = 0.2),
col.ears = rainbow(ncolors, start = 0, end = 0.2), plot.faces = TRUE, cex = 2)

S3 method for class 'faces'
plot(x, x.pos, y.pos, face.type = 1, width = 1, height = 1, labels,

ncolors = 20, col.nose = rainbow(ncolors), col.eyes = rainbow(ncolors,
start = 0.6, end = 0.85), col.hair = terrain.colors(ncolors),
col.face = heat.colors(ncolors), col.lips = rainbow(ncolors,
start = 0, end = 0.2), col.ears = rainbow(ncolors, start = 0,
end = 0.2), cex = 2, ...)

Arguments

xy xy data matrix, rows represent individuals and columns variables

which.row defines a permutation of the rows of the input matrix

fill if(fill==TRUE), only the first nc attributes of the faces are transformed, nc is
the number of columns of xy

face.type an integer between 0 and 2 with the meanings: 0 = line drawing faces, 1 = the
elements of the faces are painted, 2 = Santa Claus faces are drawn

nrow.plot number of columns of faces on graphics device

faces 9

ncol.plot number of rows of faces

scale if(scale==TRUE), variables will be normalized

byrow if(byrow==TRUE), xy will be transposed

main title

labels character strings to use as names for the faces

print.info if TRUE information about usage of variables for face elements are printed

na.rm if TRUE ’NA’ values are removed otherwise exchanged by mean of data

plot.faces if FALSE no face is plotted

cex size of labels of faces

x an object of class faces computed by faces

x.pos x coordinates of positions of faces

y.pos y coordinates of positions of faces

width width of the faces

height height of the faces

ncolors number of colors in the palettes for painting the elements of the faces

col.nose palette of colors for painting the nose

col.eyes palette of colors for painting the eyes

col.hair palette of colors for painting the hair

col.face palette of colors for painting the face

col.lips palette of colors for painting the lips

col.ears palette of colors for painting the ears

... additional graphical arguments

Details

Explanation of parameters: 1-height of face, 2-width of face, 3-shape of face, 4-height of mouth,
5-width of mouth, 6-curve of smile, 7-height of eyes, 8-width of eyes, 9-height of hair, 10-width of
hair, 11-styling of hair, 12-height of nose, 13-width of nose, 14-width of ears, 15-height of ears.

For painting elements of a face the colors of are found by averaging of sets of variables: (7,8)-
eyes:iris, (1,2,3)-lips, (14,15)-ears, (12,13)-nose, (9,10,11)-hair, (1,2)-face.

Further details can be found in the literate program of faces.

Value

list of two elements: The first element out$faces is a list of standardized faces of class faces,
this object could be plotted by plot.faces; a plot of faces is created on the graphics device if
plot.faces=TRUE. The second list is short description of the effects of the variables.

Note

version 01/2009

10 hdepth

Author(s)

H. P. Wolf

References

Chernoff, H. (1973): The use of faces to represent statistiscal assoziation, JASA, 68, pp 361–368.
The smooth curves are computed by an algorithm found in Ralston, A. and Rabinowitz, P. (1985):
A first course in numerical analysis, McGraw-Hill, pp 76ff. https://www.uni-bielefeld.de/
fakultaeten/wirtschaftswissenschaften/fakultaet/lehrende-ehemalige/pwolf/wolf_aplpack/
index.xml

See Also

—

Examples

faces()
faces(face.type=1)

faces(rbind(1:3,5:3,3:5,5:7))

data(longley)
faces(longley[1:9,],face.type=0)
faces(longley[1:9,],face.type=1)

plot(longley[1:16,2:3],bty="n")
a<-faces(longley[1:16,],plot=FALSE)
plot.faces(a,longley[1:16,2],longley[1:16,3],width=35,height=30)

set.seed(17)
faces(matrix(sample(1:1000,128,),16,8),main="random faces")

a<-faces(rbind(1:3,5:3,3:5,5:7),plot.faces=FALSE)
plot(0:5,0:5,type="n")
plot(a,x.pos=1:4,y.pos=1:4,1.5,0.7)
during Christmastime
faces(face.type=2)

hdepth hdepth of points

Description

hdepth() computes the h-depths of points.

Usage

hdepth(tp, data, number.of.directions=181)

https://www.uni-bielefeld.de/fakultaeten/wirtschaftswissenschaften/fakultaet/lehrende-ehemalige/pwolf/wolf_aplpack/index.xml
https://www.uni-bielefeld.de/fakultaeten/wirtschaftswissenschaften/fakultaet/lehrende-ehemalige/pwolf/wolf_aplpack/index.xml
https://www.uni-bielefeld.de/fakultaeten/wirtschaftswissenschaften/fakultaet/lehrende-ehemalige/pwolf/wolf_aplpack/index.xml

iconplot 11

Arguments

tp two column matrix of the coordinates of points which h-depths are needed

data two column matrix of the coordinates of the points of a data set

number.of.directions

number of directions to be checked

Details

The function hdepth computes the h-depths of the points tp relative to data set data. If data is
missing tp will also be taken as data set.

Value

the h-depths of the test points

Note

Version of bagplot: 12/2012

Author(s)

Peter Wolf

See Also

bagplot

Examples

computation of h-depths
data <- cbind(rnorm(40), rnorm(40))
xy <- cbind(runif(50,-2,2),runif(50,-2,2))
bagplot(data); text(xy, as.character(hdepth(xy,data)))

iconplot Icon Plots for Visualization of Contingency Tables

Description

An icon plot is a graphical representation of a contingency table. iconplot(computes a icon plot
of a data matrix (matrix or data frame) or of an object of class table. Based on argument grp.xy
the data set is split into groups. Similarly the graphics region is divided into panels. Then the
elements of the groups are visualized within the associated panels.

12 iconplot

Usage

iconplot(data
, grp.xy = 2 ~ 1
, grp.color = NULL
, grp.icon = NULL
, colors
, icons
, vars.to.factors
, panel.reverse.y = FALSE
, panel.space.factor = 0.05
, panel.prop.to.size = c(FALSE, FALSE)
, panel.margin = 0.03
, panel.frame = TRUE
, panel.adjust = c(0.5, 0.5)
, icon.horizontal = TRUE
, icon.stack.type = c("lt", "lb", "rt", "rb")[1]
, icon.cex = NA
, icon.aspect = 1
, icon.stack.len = NA
, icon.space.factor = 0.3
, icon.grey.levels = 2
, icon.frame = TRUE
, icon.draft = TRUE
, lab.side = c("bl", "br", "tl", "tr")[1]
, lab.parallel = c(TRUE, TRUE)
, lab.cex = 1
, lab.boxes = 2
, lab.color = c("#CCCCCC", "white")
, lab.type = c("expanded", "compact")[2]
, lab.n.max = c(20, 30)
, lab.legend = c("cols","rows","skewed","horizontal","vertical")[2]
, packer = c("icons", "numbers", "panel.legend", "stars")[1]
, panel.text = NULL
, mar = rep(1, 4)
, main
, verbose = !TRUE
, ...)

Arguments

data a data matrix, a data frame or an object of class table. Note: If the column or
dimension names are elements of the following set of reserved names:
.sign, .fraction, .color, .icon, .job.no, .x0, .x1, .y0, .y1
strange results may occur; therefore, avoid these variable names.

grp.xy a formula specifying how the data set is divided into groups and defines in
which panel an element of the data is represented. The formula y1 ~ x1 means
that the data set is split according to the levels of the variables y1 and x1 into
groups. If n.level.y1 and n.level.x1 are the numbers of levels of the two

iconplot 13

variables the plotting region is divided like a chessboard into n.level.y1 rows
and n.level.x1 columns. In this way we get n.level.y1 * n.level.x1 fields
that are called panels. In each of the panels the elements of the associated group
are represented by pictogram elements or icons.
If the argument grp.xy hasn’t been set by default the first variable of the data
set defines the grouping of the data along the x-axis and the second one the
grouping along the y-axis.
Instead of variable names the indices of the variables can be used.
The definition of recursive groupings is allowed and is expressed by operator
"+": y ~ 3 + 4 means that the horizontal range of the graphical region is split
twice: At first the segmentation of the region is computed according to variable
3, in the second step the subranges of step 1 will be divided as a function of the
levels of variable 4.
A "0" on one side of the ~ character indicates that no splitting of the correspon-
dent region is desired.

grp.color defines how the data are grouped with respect to coloring. The name of the
variable used for coloring the icons (or pictogram elements) has to be assigned
to grp.color. colors[i] defines the color of the icon belonging to the level i
of the variable fixed by grp.color.

grp.icon defines how the data are grouped with respect the associated icon. The name
of the variable used for selecting symbols or icons has to be fixed by argument
icons. The symbol (icon) representing an observation depends on its level of
the variable specified by grp.icon.
If additional variables – separated by a + character – are found the values of
these variables will be used in the call of a icon generating function. For details
see paragraph ’Details’.

colors set of colors used for pictogram elements.

icons defines the icons or the set of icons used by iconplot. If icons is a vector
icons[i] is used to represent the observations whose level of the variable fixed
by grp.icon is i. There are some alternatives to define the icons or pictogram
elements:
* default: the default symbol is a rectangle.
* vector of numbers: numbers specify plotting characters of the graphics system
similar to points(..., pch = 13).
* list of raster images: the images are used as icons.
* character vector: icons[i] with an extension indicating a pnm, ppm, jpg or
png image file: iconplot tries to use the image of the file as icon.
Otherwise icons[i] is interpreted as the name of an internal icon generating
function.
* list of functions: icons[i] is interpreted as an icon generating function and is
called to compute the icon for level i.
* list of icon descriptions. For details see paragraph "Details".
Note: If an image file is defined by an internet link it is temporarily downloaded
using tempfile() and download.file().
Note: Mixtures of these alternative definition don’t work usually. Therefore, it
is recommended to use one type of definition only.

14 iconplot

vars.to.factors

controls the transformation of variables to factors. If missing it is set to TRUE for
each of the relevant variables. If vars.to.factors is a vector and if its elements
don’t have names the variables 1:length(vars.to.factors) are transformed.
If vars.to.factors consists of named elements the names indicate the vari-
ables to be transformed.
If vars.to.factors[i] == FALSE variable i will not be transformed.
If vars.to.factors[i] == 1 variable i is transformed to a factor.
If vars.to.factors[i] < 1 the range of variable i is cut into groups in a way
that we approximately get round(1/vars.to.factors[i]) groups and each
of the groups approximately contain 100 * vars.to.factors[i] percent of
the data. If vars.to.factors[i] > 1 the range of variable i will be cut into
floor(vars.to.factors[i]) subranges of equal size and you get a factor vari-
able with floor(vars.to.factors[i]) levels.

panel.reverse.y

logical, if TRUE the vertical axis is reversed.
panel.space.factor

relative space inserted between the panels.
panel.prop.to.size

a vector containing two elements which controls the sizes of the panels. The
first entry determines the widths of the panels and the second one their heights.
panel.prop.to.size[1] == 0 means all panels are of the same width.
If panel.prop.to.size[2] == 0 the panels are of the same height. A value of
1 indicates that sizes should be computed proportional to the frequencies of the
levels. Otherwise the sizes of the panels are fixed proportional to:
frequencies^panel.prop.to.size.

panel.margin controls the margins around the regions of the panels. If this argument is a vector
of length four the elements refer to the four sides of the plot: bottom, left, top,
and right. If this argument is set to c(0, 0.1, 0.5, 0) we get no additional
margin below the panels and on the right-hand side. However, there will be an
upper margin of size 100 * 0.5 percent of the height of the area containing the
panels and a margin of size code100 * 0.1 percent of the width on the left-hand
is provided.

panel.frame logical, if TRUE a border line is drawn around each of the panels.

panel.adjust controls the adjustment of the panels within their regions. This argument mod-
ifies the internal coordinates and do usually not change the appearance of the
plot.

panel.text vector of strings. The text panel.text[i] is written into panel[i]. The texts
can be used for short describitions of the contents of the panels. To get an idea
of the numbering of the panels you can set panel.text = 1:20.

icon.horizontal

logical, if TRUE the stacks of icons or pictogram elements are plotted horizon-
tally. This argument effects the way how icons are put into the panels.

icon.stack.type

defines the method of plotting the stacks of icons: "r" or "l" are shortcuts for
"right" or "left". "t", "b" correspond to "top" and "bottom", respectively. Note:
Fractional parts of frequencies are represented by smaller icons. Adding the

iconplot 15

letter "s" (as a abbreviation for "shrinkage") to the argument icon.stack.type
both dimensions of the icons are reduced. If icon.stack.type is a vector its
elements define the different types of stacking for the panels.

icon.cex size of icons; this argument is similar to cex of points().

icon.aspect aspect ratio of icons: width / height.

icon.stack.len maximal number of icons gathered to build a stack. If this length is decreased
the number of stacks (rows or columns of icons) will increase.

icon.space.factor

relative space between two icons.
icon.grey.levels

controls the coloring of icons of class raster or images. An image from a file is
transformed to black-and-white and then recolored by color; if is.na(color)
the original image is used. icon.grey.levels defines the grey levels of the
black-and-white image as well as the recoloring. If icon.grey.levels is a
single decimal value and is in (0,1) the pixels which levels are greater than
icon.grey.levels are recolored by color. If icon.grey.levels is a single
decimal value and is in (-1,0) the pixels which levels are less than abs(icon.grey.levels)
are recolored by color. If icon.grey.levels consists of two decimal values
in (0,1) pixels which level are within the intervall of the values are recolored
by color. If icon.grey.levels is an integer icon.grey.levels > 1 a vec-
tor of equal spaced fractions in (0,1) is created. If icon.grey.levels is an
integer icon.grey.levels < -1 a vector of limits in (0,1) is created in a way
that the observed frequencies of the classes defined by the limits are equal. If
icon.grey.levels is a vector and all(icon.grey.levels < 1) puticon tries
to create different intensities of color for recoloring pixels.

icon.frame logical, if TRUE a border is drawn around each of the pictograms.

icon.draft logical, if TRUE raster images are generated by calling rasterImage() with the
setting interpolate = TRUE.

mar this argument is delivered to the graphics device via par() and manipulates the
margins of the plot.

main defines the title of the plot.

lab.side defines one or two sides that are used for margin information: "l" indicates the
"left" side, "b" identifies the "bottom" as well as "r" the "right" and "t" the "top"
side.

lab.parallel logical, if FALSE margin labels are perpendicularly constructed to the axes. If
lab.parallel is a vector the first element is used for controlling the labels of
the bottom or top side and the second one specifies the orientation of the y-
labels. If one elements is set to 0.5 the labels of the last xy grouping variable are
printed perpendicularly only.

lab.legend a character string indicating the kind of legend out of the vector
c("cols", "rows", "skewed", "horizontal", "vertical").
Assigning a number of the set 1:5 to the argument is interpreted as an index of
the set of the five types of legends.
"cols": vertical legends, side by side at the bottom side of the plot.
"rows": horizontal legends, line by line at the bottom side of the plot.

16 iconplot

"skewed": horizontal legends, line by line and the level names are rotated.
"horizontal": horizontal legends, side by side at the bottom side of the plot.
"vertical": vertical legends, line by line at the right side of the plot.

lab.cex sets the size of the characters of the labels and the legends.

lab.boxes defines the types of boxes around the margin labels: lab.boxes == 0: no boxes
are drawn.
lab.boxes >= 1: small boxes around the labels are drawn.
lab.boxes >= 2: big boxes around the labels are drawn.
lab.boxes %% 1: defines the size of the separation line between the names of
the variables and the names of the levels.

lab.color The first element defines the color of the box containing the names of variables
or levels in the margins. The second element sets the color of the separation line
between the variable names and the level names within the margins.

lab.type defines the design style of margin labeling: "c" or "e" are shortcuts for "com-
pact" or "expanded".

lab.n.max is an integer vector consisting of three elements. The first element sets the
number of characters during printing the labels of the levels. The second el-
ement defines the maximal number of level names to be plotted in the margins.
lab.n.max[3] limits the number of labels of the color- or icon-legend.

packer defines the packer(s) which are used to fill the panels. If "icons" is an element
of packer the observations will be represented by icons, pictogram elements or
symbols.
If the character string "numbers" is found in packer in each of the panels the
numbers of its observations will be printed into the areas of the panels.
The packer "panel.legend" plots the level combinations into the panels. This
may be a useful feature as long as the number of the panels is small. Other-
wise the texts of level combinations will overlap each other. The argument cex
controls the size of the text strings.

verbose logical, if TRUE internal information is printed during the computation.

... arguments that will be passed to the graphics functions and suitable ones to the
icon generating functions.

Details

iconplot() constructs an icon plot of a data matrix and a contingency table. In an icon plot each
observation of the data set is represented by a small symbol or an image called pictogram or icon.
A cell of a contingency table is visualized by a set of icons. The icons of a cell are plotted within
a rectangular region which we call panel and an icon plot consists of a lot of panels containing the
icons of the cells.

Similar to the layout of contingency tables the set of panels are arranged in a grid-like manner.
Considering a high dimensional contingency table you can concentrate on some of the variables and
can construct suitable margin tables. Equivalently you can build a lot of icon plots to emphasize
your viewpoint. By varying the actual arguments of iconplot() a huge set of appearances of plots
results and the nicest one for your purpose can be choosen. table, matrix or data frames can be
used as data input of iconplot(). Tables are allowed to have fractional or negative entries; these
cases may occur by computing the difference of two tables or by changing the units of counting.

iconplot 17

Internally a table will be expanded to a data matrix. Fractional numbers are coded in a data matrix
by the additional column or variable .fraction, to handle negative numbers the new variable .sign
is added.

The argument grp.xy of iconplot defines the variables used for grouping and splitting the data
dependent on the levels of the specified variables. Each group is represented within a panel as
stated above. Let’s have a look at an example: Consider you have a 2x3 contigency table and
would like to represent it by an icon plot. So a plot to be constructed should have 2x3 panels
and the number of icons of the panels should be given by the cell entries. To get an icon plot
with desired panel structure you define the xy-grouping by grp.xy = 1 ~ 2. This means: The data
set has to be split according to the two levels of the first variable and the y-range of the plot has
to be divided in two rows of panels. On the other side the second variable defines the grouping
concerning the the x-range and three columns of panels appear. As a result a icon plot is generated
that consists of six panels arranged in two rows and three columns. The panels of a fixed level of the
first variable are placed side by side, whereas the panels of a fixed level of the second variable are
stacked one upon the other and a layout known from a chessboard results. As an example try: x <-
as.table(matrix(1:6, 2, 3)); iconplot(x, grp.xy = 1 ~ 2) grp.xy = 0 ~ 1 + 2 leads a double
grouping on the x-axis and no vertical grouping. grp.xy = 1 + 2 ~ 3 + 4 presums four or more
variables and splits the graphics region twice along the x- and twice along the y-direction.

Within a panel the entry of one cell is represented. Several arguments control the way how the icons
are placed in a panel. The absolute size of the icons can be defined by icon.cex. icon.aspect
fixes the aspect ratio of the pictograms (width / height). The elements in a panel are assembled into
stacks; the maximal length of these stacks can be set by icon.stack.len; horizontal stacks are
plotted if icon.horizontal is TRUE. Framing icons and spacing between them is controlled by the
arguments icon.frame and icon.space.factor.

The icons or pictogram elements may be colored dependent on the levels of a variable. The variable
has to be established by argument grp.color. A set of colors can be defined by argument colors.
Accordingly, the symbols or images are determined by grp.icon and icons.

An icon or pictogram element can be generated by an icon generating function. The result of an
icon generating function describes a standardized icon by a set of segments, polygons, splines and
texts which are combined in a list. segments: segments are defined by a matrix or a data frame
of 5 or 6 columns: Columns 1 to 4 keep the coordinates of the starting and ending points of the
segments: x.0, y.0, x.1, y.1.
The 5th column contains the widths of the segments. The coordinates and the widths have to be
choosen in a way that the icon fits pretty well into a plotting field of size 100mm x 100mm assuming
the coordinates of the world window defined by: usr = c(0, 100, 0, 100).
If the 6th column is available it defines the coloring of the segments. A value of "0" codes the color
"white" and the other values are interpreted as usually: "1" means "black" and any other color is
processed as col in points, for example. An NA value instead of a color instructs iconplot() to
color the segment dependent on the associated level of the variable fixed by grp.color. Segment
objects must have the class attribute "segments".

polygon: Polygons are defined by a matrix or data frame of 2 or 3 columns. Colums 1 and 2 store
the coordinates of the vertices of the polygon. A third column fixes the coloring of the polygon.
The class attribute of this kind of element has to be set to "polygon".

spline: Splines are defined by a matrix or data frame of 3 or 4 columns. Colums 1 and 2 store the
coordinates of the points which form the basis of the spline. The third column keeps the line width
of the curve. The optional fourth column shows how to color the spline. Splines are identified by
class attribute "spline".

18 iconplot

text: Text elements of a generated icon are defined by a data frame of 3, 4 or 5 columns. The first
two columns of the object store the coordinates of the positions of the text(s). The third element
stores the text information and the fourth is used to set the size of the characters. The fifth fixes the
coloring of the text. The class attribute of a text element is "text". There are some internal icon
generating functions. Here is a list of them:
BI, TL, cross.simple, cross, circle.simple, circle, car.simple, car, nabla, walkman,
smiley.blueeye, smiley.normal, smiley, smiley.sad, mazz.man, bike, bike2, heart, bend.sign,
fir.tree, comet, coor.system.

Value

iconplot() returns a list consisting of three elements. The first element is the matrix jobs whose
lines show some attributes of the panels. In a row of this matrix you find the number of the panel
.job.no and the location of the panel (in user coordinates: xmins, xmaxs, ymins, ymaxs). The
second element is a copy of the modified data matrix which is used for the construction of the
icon plot: Besides the data delivered by the user there are columns showing the colors, icons and
coordinates of the pictogram elements. The third element contains the output of par() and describes
the graphics device during the computation; this list differs from the parameter settings after leaving
iconplot() because the state of graphics parameter before calling iconplot() is restored. These
three lists may be helpful if you want to add further graphical elements to the plot.

Note

Remark: the version of iconplot of this package is an experimental version. Therefore, in the
future some of the features may be changed and it is not sure that the function works as described
on all types of graphics devices. In case of errors feel free to write a mail. Additional information
and examples are found on the web page
https://www.uni-bielefeld.de/fakultaeten/wirtschaftswissenschaften/fakultaet/lehrende-ehemalige/
pwolf/wolf_aplpack/index.xml.

Author(s)

Hans Peter Wolf

See Also

mosaicplot, pairs, puticon

Examples

HairEyeColor data, grouping by color
iconplot(HairEyeColor,

grp.color = 1,
grp.xy = NULL,
colors = c("black", "brown", "red", "gold"),
icon.space.factor = 0,
icon.aspect = 2,
main = "grouping by color")

HairEyeColor data, grouping by color and symbols
iconplot(HairEyeColor,

https://www.uni-bielefeld.de/fakultaeten/wirtschaftswissenschaften/fakultaet/lehrende-ehemalige/pwolf/wolf_aplpack/index.xml
https://www.uni-bielefeld.de/fakultaeten/wirtschaftswissenschaften/fakultaet/lehrende-ehemalige/pwolf/wolf_aplpack/index.xml

iconplot 19

grp.icon = "Sex",
grp.color = "Hair",
grp.xy = NULL,
colors = c("black", "brown", "red", "gold"),
icons = 18:17,
icon.frame = FALSE,
lab.cex = 0.8,
icon.space.factor = 0,
lab.parallel = !FALSE,
main = "grouping by color and icons")

HairEyeColor data, grouping by x and color
iconplot(HairEyeColor,

grp.xy = "0 ~ 1",
grp.color = 2,
colors = c("black", "brown", "red", "gold"),
icon.stack.type = "tr",
icon.space.factor = c(0, 0.4),
lab.cex =0.7,
main = "grouping by x and by colors")

2-dim, 1 split in y, 1 split in x, grouping by color
iconplot(HairEyeColor,

grp.xy = "1 ~ 3",
grp.color = 2,
colors = c("brown", "blue", "brown3", "green"),
panel.frame = FALSE,
icon.stack.type = "bl",
lab.cex = 0.7,
main = "grouping by x and y and by colors")

3-dim, 2 splits in x, 1 split in x, margin labs on the right
iconplot(HairEyeColor,

grp.xy = "2 ~ 1 + 3 ",
grp.color = 2,
panel.space.factor = c(0, .1),
panel.margin = c(.05,.03,.03,.01),
icon.stack.type = "lb",
icon.stack.len = 7,
icon.frame = FALSE,
icon.space.factor = .0,
lab.parallel = c(TRUE, FALSE),
lab.color = c("lightblue","green"),
lab.side = "br",
lab.boxes = 0.2,
lab.type = "compact",
lab.cex = 0.8,
main = "grouping: 2~1+3 and by color, margin labs variations")

3-dim, 3 splits in y, icon.aspect = NA
iconplot(HairEyeColor,

grp.xy = "3 + 2 ~ 1",
grp.color = 3,
panel.margin = 0,
panel.space.factor = 0.1,
icon.stack.type = "lb",
icon.horizontal = TRUE,

20 iconplot

icon.stack.len = 5,
icon.space.factor = c(.1, .3),
icon.aspect = NA,
icon.frame = FALSE,
lab.boxes = 0.3,
lab.color = "grey",
lab.side = "tl",
lab.parallel = TRUE,
lab.cex = 0.7,
lab.type = "compact",
main = "grouping: 3 + 2 ~ 1 and by color")

3-dim, plotting characters as icons
data <- as.table(array(0:23, 2:4))
iconplot(data,

grp.xy = 1 + 2 ~ 3,
grp.color = 3,
grp.icon = 2,
icon.aspect = 2,
icon.horizontal = TRUE,
icons = 15:18,
icon.stack.type = c("lb", "lt", "rb","rt")[3],
icon.frame = FALSE,
lab.cex = .6,
lab.type = "compact",
main = "1+2 ~ 3")

3-dim contingency table: panels of different sizes, 1 split in y, 2 in x
packer numbers

because of computation time
iconplot(Titanic,

grp.xy = 1~3+2,
grp.color = 1,
packer = c("icons", "numbers"),
panel.prop.to.size = 0.5,
panel.frame = !TRUE,
panel.margin = .01,
icon.aspect = 0.15,
icon.stack.type = "lt",
icon.space.factor = 0.0,
icon.frame = FALSE,
lab.side = c("bl","br","tl","tr")[1],
lab.type = "compact",
lab.cex = 0.8,
lab.boxes = 1.1,
lab.color = "lightgreen",
lab.parallel = TRUE,
main = "different sizes of panels")

3-dim contingency table: panels of different sizes, 3 splits in y
because of computation time

iconplot(Titanic,
grp.xy = "4 + 3 + 1 ~ 0" ,
grp.color = 4,
colors = c("green", "red"),

iconplot 21

packer = c("icons", "numbers"),
panel.frame = FALSE,
panel.margin = .01,
panel.prop.to.size = .3,
panel.space.factor = 0.05,
panel.reverse.y = TRUE,
icon.space.factor = 0.5,
lab.side = "l",
lab.type = "compact",
lab.parallel = c(FALSE, TRUE),
lab.cex = 0.7,
main = "Titanic data, different sizes of panels")

3-dim contingency table: panels of different sizes
because of computation time

iconplot(Titanic,
grp.xy = "0 ~ 4 + 3 + 1 " ,
grp.color = 4,
colors = c("green", "red"),
panel.frame = FALSE,
panel.margin = .01,
panel.prop.to.size = .2,
panel.space.factor = 0.05,
panel.reverse.y = TRUE,
icon.space.factor = 0.5,
lab.side = "b",
lab.type = "compact",
lab.boxes = 0.2,
lab.parallel = c(FALSE, TRUE),
lab.cex = 0.6,
lab.color = c("lightblue"),
main = "Titanic data, different widths of panels")

3-dim contingency table: panels of different sizes, 3 splits in x
because of computation time

iconplot(Titanic,
grp.xy = 3 + 2 ~ 1,
grp.color = 2,
panel.prop.to.size = 0.66,
icon.space.factor = 0.4,
panel.space.factor = 0.1,
lab.type = "c",
lab.cex = 0.7,
lab.boxes = 1.2,
lab.color = c("lightblue"),
main = "Titanic: panel.prop.to.size = 0.66")

comparing iconplot and mosaic plot
par(mfrow = 2:1)
iconplot(HairEyeColor,

grp.xy = 2 ~ 1 + 3 ,
lab.parallel = c(TRUE, TRUE),
colors = "red",

22 iconplot

panel.reverse.y = TRUE,
panel.prop.to.size = TRUE,
icon.space.factor = 0.5,
icon.aspect = 2,
lab.cex = .6,
lab.boxes = 1,
lab.color = "grey",
lab.side = "lt",
panel.margin = c(0.00,.035,0.0,.050),
main = 'HairEyeColor: grp.xy = 2 ~ 1 + 3')

mosaicplot(HairEyeColor)
par(mfrow = c(1,1))
relative frequences
data <- as.table(Titanic / max(Titanic))
iconplot(data,

grp.xy = 1 ~ 2 + 3,
grp.color = 4,
panel.frame = FALSE,
panel.space.factor = 0.05,
icon.horizontal = !TRUE,
icon.space.factor = 0.103,
icon.stack.type = "b",
icon.aspect = 0.5,
main = "Titanic: relative frequencies", colors = c("black", "green"))

negative and fractional cell entries
because of computation time

data <- HairEyeColor; Exp <- margin.table(data, 1)
for(d in 2:length(dim(data))){

Exp <- outer(Exp, margin.table(data, d)) / sum(data)
}
Diff <- Exp - data
cat("observed:\n"); print(data)
cat("expected:\n"); print(round(Exp, 3))
cat("deviation: expected - observed:\n"); print(round(Diff,3))
iconplot(Diff,

grp.xy = 1 + .sign ~ 2 + 3,
grp.color = ".sign",
colors = c("red", "green"),
panel.reverse.y = TRUE,
panel.frame = FALSE,
icon.stack.type = c("t","b"),
lab.boxes = 1.2,
lab.color = "lightgreen",
main = "deviations from expectation: HairEyeColor")

relative differences of expectations, split according sign
data <- margin.table(Titanic, c(2,1,4)); pT <- prop.table(data)
eT <- outer(outer(margin.table(pT,1), margin.table(pT,2)), margin.table(pT,3))
data <- as.table(pT - eT); data <- data / max(data)
iconplot(data,

grp.xy = Survived + Sex + .sign ~ Class,
grp.color = ".sign",
panel.frame = FALSE,

iconplot 23

panel.reverse.y = TRUE,
panel.space.factor = 0.05,
icon.horizontal = !TRUE,
icon.stack.type = rep(c("t","b"), 2),
icon.aspect = 2,
icon.space.factor = 0.1,
lab.boxes = 1.2,
lab.color = "lightgrey",
main = "Titanic: difference to expectation")

using a foto as icon, rentals of flats in Goettingen 2015/12
rentels <-
structure(list(Rooms = c(2, 3, 2, 2, 3, 2, 2, 3, 2, NA, 2, 2,
3, 4, 4, NA, 3, 2, 3, 2, 4, 2, 1, 2), qm = c(43.13, 86, 48, 66.62,
76, 49, 59, 97, 45, 87, 46.39, 71, 65, 100, 75, 178, 94.07, 56,
97, 70, 132, 43, 24, 48), Eur = c(365, 480, 480, 660, 500, 410,
440, 1200, 450, 696, 420, 710, 747.5, 1300, 450, 990, 900, 520,
1020, 1005, 924, 610, 375, 420)), class = "data.frame",
row.names = c(NA, 24L))

fname <- system.file("src", "tm1.jpg", package="aplpack") # fname <- "tm1.jpg"
print(fname)
iconplot(rentels,

grp.xy = Eur ~ qm,
vars.to.factors = c(1, .5, .3),
panel.frame = FALSE,
panel.space.factor = 0.2,
panel.prop.to.size = 0.7,
icons = fname,
icon.frame = FALSE,
icon.space.factor = 0.05,
lab.parallel = c(TRUE, TRUE),
lab.legend = "cols",
main = "rentels of flats in Goettingen 2015/12")

size by .fractions, color by rooms
data <- cbind(rentels, .fraction = (rentels[,3] / max(rentels[,3]))^.5)
iconplot(data,

grp.xy = Eur ~ qm,
grp.color = Rooms,
vars.to.factors = c(1,.5, .3),
panel.frame = FALSE,
panel.space.factor = 0.1,
panel.prop.to.size = 0.7,
icons = fname,
icon.stack.type = "s",
icon.frame = FALSE,
icon.space.factor = 0.05,
lab.cex = 0.8,
main = "size fby .fractions, color by rooms")

jpg files as icons
because of computation time

data <- as.table(Titanic[2:3,,,,drop=FALSE]) / 10
fname1 <- system.file("src", "walkman-r.jpg", package="aplpack") # fname1 <- "walkman-r.jpg"
fname2 <- system.file("src", "pw-esch.jpg", package="aplpack") # fname2 <- "pw-esch.jpg"
p.set <- c(fname1, fname2)

24 iconplot

iconplot(data,
grp.xy = 2 ~ 3+1,
grp.color = 1,
grp.icon = 3,
icons = p.set,
colors = c("blue", "green"),
panel.space.factor = 0.05,
panel.prop.to.size = c(.5, .5, 1),
icon.aspect = 1,
icon.space.factor = .10,
icon.horizontal = TRUE,
icon.draft = FALSE,
icon.stack.type = c("lb", "lt", "rb","rt")[1],
icon.grey.levels = list(2, 10),
lab.side = "t", lab.cex = .7,
main = "walkman and pw icons, scaled subset of Titanic")

files of different types as icons
because of computation time

fname3 <- system.file("src", "pw-esch.ppm", package="aplpack") # fname3 <- "pw-esch.ppm"
fname4 <- system.file("src", "pw-esch.png", package="aplpack") # fname4 <- "pw-esch.png"
p.set <- c(fname2, fname3, fname4)
iconplot(trees,

grp.xy = Girth ~ Height,
grp.icon = Height,
grp.color = Volume,
vars.to.factors = c(Volume = 4, Girth = 3, Height = 3),
panel.space.factor = 0.05,
panel.prop.to.size = c(.7, .45),
panel.frame = FALSE,
icons = p.set,
icon.cex = 14,
icon.grey.levels = 6, icon.space.factor = 0.05)

using raster graphics objects as icons
data <- as.table(Titanic[1:2,,,,drop=FALSE])/10
image1 <- as.raster(matrix(c(1,0,1,1,0,1,1,0,1), ncol = 3, nrow = 3))
image2 <- as.raster(matrix(c(1,0,1,0,0,0,1,0,1), ncol = 3, nrow = 3))
iconplot(data,

grp.xy = 2 ~ 4+1,
grp.color = 1,
grp.icon = 4,
colors = c("blue", "green"),
icons = list(image1, image2),
icon.aspect = 1,
icon.space.factor = .10,
icon.horizontal = TRUE,
icon.draft = FALSE,
icon.stack.type = c("lb", "lt", "rb","rt")[1],
icon.grey.levels = list(2, 10),
lab.side = "t", lab.cex = .7, main = "some Titanic data")

using internal generator "fir.tree"
because of computation time

iconplot 25

data <- trees
iconplot(data,

grp.color = 3,
grp.xy = 1 ~ 2,
vars.to.factor = c(5, 5, 8),
icons = "fir.tree",
colors = rainbow(8, start = .1, end = .5),
icon.frame = FALSE,
lab.legend = 2,
lab.cex = 0.7,
main = "grouping by vars and by colors")

using different internal generators
data <- trees
iconplot(data,

grp.color = 1,
grp.xy = 1 ~ 2,
grp.icon = 2,
colors = c("orange", "green", "orange", "red"),
icons = c("nabla", "BI", "walkman", "car.simple", "bike", "circle"),
vars.to.factor = c(3,6),
lab.legend = 2,
lab.cex = 0.7,
main = "grouping by vars, by icons and by colors")

Traveller plot proposed by M. Mazziotta and A. Pareto
Mazzi.Pareto <-
structure(list(Region = c("Piemonte", "Valle d'Aosta", "Lombardia",
"Trentino-Alto Adige", "Veneto", "Friuli-Venezia Giulia", "Liguria",
"Emilia-Romagna", "Toscana", "Umbria", "Marche", "Lazio", "Abruzzo",
"Molise", "Campania", "Puglia", "Basilicata", "Calabria", "Sicilia",
"Sardegna"), Mean = c(98.74, 104.07, 101.38, 106.1, 104.38, 105.55,
102.76, 103.62, 101.84, 103.52, 102.05, 97.88, 102.9, 91.43,
94.12, 96.78, 93.55, 92.59, 96.29, 100.45), Penalty = c(0.43,
4.23, 0.64, 0.63, 0.77, 0.34, 0.29, 0.46, 0.27, 0.22, 0.15, 0.82,
1.3, 1.02, 0.37, 0.21, 2.37, 0.51, 0.31, 0.76), MPI = c(98.3,
99.84, 100.74, 105.47, 103.61, 105.21, 102.47, 103.16, 101.57,
103.3, 101.9, 97.06, 101.6, 90.42, 93.75, 96.58, 91.18, 92.08,
95.98, 99.69)), .Names = c("Region", "Mean", "Penalty", "MPI"
), row.names = c(NA, -20L), class = "data.frame")

dm <- cbind(Mazzi.Pareto,
col = as.factor(rep(1:4, 5)), # as.factor!!
row = as.factor(rep(1:5, each = 4))) # as.factor!!

iconplot(dm, verbose = !TRUE, x.text = 60, y.text = -10, #t3s
grp.xy = row ~ col,
grp.icon = 0 + Mean + Penalty + Region,
vars.to.factor = FALSE,
icons = "mazz.man",
panel.reverse.y = TRUE,
icon.space.factor = 0,
icon.frame = FALSE,
lab.parallel = TRUE,
lab.side = c("",""),
main = "Traveller plot")

26 plothulls

definition of a check list, tally or 'Krebholz'
check.list <- function(x, colors = rainbow(length(x))){

num.split <- function(x, div = 5){
x.name <- as.character(substitute(x))
xn <- lapply(x, function(x)

c(rep(div, x %/% div), if(0 < (h <- x %% div)) h)
)
len <- max(sapply(xn, length))
xn <- lapply(xn, function(x) c(x, rep(0, len - length(x))))
xn <- matrix(unlist(xn), ncol = len, byrow = TRUE)
xn <- as.table(xn)
dimnames(xn) <- list(seq(along = x), 1:len)
names(dimnames(xn)) <- c(x.name, "Blocks")
xn

}
x.split <- num.split(x)
rownames(x.split) <- paste(sep = ":", 1:length(x), x)
iconplot(x.split,

grp.xy = 1 ~ 2,
grp.col = 1,
colors = colors,
panel.space.factor = c(0.4, 0.3),
panel.frame = FALSE,
icon.stack.len = 5,
icon.space.factor = c(0.4, 0),
icon.asp = NA,
icon.frame = FALSE,
lab.side = "l",
lab.cex = 0.7,
main = paste("score of", substitute(x)))

x.split
}
set.seed(13); data <- sample(1:50, size = 15)
check.list(data)

plothulls plothulls for data peeling

Description

plothulls plots convex hulls of a bivariate data set.

Usage

plothulls(x, y, fraction, n.hull = 1, main, add = FALSE, col.hull,
lty.hull, lwd.hull, density = 0, ...)

plothulls 27

Arguments

x two column matrix of the coordinates of points of x-values of a data set

y if x is one dimensional then y contains the y-values of the data set

fraction ... of points that lies inside the hull to be plotted

n.hull number of directions sequential hulls to be plotted

main title for the graphics

add if TRUE no new plot is initialized

col.hull color(s) of the hull(s)

lty.hull line type(s) of the hull(s)

lwd.hull line width(s) of the hull(s)

density density argument of polygon() that draws the hulls

... further arguments used in the call of plot() or points()

Details

The function plothulls computes hulls of a bivariate data set using the function chull. After
finding a hull the hull maybe plotted. Then the data points of the hull will be removed and the
hull of the remaining points is computed. The style of plotting a hull depends on the setting of
col.hull, lty.hull, lwd.hull and density. density=NA has the effect that the regions of the
hulls are filled by a color. Using fraction you can plot a single hull. n.hull defines the number
of hull that should be drawn one after the other.

Value

The hull(s) are stored as a list of matrices with two columns, the innermost first and so on.

Note

Version of plothulls: 10/2013

Author(s)

Peter Wolf

References

Green, P.J. (1981): Peeling bivariate data. In: Interpreting Multivariate Data, V. Barnett (ed.), pp
3-19, Wiley. Porzio, Giovanni C., Ragozini, Giancarlo (2000): Peeling multvariate data sets: a new
approach. Quanderni di Statistica, Vol. 2.

See Also

bagplot

28 plotsummary

Examples

10 hulls computed from the faithful data and plotted
plothulls(faithful, n.hull=10, lty.hull=1)
plotting additionally a hull with 90 percent of points within the hull
plot(faithful)
plothulls(faithful, fraction=.90, add=TRUE, col.hull="red", lwd.hull=3)
hull with 10 percent of points within the hull
plothulls(faithful, fraction=.10, col.hull="red", lwd.hull=3)
first 3 hulls of the cars data set
n <- 3
plothulls(cars, n.hull=n, col.hull=1:n, lty.hull=1:n)
5 hulls represented by colored regions
n <- 5
cols <- heat.colors(9)[3:(3+n-1)]
plothulls(cars, n.hull=n, col.hull=cols, lty.hull=1:n, density=NA, col=0)
points(cars, pch=17, cex=1)
6 hulls: regions colored and boundaries shown
n <- 6
cols <- rainbow(n)
plothulls(cars, n.hull=n, col.hull=cols, lty.hull=1:n, density=NA, col=0)
plothulls(cars, n.hull=n, add=TRUE, col.hull=1, lwd.hull=2, lty=1, col=0)

plotsummary graphical summaries of variables of a data set

Description

plotsummary shows some important characteristics of the variables of a data set. For each variable
a plot is computed consisting of a barplot, an ecdf, a density trace and a boxplot.

Usage

plotsummary(data, trim = 0, types = c("stripes", "ecdf", "density", "boxplot"),
y.sizes = 4:1, design = "chessboard", main, mycols = "RB")

Arguments

data Data set for computing a graphical summary.

trim trim defines the fraction of observation for trimming on both ends of the data.

types vector of types of representation of the data set. The elements of the vector will
induce small plots which are stacked in vertical order. The first letter of the types
is sufficient for defining a type.

y.sizes defines the relative sizes of the small plots. The values are divided by their sum
to get percentages.

plotsummary 29

design if design is chessboard the graphics device is fragmented into rows and cols.
Otherwise the images of a variable build vertical stripes.

main defines a title for the graphics.

mycols allows to define some colors for the showing the regions separated by the quar-
tils.

Details

plotsummary can be use for a quick and dirty inspection of a data matrix or a list of variables.
Without further specification some representation of each of the variables is built and stacked into a
plot. The sizes of the types of representation can be set as well as the layout design of the graphics
device. It is helpful to trim the data before processing because outliers will often hide the interesting
characteristics.

Author(s)

Peter Wolf, pwolf@wiwi.uni-bielefeld.de

See Also

pairs, summary, str

Examples

##---- Should be DIRECTLY executable !! ----
##-- ==> Define data, use random,
##--\tor do help(data=index) for the standard data sets.
plotsummary(cars)
plotsummary(cars, types=c("ecdf", "density", "boxplot"),

y.sizes = c(1,1,1), design ="stripes")
plotsummary(c(list(rivers=rivers, co2=co2), cars), y.sizes=c(10,3,3,1), mycols=3)
plotsummary(cars, design="chessboard")
find all matrices in your R
ds.of.R <- function(type="vector"){

dat <- ls(pos=grep("datasets",search()))
dat.type <- unlist(lapply(dat,function(x) {

num <- mode(x<-eval(parse(text=x)))
num <- ifelse(is.array(x),"array",num)
num <- ifelse(is.list(x),"list",num)
num <- ifelse(is.matrix(x),"matrix",num)
num <- ifelse(is.data.frame(x),"matrix",num)
num <- ifelse(num=="numeric","vector",num)
num }))

return(dat[dat.type==type])
}
namelist <- ds.of.R("matrix")
inspect the matrices one after the other
for(i in seq(along=namelist)){

print(i); print(namelist[i])
xy <- get(namelist[i])

30 puticon

plotsummary(xy,y.sizes=4:1,trim=.05,main=namelist[i])
Sys.sleep(1)

}

puticon Add Icon(s) to a Plot

Description

puticon() draws icons at the coordinates given by x and y.

Usage

puticon(x = 0, y = 0, icon = "", grey.levels = 0.5, icon.cex = 10,
color = "red", ..., adj = c(0.5, 0.5), xpd = NA)

Arguments

x, y numeric vectors of coordinates where to plot icon(s). If x is missing some infor-
mation about internal icon generators are printed or plotted.

icon icon to use. There are several ways to define an icon: If icon is a file name with
one of the extensions c(".jpg", ".JPG", ".pnm", ".PNM", ".png", ".PNG")
puticon() tries to use the graphics file to plot the icon(s). To read jpeg and png
files the functions jpeg and png of the packages jpeg and png are called. Note:
If an image file is defined by an internet link it is temporarily downloaded using
tempfile() and download.file().
If icon is a number a central symbol is plotted by invoking points. Remark:
Usually the width of central symbols are a little bit smaller than par()$cin[1]*0.75.
Therefore, it may be necessary to increase icon.cex to get an icon of a suitable
size. If icon is a raster graphics object this object is used as icon. If icon is a
string and if it is the name of an in internal icon generator (function) this gener-
ator is used to generate the icon(s). In the moment the following generators are
implemented:
BI, TL, cross.simple, cross, circle.simple, circle, car.simple, car,
nabla, walkman, smiley.blueeye, smiley.normal, smiley, smiley.sad, mazz.man,
bike, bike2, heart, bend.sign, fir.tree, comet, coor.system. If icon
is a function it is used as an icon generating function.

grey.levels An image from a file is transformed to black-and-white and then recolored by
color; if is.na(color) the original image is used. grey.levels defines the
grey levels of the black-and-white image as well as the recoloring. If grey.levels
is a single decimal value and is in (0,1) the pixels which levels are greater than
grey.levels are recolored by color. If grey.levels is a single decimal value
and is in (-1,0) the pixels which levels are less than abs(grey.levels) are re-
colored by color. If grey.levels consists of two decimal values in (0,1) pix-
els which level are within the intervall of the values are recolored by color. If
grey.levels is an integer grey.levels > 1 a vector of equal spaced fractions

puticon 31

in (0,1) is created. If grey.levels is an integer grey.levels < -1 a vector of
limits in (0,1) is created in a way that the observed frequencies of the classes de-
fined by the limits are equal. If grey.levels is a vector and all(grey.levels
< 1) puticon tries to create different intensities of color for recoloring pixels.

icon.cex size(s) of icon(s) in mm. If icon.cex < 1 it is interpreted as ratio (width of icon)
/ (width of plotting area (par()$pin[1])) and is transformed to mm.

color color(s) to be used for the pictogram(s). color can be a color code or name, for
details see section Color Specification of the help of par.

... Further parameters to be passed to the icon generating function.

adj adj one or two values usually lying in [0, 1] and which specify the x (and y)
adjustment of the icon(s).

xpd controls clipping. See help of par for further explainations.

Details

For details concerning icon generating function see the help of iconplot(). If puticon() is called
without argument x and icon is an empty string a list of internal generators will be returned. If x is
missing and icon is the name of an internal generator a standardized version of the icon is plotted
and the arguments of the generator (function) are printed.

Value

Usually Null is returned. However, if no coordinates are set and the name of an internal generator
is assigned to icon puticon returns the definition of the generator function.

Note

Remark: the version of puticon of this package is an experimental version. Therefore, in the future
some of the features may be changed and it is not sure that the function works as described on all
types of graphics devices. In case of errors feel free to write a mail. Additional information and
examples are found on the web page
https://www.uni-bielefeld.de/fakultaeten/wirtschaftswissenschaften/fakultaet/lehrende-ehemalige/
pwolf/wolf_aplpack/index.xml.

Author(s)

Peter Wolf

References

under construction

See Also

points, rasterImage, iconplot

https://www.uni-bielefeld.de/fakultaeten/wirtschaftswissenschaften/fakultaet/lehrende-ehemalige/pwolf/wolf_aplpack/index.xml
https://www.uni-bielefeld.de/fakultaeten/wirtschaftswissenschaften/fakultaet/lehrende-ehemalige/pwolf/wolf_aplpack/index.xml

32 puticon

Examples

representation of data set "trees" by plotting characters
x <- trees[,1]; y <- trees[,2]; colors <- rainbow(100)[floor(trees[,3])]
plot(x, y, type = "n")
puticon(x, y, icon = 1, color = colors, icon.cex = 15, lwd = 6)
for(i in seq(along = x)){

puticon(x[i], y[i], icon = i - 25 * (i > 25),
color = "red", icon.cex = 7, lwd = 4)

}
representation of data set "trees" by fir.tree icons
x <- trees[,1]; y <- trees[,2]; colors <- rainbow(100)[floor(trees[,3])]
plot(x, y, type = "n")
puticon(x, y, icon = "fir.tree", icon.cex = 10, color = colors,

height = y / 50, width = x / 10)
standardized design of icon generator "fir.tree" and its definition
puticon(icon = "fir.tree")
list of implemented icon generators / generator functions
puticon()
demo of internal icon generator functions
h <- puticon(); n <- length(h); y <- 1 + ((1:n)-1)
plot(1:n, xlim = c(0, n + 4), ylim = c(0, n / 2 + 4), type = "n")
for(i in 1:n)

puticon(i, y[i] + (0:1), h[i], icon.cex = 3 + (1:2) , color = 3:4)
text(1:n - 0.3, y - 1, h, adj = c(0, 0.5))
some smileys and Bielefeld logos of different colors and different sizes
plot(1:100, type = "n")
n <- 15; set.seed(26); x <- seq(10, 90, length = n); y <- runif(n, 10, 90)
sizes <- 5 + (1:n) / 4; my.color <- rainbow(n); h <- 2 + (1:n)^0.5
puticon(x, y, icon = "BI", icon.cex = sizes, color = my.color)
puticon(x + h, y + h, icon = "smiley", color = my.color, icon.cex = sizes)

icons with some letters
n <- 150; plot(1:n, 1:n, type = "n", xlab ="", ylab = "")
x <- runif(n, 1, n); y <- runif(n, 1, n); colors <- sample(rainbow(n))
for(i in 1:n)

puticon(x[i], y[i], icon = "TL", icon.cex = 20,
shiftY = runif(1, -10, 10), color = colors[i],
L = paste(sample(letters, sample(1:5, size = 1)), collapse = ""))

a modern painting
plot(1:20, xlim = c(-7,22), ylim = c(-7,22), type = "n", axes = FALSE,

xlab ="", ylab = "")
rect(-7, -7, 22, 22, col = "gray")
n <- 100; set.seed(13); colors <- sample(rainbow(n)); CEX <- sort(runif(n, 2, 21))
for(i in 1:n){
icon <- c("cross.simple", "cross", "circle.simple", "circle")[[sample(1:4, 1)]]
puticon(runif(1, -5,20), runif(1, -5, 20), icon,

icon.cex = CEX[i], z = runif(1, 0.20, 0.45),
whole = runif(1, 0.1, 0.6), color = colors[i])

}

Traveller plot proposed by M. Mazziotta and A. Pareto.
M. Mazziotta, A. Pareto (2016):

puticon 33

Non-compensatory Aggregation of Social Indicaters: An Icon Representation.
url{http://link.springer.com/chapter/10.1007/978-3-319-05552-7_33}
Mazzi.Pareto <-
structure(list(Region = c("Piemonte", "Valle d'Aosta", "Lombardia",
"Trentino-Alto Adige", "Veneto", "Friuli-Venezia Giulia", "Liguria",
"Emilia-Romagna", "Toscana", "Umbria", "Marche", "Lazio", "Abruzzo",
"Molise", "Campania", "Puglia", "Basilicata", "Calabria", "Sicilia",
"Sardegna"), Mean = c(98.74, 104.07, 101.38, 106.1, 104.38, 105.55,
102.76, 103.62, 101.84, 103.52, 102.05, 97.88, 102.9, 91.43,
94.12, 96.78, 93.55, 92.59, 96.29, 100.45), Penalty = c(0.43,
4.23, 0.64, 0.63, 0.77, 0.34, 0.29, 0.46, 0.27, 0.22, 0.15, 0.82,
1.3, 1.02, 0.37, 0.21, 2.37, 0.51, 0.31, 0.76), MPI = c(98.3,
99.84, 100.74, 105.47, 103.61, 105.21, 102.47, 103.16, 101.57,
103.3, 101.9, 97.06, 101.6, 90.42, 93.75, 96.58, 91.18, 92.08,
95.98, 99.69)), .Names = c("Region", "Mean", "Penalty", "MPI"
), row.names = c(NA, -20L), class = "data.frame")
plot(0, xlim = c(0.5, 4.5), ylim = c(0.83, 4.9),

axes = FALSE,xlab = "", ylab = "")
x <- rep(1:4,5) - 1; y <- rep(5:1, each = 4)
puticon(x, y, "mazz.man", icon.cex = 15, color = 1,

Mean = Mazzi.Pareto$Mean, Penalty = Mazzi.Pareto$Penalty,
Region = Mazzi.Pareto$Region, x.text = 70, y.text = -10)

some cars
plot(1:1000, type = "n", axes = FALSE, xlab = "", ylab = "")
n <- 200; set.seed(13); x <- runif(n, -100, 1100); y <- runif(n, -100, 1100)
colors <- sample(rainbow(n))
for(i in 1:n){

puticon(x[i], y[i], icon = "car", icon.cex = runif(1, 10, 20),
width = runif(1, 0, 1), height = runif(1, 0, 1), color = colors[i])

}
fuzzy scatter plots as icons
plot(-30:120, -30:120, type = "n", axes = FALSE, xlab = "", ylab = "")
set.seed(13)
puticon(50, 50, icon = "coor.system", icon.cex = .8, color = "blue",

xxx = list(rnorm(20, 50, 15)), yyy = list(rnorm(100, 50, 15)*1000),
axes = TRUE)

puticon(x = c(20, 100, 95), y = c(100, 110, -45), icon = "coor.system",
icon.cex = c(20, 30), color = c("green", "red", "magenta"),
xxx = list(c(30, 50, 70), c(10, 20), c(80, 90, 10)),
yyy = list(c(20, 60, 30), c(10, 20), c(10, 80, 90)), pcex = 10)

Marilyn Monroe or R icons via internet
plot(1:20, type = "n", axes = FALSE, xlab = "", ylab = "")
f1 <- "http://www.radiopaula.cl/wp-content/uploads/2014/03/marilyn-monroe-3-andrew-fare.jpg"
Not run: puticon(15, 17, icon = f1, icon.cex = 40, color = NA)
Not run: puticon(c(6, 9, 12, 15), c(15, 13, 11, 9), icon = f1, icon.cex = 20,

color = rainbow(4), grey.levels = 20)
End(Not run)
Not run: puticon(4, 8, icon = f1, icon.cex = 40, color = "green", grey.levels = c(0.5, 0.9))
Not run: puticon(10, 4, icon = f1, icon.cex = 40, color = "blue", grey.levels = c(0.0, 0.6))
plot(1:20, type = "n", axes = FALSE, xlab = "", ylab = "")
f1 <- "https://developer.r-project.org/Logo/Rlogo-4.png"
Not run: puticon(15, 17, icon = f1, icon.cex = 40, color = NA)
Not run: puticon(c(6, 9, 12, 15), c(15, 13, 11, 9), icon = f1, icon.cex = 20,

34 puticon

color = rainbow(4), grey.levels = 20)
End(Not run)
Not run: puticon(4, 8, icon = f1, icon.cex = 40, color = "green", grey.levels = c(0.5, 0.9))
Not run: puticon(10, 4, icon = f1, icon.cex = 40, color = "blue", grey.levels = c(0.0, 0.6))
simple raster graphics
plot(1:20, pch = 1:20)
puticon(1:20, sample(1:20), icon = 15, icon.cex = 20)
image1 <- as.raster(matrix(c(1,1,1,1,0,1,1,1,1), ncol = 3, nrow = 3))
image2 <- as.raster(matrix(c(0,1,0,1,0,1,0,1,0), ncol = 3, nrow = 3))
image3 <- as.raster(matrix(c(0,0,0,0,1,0,0,0,0), ncol = 3, nrow = 3))
puticon(7, 14, icon = image1, icon.cex = .5, col = "orange")
puticon(c(5, 10), c(5,5), icon = image2, icon.cex = c(.1, .2), color = 3:4)
puticon(17, 10, icon = image3, icon.cex = .30, col = "yellow")
demo "my.house" of writing a generator function to generate icons
my.house <- function(col1 = 2, col2 = 3, col3 = 4){
initialize result object
result <- NULL
compose object of type "polygon" consisting of
x-, y-values and colors
x <- c(0, 1, 1, 0, 0, 1, 0.5, 0, 1) * 55 + 20
y <- c(0, 0, 1, 1, 0, 1, 1.65, 1, 0) * 55 + 5
res <- data.frame(x, y, color = col2)
add class "polygon" to the object and store it in "result"
class(res) <- c(class(res), "polygon"); result <- c(result, list(res))
compose another object of type "polygon"
res <- data.frame(x[c(1, 3, 4, 2)], y[c(1, 3, 4, 2)], color = col3)
add class "polygon" to the object and store it in "result"
class(res) <- c(class(res), "polygon"); result <- c(result, list(res))
n <- length(x)
compose object of type "segments" consisting of
x1-, y1-, x2-, y2-values, line widths and colors
res <- data.frame(x[-n], y[-n], x[-1], y[-1], lwd.mm = 5, color = col1)
add class "segments" to the object and store it in "result"
class(res) <- c(class(res), "segments"); result <- c(result, list(res))
output result object
result

}
plot(1:100, type = "n")
n <- 50; x <- runif(n, 10, 90); y <- runif(n, 10, 90)
colors <- rainbow(n); sizes <- 5 + sample(1:n) / 2
puticon(x, y, icon = my.house, icon.cex = sizes,

col1 = sample(colors), col2 = sample(colors), col3 = sample(colors))
demo "my.star" of writing a generator function to generate icons
my.star <- function(xx = 1:5, max.xx, star.txt = "..."){

if(missing(max.xx)) max.xx <- max(xx)
n <- length(xx); xx <- 50 * xx / max.xx
colors <- rainbow(n); result <- NULL
compose object of type "segments" consisting of
x1-, y1-, x2-, y2-values, line widths and colors
if(n > 1){

x <- sin(2 * pi * (1:n) / n) * xx + 50
y <- cos(2 * pi * (1:n) / n) * xx + 50
res <- data.frame(50, 50, x, y, lwd.mm = 2, color = colors)

skyline.hist 35

} else {
res <- data.frame(50, 50, x, y, width = 30, color = colors)

}
add class "segments" to the object and store it in "result"
class(res) <- c(class(res), "segments"); result <- c(result, list(res))
compose object of type "text" consisting of
x-, y-values, text, sizes of the text and colors
res <- data.frame(85, 20, txt = star.txt, t.cex.mm = 20, color = "blue")
add class "text" to the object and store it in "result"
class(res) <- c(class(res), "text"); result <- c(result, list(res))
output result object
result

}
plot(1:100, type = "n")
for(i in 1:10){

puticon(runif(1, 0, 100), runif(1, 0, 100), icon = my.star, icon.cex = 20,
xx = list(runif(14, 2, 10)), max.xx = 10, star.txt = letters[i])

}

skyline.hist skyline.hist computes a skyline plot which is special histogram.

Description

The function skyline.hist draws several histograms in one plot. The resulting image may look
like a skyline.

Usage

skyline.hist(x, n.class, n.hist = 1, main, ylab="density",
night = FALSE, col.bars = NA, col.border = 4, lwd.border = 2.5,

n.shading = 6, lwd.shading = 2, col.shading = NA, lty.shading = 3,
pcol.data = "green", cex.data = 0.3, pch.data = 16, col.data = 1,
lwd.data = .2, permutation = FALSE,
xlab, xlim, ylim, new.plot=TRUE, bty="n", ...)

Arguments

x one dimensional data set.

n.class number of classes that should be used to find the width of the bars of the his-
togram(s).

n.hist number of histograms that should be plotted.

main used for call of title.

ylab text for y axis.

night If TRUE the background will be colored blue. If FALSE there will be no colored
background. Otherwise night is used as background color.

36 skyline.hist

col.bars defines the color of the bars. If is.na(col.bars) and night==TRUE the bars
will be colored gray.

col.border color of the borders of the bars.

lwd.border line width of the borders of the bars.

n.shading number of vertical lines for filling the bars of the histograms.

lwd.shading line width of the vertical lines for shading the bars.

col.shading color for the vertical lines for shading. If NA heat colors are used.

lty.shading line type for the vertical lines for shading.

pcol.data color of data points.

cex.data character size of plotting character.

pch.data plotting character of data points.

lwd.data line width for segments between data points.

col.data color for segments between data points.

permutation if not FALSE a permutation of the data set is erformed.

xlab text for y axis.

xlim range of x.

ylim range of y.

new.plot logical. If TRUE a new plot is constructed.

bty box type, used by plot.

... further graphical parameters passed to plot.

Details

skyline.hist computes several histograms and plots them one upon the other. The histograms
differ in the positions of the first cells, but all cells have the same width. The parameters n.class
and n.hist have the greatest effect on the design of the result. col.border allows to color the
border of the rectangular boxes of the histogram bars. col.bars defines the fill color of the bars.
n.shading defines the number of vertical lines of type lty.shading and width lwd.shading that
are drawn within the boxes. Another feature of skyline.hist is to represent the data points. The
data points of a cell are plotted according their x-values and their ranks (within the points of the
cell). The resulting points are connected by line segments and you will see a time series running
from bottom to top in each cell. The points and lines can be specified by pcol.data, cex.data,
pch.data, lwd.data, col.data. To get rid of the original order of the data you can permutated
them (permutation=1). The "skyline" of the plot may be similar to the skyline of a town and
the vertical lines may look like small windows of buildings. In Young et. al. you find "shaded
histograms". These histograms have triggered the idea of skyline.hist and the representation of
a one dimensional data set by laying histograms on top of otheroverlied histograms.

Value

The result of a call of hist is returned.

Author(s)

Peter Wolf, pwolf@wiwi.uni-bielefeld.de

skyline.hist 37

References

F.W. Young, R.M. Valero-Mora, M. Friendly (2006): Visual Statistics. Wiley, p207–208.

See Also

hist, density

Examples

dev.off()
print(par())

par(mfrow=c(1,1))
for(n.c in c(2,4,8)){ # some values for n.class

for(n.h in c(2,4,3)){# some values for number of n.hist
n.s <- 9 # value for number of vertical lines
skyline.hist(co2, n.shading = n.s, n.hist = n.h ,n.class = n.c,

night = n.h==3, col.border = n.h!=4)
}

}
par(mfrow = c(1,1))
skyline.hist(x=rivers, n.class=4, n.hist=2, n.shading=0, main="rivers",

cex.data=.5, lwd.data = .2, col.data = "green", pcol.data = "red",
col.border=NA, night=FALSE, ylab="density")

skyline.hist(x=rivers, n.class=4, n.hist=5, n.shading=0, main="rivers",
cex.data=.5, lwd.data = 1, col.data = "green", pcol.data = "red",
col.border=NA, night="blue" , ylab="density", col.bars =NA)

skyline.hist(x=rivers, n.class=10, n.hist=2, n.shading=0, main="rivers",
cex.data=.5, lwd.data = 1, col.data = "green", pcol.data = "red",
col.border=NA, night=FALSE , ylab="density", col.bars = "lightblue")

skyline.hist(x=rivers, n.class=10, n.hist=1, n.shading=0, main="rivers",
cex.data=1, lwd.data = 0, col.data = "green", pcol.data = "red",
col.border=NA, night=FALSE , ylab="density", col.bars = "lightblue")

skyline.hist(x=rivers, n.class=6, n.hist=1, n.shading=0, main="rivers",
cex.data=0.1, lwd.data = 2, col.data = "red", pcol.data = "green",
night="orange" , ylab="density", col.bars = "white", col.border=1)

skyline.hist(x=rivers, n.class=6, n.hist=1, n.shading=0, main="rivers",
cex.data=0.1, lwd.data = 2, col.data = "red", pcol.data = "green",
col.border=NA, night=FALSE , ylab="density", col.bars = "lightblue")

skyline.hist(x=rivers, n.class=6, n.hist=1, n.shading=5, col.shading = "blue",
main="rivers",
cex.data=0.1, lwd.data = 1, col.data = "black", pcol.data = "green",
col.border=NA, night=FALSE , ylab="density", col.bars = "green")

skyline.hist(x=rivers, n.class=6, n.hist=3, n.shading=5, col.shading = "blue",
main="rivers", col.bars = "green",
cex.data=0.1, lwd.data = 1, col.data = "black", pcol.data = "green",
col.border="white", night="magenta" , ylab="density")

skyline.hist(x=rivers, n.class=6, n.hist=4, n.shading=5, col.shading = "blue",
main="rivers",
cex.data=0.8, lwd.data = 1, col.data = "blue", pcol.data = "red",
col.border=NA, night=FALSE , ylab="density", col.bars = "green")

38 slider

slider slider / button control widgets

Description

slider and gslider construct a Tcl/Tk-widget with sliders and buttons to demonstrate the effects
of variation of parameters on calculations and plots.

Usage

slider(sl.functions, sl.names, sl.mins, sl.maxs, sl.deltas, sl.defaults, but.functions,
but.names, no, set.no.value, obj.name, obj.value, reset.function, title, prompt=FALSE,
sliders.frame.vertical=TRUE)

gslider(sl.functions, sl.names, sl.mins, sl.maxs, sl.deltas, sl.defaults, but.functions,
but.names, no, set.no.value, obj.name, obj.value, reset.function, title, prompt=FALSE,
sliders.frame.vertical=TRUE, hscale=1, vscale=1,
pos.of.panel = c("bottom","top","left","right")[1])

Arguments

sl.functions set of functions or function connected to the slider(s)

sl.names labels of the sliders

sl.mins minimum values of the sliders’ ranges

sl.maxs maximum values of the sliders’ ranges

sl.deltas change of step per click

sl.defaults default values for the sliders

but.functions function or list of functions that are assigned to the button(s)

but.names labels of the buttons

no slider(no=i) requests slider i

set.no.value slider(set.no.value=c(i,val)) sets slider i to value val

obj.name slider(obj.name=name) requests the value of variable name from environment
slider.env

obj.value slider(obj.name=name,obj.value=value) assigns value to variable name
in environment slider.env

reset.function function that induce a reset.button and contains the commands of it.

title title of the control window

prompt if TRUE slider functions are called by moving a slider, if FALSE slider functions
are called after releasing the mouse button

sliders.frame.vertical

if TRUE the sliders are stacked one above the other; otherwise they are posi-
tioned side by side

slider 39

hscale horizontal scale factor for image size; compare tkrplot in package tkrplot

vscale vertical scale factor for image size; compare tkrplot in package tkrplot

pos.of.panel position of the panel field for sliders and buttons. Value of pos.of.panel: bot-
tom, top, left or right.

Details

slider constructs a separated panel for controlling the parameters whereas gslider integrates a
graphical device and buttons and sliders within one window.

The following actions can be done: a) definition of (multiple) sliders and buttons, b) request or spec-
ification of slider values, and c) request or specification of variables in the environment slider.env.
The management takes place in the environment slider.env. If slider.env is not found it is gen-
erated.

Definition ... of sliders: First of all you have to define sliders, buttons and the attributes of them.
Sliders are established by six arguments: sl.functions, sl.names, sl.minima, sl.maxima,sl.deltas,
and sl.defaults. The first argument, sl.functions, is either a list of functions or a single func-
tion that contains the commands for the sliders. If there are three sliders and slider 2 is moved with
the mouse the function stored in sl.functions[[2]] (or in case of one function for all sliders the
function sl.functions) is called.

DEFINITION ... of buttons: Buttons are defined by a vector of labels but.names and a list of
functions: but.functions. If button i is pressed the function stored in but.functions[[i]] is
called.

REQUESTING ... a slider: slider(no=1) returns the actual value of slider 1, slider(no=2)
returns the value of slider 2, etc. You are allowed to include expressions of the type slider(no=i)
in functions describing the effect of sliders or buttons.

SETTING ... a slider: slider(set.no.value=c(2,333)) sets slider 2 to value 333. slider(set.no.value=c(i,value))
can be included in the functions defining the effects of moving sliders or pushing buttons.

VARIABLES ... of the environment slider.env: Sometimes information has to be trransferred
back and forth between functions defining the effects of sliders and buttons. Imagine for example
two sliders: one to control p and another one to control q, but they should satisfy: p+q=1. Conse-
quently, you have to correct the value of the first slider after the second one was moved. To prevent
the creation of global variables store them in the environment slider.env. Use slider(obj.name="p.save",obj.value=1-slider(no=2))
to assign value 1-slider(no=2) to the variable p.save . slider(obj.name=p.save) returns the
value of variable p.save.

Dependencies The function gslider depends on package tkrplot.

Value

Using slider in definition mode slider returns the value of new created the top level widget.
slider(no=i) returns the actual value of slider i. slider(obj.name=name) returns the value of
variable name in environment slider.env. gslider return in definition mode the result of tkrplot
which was called to construct the widget.

Author(s)

Hans Peter Wolf

40 slider

Examples

example 1, sliders only
if(interactive()){
This example cannot be run by examples() but should work in an interactive R session
plot.sample.norm<-function(){
refresh.code<-function(...){
mu<-slider(no=1); sd<-slider(no=2); n<-slider(no=3)
x<-rnorm(n,mu,sd)
plot(x)

}
slider(refresh.code,sl.names=c("value of mu","value of sd","n number of observations"),

sl.mins=c(-10,.01,5),sl.maxs=c(+10,50,100),sl.deltas=c(.01,.01,1),sl.defaults=c(0,1,20))
}
plot.sample.norm()
}

example 2, sliders and buttons
if(interactive()){
This example cannot be run by examples() but should work in an interactive R session
plot.sample.norm.2<-function(){
refresh.code<-function(...){
mu<-slider(no=1); sd<-slider(no=2); n<-slider(no=3)
type= slider(obj.name="type")
x<-rnorm(n,mu,sd)
plot(seq(x),x,ylim=c(-20,20),type=type)

}
slider(obj.name="type",obj.value="l")
slider(refresh.code,sl.names=c("value of mu","value of sd","n number of observations"),

sl.mins=c(-10,.01,5),sl.maxs=c(10,10,100),sl.deltas=c(.01,.01,1),sl.defaults=c(0,1,20),
but.functions=list(

function(...){slider(obj.name="type",obj.value="l");refresh.code()},
function(...){slider(obj.name="type",obj.value="p");refresh.code()},
function(...){slider(obj.name="type",obj.value="b");refresh.code()}

),
but.names=c("lines","points","both"))

}
plot.sample.norm.2()
}

example 2a, sliders and buttons and graphics in one window
if(interactive()){
This example cannot be run by examples() but should work in an interactive R session
plot.sample.norm.2<-function(){
refresh.code<-function(...){
mu<-slider(no=1); sd<-slider(no=2); n<-slider(no=3)
type= slider(obj.name="type")
x<-rnorm(n,mu,sd)
plot(seq(x),x,ylim=c(-20,20),type=type)

}
slider(obj.name="type",obj.value="l")
gslider(refresh.code,sl.names=c("value of mu","value of sd","n number of observations"),

slider 41

sl.mins=c(-10,.01,5),sl.maxs=c(10,10,100),sl.deltas=c(.01,.01,1),sl.defaults=c(0,1,20),
but.functions=list(

function(...){slider(obj.name="type",obj.value="l");refresh.code()},
function(...){slider(obj.name="type",obj.value="p");refresh.code()},
function(...){slider(obj.name="type",obj.value="b");refresh.code()}

),
but.names=c("lines","points","both"))

}
plot.sample.norm.2()
}

example 3, dependent sliders
if(interactive()){
This example cannot be run by examples() but should work in an interactive R session
print.of.p.and.q<-function(){
refresh.code<-function(...){
p.old<-slider(obj.name="p.old")
p<-slider(no=1); if(abs(p-p.old)>0.001) {slider(set.no.value=c(2,1-p))}
q<-slider(no=2); if(abs(q-(1-p))>0.001) {slider(set.no.value=c(1,1-q))}
slider(obj.name="p.old",obj.value=p)
cat("p=",p,"q=",1-p,"\n")

}
slider(refresh.code,sl.names=c("value of p","value of q"),

sl.mins=c(0,0),sl.maxs=c(1,1),sl.deltas=c(.01,.01),sl.defaults=c(.2,.8))
slider(obj.name="p.old",obj.value=slider(no=1))

}
print.of.p.and.q()
}

example 4, rotating a surface
if(interactive()){
This example cannot be run by examples() but should work in an interactive R session
R.veil.in.the.wind<-function(){

Mark Hempelmann / Peter Wolf
par(bg="blue4", col="white", col.main="white",

col.sub="white", font.sub=2, fg="white") # set colors and fonts
refresh.code<-function(...){

samp <- function(N,D) N*(1/4+D)/(1/4+D*N)
z<-outer(seq(1, 800, by=10), seq(.0025, 0.2, .0025)^2/1.96^2, samp) # create 3d matrix
h<-100
z[10:70,20:25]<-z[10:70,20:25]+h; z[65:70,26:45]<-z[65:70,26:45]+h
z[64:45,43:48]<-z[64:45,43:48]+h; z[44:39,26:45]<-z[44:39,26:45]+h
x<-26:59; y<-11:38; zz<-outer(x,y,"+"); zz<-zz*(65<zz)*(zz<73)
cz<-10+col(zz)[zz>0];rz<-25+row(zz)[zz>0]; z[cbind(cz,rz)]<-z[cbind(cz,rz)]+h
theta<-slider(no=1); phi<-slider(no=2)
persp(x=seq(1,800,by=10),y=seq(.0025,0.2,.0025),z=z,theta=theta,phi=phi,

scale=T, shade=.9, box=F, ltheta = 45,
lphi = 45, col="aquamarine", border="NA",ticktype="detailed")

}
slider(refresh.code, c("theta", "phi"), c(0, 0),c(360, 360),c(.2, .2),c(85, 270))

}
R.veil.in.the.wind()
}

42 slider.bootstrap.lm.plot

slider.bootstrap.lm.plot

interactive bootstapping for lm

Description

slider.bootstrap.lm.plot computes a scatterplot and adds regression curves of samples of the
data points. The number of samples and the degree of the model are controlled by sliders.

Usage

slider.bootstrap.lm.plot(x, y, ...)

Arguments

x two column matrix or vector of x values if y is used

y y values if x is not a matrix

... additional graphics parameters

Details

slider.bootstrap.lm.plot draws a scatterplot of the data points and fits a linear model to the
data set. Regression curves of samples of the data are then added to the plot. Within a Tcl/Tk
control widget the degree of the model, the repetitions and the start of the random seed are set.
After modification of a parameter the plot is updated.

Value

a message about the usage

Author(s)

Hans Peter Wolf

References

~~

See Also

plot

slider.brush 43

Examples

Not run:
This example cannot be run by examples() but should be work in an interactive R session

daten<-iris[,2:3]
slider.bootstrap.lm.plot(daten)

End(Not run)

slider.brush interactive brushing functions

Description

These functions compute a pairs plot or a simple xy-plot and open a slider control widget for brush-
ing.

slider.brush.pairs computes a pairs plot; the user defines an interval for one of the variables
and in effect all data points in this interval will be recolored.

slider.brush.plot.xy computes an xy-plot; the user defines a interval for a third variable z and
all points (x,y) will be recolored red if the z value is in the interval.

Usage

slider.brush.pairs(x, ...)
slider.brush.plot.xy(x, y, z, ...)

Arguments

... new settings for global graphics parameters

x matrix or data frame or vector

y vector of y values if x is not a matrix

z vector of z values if x is not a matrix

Details

slider.brush.pairs draws a pairs plot of the data set x. The first slider defines the lower limit of
the interval and the second its width. By the third slider a variable is selected. All data points for
which the selected variable is in the interval are recolored red.

slider.brush.plot.xy draws an xy-plot of the data set x. The first slider defines the lower limit
of the interval of z values and the second one its width. All data points for which the variable z is
in the interval are recolored red.

Value

a message about the usage

44 slider.hist

Author(s)

Hans Peter Wolf

References

W. S. Cleveland, R. A. Becker, and G. Weil. The Use of Brushing and Rotation for Data Analysis.
InW. S. Cleveland and M. E. McGill, editors, Dynamic Graphics for Statistics. Wadsworth and
Brooks/Cole, Pacific Grove, CA, 1988.

See Also

pairs, plot

Examples

Not run:
This example cannot be run by examples() but should be work in an interactive R session

slider.brush.pairs(iris)

End(Not run)
Not run:
This example cannot be run by examples() but should be work in an interactive R session

slider.brush.plot.xy(iris[,1:3])

End(Not run)

slider.hist interactive histogram and density traces

Description

The functions slider.hist and slider.density compute histograms and density traces whereas
some parameter are controlled by sliders.

slider.hist computes a histogram; the number of classes is defined by a slider.

slider.density computes a density trace; width and type of the kernel are defined by sliders.

Usage

slider.hist(x, panel, ...)
slider.density(x, panel, ...)

Arguments

x data set to be used for plotting

panel function constructing additional graphical elements to the plot

... additional (graphics) parameters which are passed to the invoked high level plot-
ting function

slider.hist 45

Details

slider.hist draws a histogram of the data set x by calling hist and opens a Tcl/Tk widget with
one slider. The slider defines the number of classes of the histogram. Changing the slider results in
redrawing of the plot. For further details see the help page of hist. rug is used as the default panel
function.

slider.density draws a density trace of the data set x by plot(density(...)) and opens a
Tcl/Tk-widget with two sliders. The first slider defines the width of the density trace and the second
one the kernel function: "1-gaussian", "2-epanechnikov", "3-rectangular", "4-triangular","5-biweight",
"6-cosine", "7-optcosine" Changing one of the sliders results in a redrawing of the plot. For
further details see the help page of density. rug is used as the default panel function.

Value

a message about the usage

Author(s)

Hans Peter Wolf

References

~~

See Also

hist, slider

Examples

Not run:
This example cannot be run by examples() but should be work in an interactive R session

slider.hist(log(islands))

End(Not run)
Not run:
This example cannot be run by examples() but should be work in an interactive R session
slider.density(rivers,xlab="rivers",col="red")

End(Not run)
Not run:
This example cannot be run by examples() but should be work in an interactive R session
slider.density(log(rivers),xlab="rivers",col="red",

panel=function(x){
xx<-seq(min(x),max(x),length=100)
yy<-dnorm(xx,mean(x),sd(x))
lines(xx,yy)
rug(x)
print(summary(yy))

}
)

46 slider.lowess.plot

End(Not run)

slider.lowess.plot interactive lowess smoothing

Description

slider.lowess.plot computes an xy-plot of the data and adds LOWESS lines. The smoother
span and the number of iterations are selected by sliders.

Usage

slider.lowess.plot(x, y, ...)

Arguments

x data set to be used for plotting or vector of x values

y vector of y values in case x is not a matrix

... additional (graphics) parameter settings

Details

slider.lowess.plot computes a scatterplot of the data. Then a LOWESS smoother line is added
to the plot. For more details about the lowess parameters f and iter take a look at the help page of
lowess. The parameters are set by moving sliders of the control widget. The first slider defines the
smoother span f and the second one the number of iterations.

Value

a message about the usage

Author(s)

Hans Peter Wolf

References

for references see help file of lowess

See Also

lowess, slider

slider.smooth.plot.ts 47

Examples

Not run:
This example cannot be run by examples() but should be work in an interactive R session

slider.lowess.plot(cars)

End(Not run)

slider.smooth.plot.ts interactive Tukey smoothing

Description

slider.smooth.plot.ts computes smooth curves of a time series plot by Tukey’s smoothers. The
kind of smoothing is controlled by a Tcl/Tk widget.

Usage

slider.smooth.plot.ts(x, ...)

Arguments

x time series

... additional graphical parameters

Details

slider.smooth.plot.ts draws the time series x. The user selects a filter of the set c("3RS3R",
"3RSS", "3RSR", "3R", "3", "S") step by step and the resulting curve is added to the plot. The
selection is performed by pressing a button of the control widget of slider.smooth.plot.ts. The
button reset restarts the smoothing process.

Value

a message about the usage

Author(s)

Hans Peter Wolf

References

Tukey, J. W. (1977). Exploratory Data Analysis, Reading Massachusetts: Addison-Wesley.

See Also

plot, smooth

48 slider.split.plot.ts

Examples

Not run:
This example cannot be run by examples() but should be work in an interactive R session

slider.smooth.plot.ts(rnorm(100))

End(Not run)

slider.split.plot.ts interactive splitting of time series

Description

slider.split.plot.ts plots linear fitted lines or summary statistics in sections of a time series.
The sections are controlled by sliders.

Usage

slider.split.plot.ts(x, type="l", ...)

Arguments

x time series or vector

type plotting type: type will be forwarded to function plot

... additional graphics parameters

Details

slider.split.plot.ts draws a time series plot and let you define sections of the series by fixing
a limit on the time scale as well as a window width. The whole range of the series is partitioned
in pieces of the same length in a way that the fixed limit will be one of the section limits. Then
linear models are fitted and plotted in the sections. Alternatively – by pressing the button fivenum
summary – summary statistics are drawn instead of the model lines.

The first slider fixes the width of the sections and the second one the limit between two of them.

By clicking on button linear model or fivenum summary the user switches between drawing model
curves and five number summary.

Value

a message about the usage

Author(s)

Hans Peter Wolf

See Also

plot

slider.stem.leaf 49

Examples

Not run:
This example cannot be run by examples() but should be work in an interactive R session

slider.split.plot.ts(as.vector(sunspots)[1:100])

End(Not run)

slider.stem.leaf construction of stem and leaf display interactively

Description

’slider.stem.leaf’ computes a stem and leaf display within a graphics device. The parameters are
controlled by a control widget.

Usage

slider.stem.leaf(x, main = main)

Arguments

x data set for plotting

main main title of the plot

Details

The function ’slider.stem.leaf’ allows the user to construct a stem and leaf display within a graphics
device. The main parameters will be set by a Tcl/Tk control widget. The line rule is selected by
pressing one of the buttons ’Dixon’, ’Sturges’, ’Velleman’. A slider controls the separation of the
stem. Additionally the character size device could be set.

Value

a short message is returned

Note

The function is a function of the package aplpack

Author(s)

Peter Wolf, Nov 2009

See Also

stem

50 slider.zoom.plot.ts

Examples

Not run:
slider.stem.leaf(islands)

End(Not run)

slider.zoom.plot.ts interactive zooming of time series

Description

This function shows one or two sections of a time series. The window(s) is (are) controlled by
sliders.

Usage

slider.zoom.plot.ts(x, n.windows, ...)

Arguments

x time series

n.windows if(n.windows>1 two sections are defined

... additional graphical parameters

Details

slider.zoom.plot.ts plots the original time series and it lets you select one or two sections of
the series by fixing the width(s) and the starting point(s) of the region(s). Then the section(s) of the
series is (are) plotted separately one below the other.

The first slider defines the width of the section(s). The second (third) one sets the start of the first
(second) section.

Value

a message about the usage

Author(s)

Hans Peter Wolf

See Also

plot

spin3R 51

Examples

Not run:
This example cannot be run by examples() but should be work in an interactive R session

slider.zoom.plot.ts(co2,2)

End(Not run)

spin3R spin3R

Description

Simple spin function to rotate and to inspect a 3-dimensional cloud of points

Usage

spin3R(x, alpha = 1, delay = 0.015, na.rm=FALSE)

Arguments

x (nx3)-matrix of points

alpha angle between successive projections

delay delay in seconds between two plots

na.rm if TRUE ’NA’ values are removed otherwise exchanged by mean

Details

spin3R computes two-dimensional projections of (nx3)-matrix x and plots them on the graphics
device. The cloud of points is rotated step by step. The rotation is defined by a tcl/tk control widget.
spin3R requires tcl/tk package of R.

Note

version 05/2008

Author(s)

Peter Wolf

References

Cleveland, W. S. / McGill, M. E. (1988): Dynamic Graphics for Statistics. Wadsworth & Brooks/Cole,
Belmont, California.

See Also

spin of S-Plus

52 stem.leaf

Examples

xyz<-matrix(rnorm(300),100,3)
now start: spin3R(xyz)

stem.leaf stem and leaf display and back to back stem and leaf display

Description

Creates a classical ("Tukey-style") stem and leaf display / back-to-back stem and leaf display.

Usage

stem.leaf(data, unit, m, Min, Max, rule.line = c("Dixon", "Velleman", "Sturges"),
style = c("Tukey", "bare"), trim.outliers = TRUE, depths = TRUE,
reverse.negative.leaves = TRUE, na.rm = FALSE, printresult = TRUE)

stem.leaf.backback(x,y, unit, m, Min, Max, rule.line = c("Dixon", "Velleman",
"Sturges"), style = c("Tukey", "bare"), trim.outliers = TRUE,
depths = TRUE, reverse.negative.leaves = TRUE, na.rm = FALSE,
printresult=TRUE, show.no.depths = FALSE, add.more.blanks = 0,
back.to.back = TRUE)

Arguments

data a numeric vector of data

x first dataset for stem.leaf.backback

y first dataset for stem.leaf.backback

unit leaf unit, as a power of 10 (e.g., 100, .01); if unit is missing unit is choosen
by stem.leaf.

m number of parts (1, 2, or 5) into which each stem will be separated; if m is
missing the number of parts/stem (m) is choosen by stem.leaf.

Min smallest non-outlying value; omit for automatic choice.

Max largest non-outlying value; omit for automatic choice.

rule.line the rule to use for choosing the desired number of lines in the display; "Dixon"
= 10*log10(n); "Velleman" = 2*sqrt(n); "Sturges" = 1 + log2(n); the default
is "Dixon".

style "Tukey" (the default) for "Tukey-style" divided stems; "bare" for divided stems
that simply repeat the stem digits.

trim.outliers if TRUE (the default), outliers are placed on LO and HI stems.

depths if TRUE (the default), print a column of "depths" to the left of the stems; the depth
of the stem containing the median is the stem-count enclosed in parentheses.

reverse.negative.leaves

if TRUE (the default), reverse direction the leaves on negative stems (so, e.g., the
leaf 9 comes before the leaf 8, etc.).

stem.leaf 53

na.rm if TRUE "NA" values are removed otherwise the number of NAs are counted.

printresult if TRUE output of the stem and leaf display by cat.

show.no.depths if TRUE no depths are printed.
add.more.blanks

number of blanks that are added besides the leaves.

back.to.back if FALSE two parallel stem and leaf displays are constructed.

Details

Unlike the stem function in the base package, stem.leaf produces classic stem-and-leaf displays,
as described in Tukey’s Exploratory Data Analysis. The function stem.leaf.backback creates
back-to-back stem and leaf displays.

Value

The computed stem and leaf display is printed out. Invisibly stem.leaf returns the stem and leaf
display as a list containing the elements info (legend), display (stem and leaf display as character
vecter), lower (very small values), upper (very large values), depths (vector of depths), stem (stem
information as a vector), and leaves (vector of leaves).

Author(s)

Peter Wolf, the code has been slightly modified by John Fox <jfox@mcmaster.ca> with the original
author’s permission, help page written by John Fox, the help page has been slightly modified by
Peter Wolf.

References

Tukey, J. Exploratory Data Analysis. Addison-Wesley, 1977.

See Also

stem

Examples

stem.leaf(co2)
stem.leaf.backback(co2[1:120],co2[121:240])
stem.leaf.backback(co2[1:120],co2[121:240], back.to.back = FALSE)
stem.leaf.backback(co2[1:120],co2[121:240], back.to.back = FALSE,

add.more.blanks = 3, show.no.depths = TRUE)
stem.leaf.backback(rivers[-(1:30)],rivers[1:30], back.to.back = FALSE, unit=10, m=5,

Min=200, Max=900, add.more.blanks = 20, show.no.depths = TRUE)

Index

∗ dynamic
slider, 38

∗ graphics
iconplot, 11
puticon, 30

∗ hplot
bagplot, 2
bagplot.pairs, 5
plotsummary, 28
skyline.hist, 35

∗ iplot
slider, 38
slider.bootstrap.lm.plot, 42
slider.brush, 43
slider.hist, 44
slider.lowess.plot, 46
slider.smooth.plot.ts, 47
slider.split.plot.ts, 48
slider.zoom.plot.ts, 50

∗ manip
plotsummary, 28

∗ misc
bagplot, 2
bagplot.pairs, 5
boxplot2D, 7
faces, 8
skyline.hist, 35
slider.stem.leaf, 49
spin3R, 51
stem.leaf, 52

∗ univar
slider.hist, 44

bagplot, 2, 6, 11, 27
bagplot.pairs, 5
boxplot, 4, 8
boxplot2D, 7

compute.bagplot (bagplot), 2

density, 37

faces, 8

gslider (slider), 38

hdepth, 10
hist, 37, 45

iconplot, 11

lowess, 46

pairs, 6, 29, 44
plot, 42, 44, 47, 48, 50
plot.bagplot (bagplot), 2
plot.faces (faces), 8
plothulls, 26
plotsummary, 28
puticon, 30

skyline.hist, 35
slider, 38
slider.bootstrap.lm.plot, 42
slider.brush, 43
slider.density (slider.hist), 44
slider.hist, 44
slider.lowess.plot, 46
slider.smooth.plot.ts, 47
slider.split.plot.ts, 48
slider.stem.leaf, 49
slider.zoom.plot.ts, 50
smooth, 47
spin3R, 51
stem, 49, 53
stem.leaf, 52
str, 29
summary, 29

54

	bagplot
	bagplot.pairs
	boxplot2D
	faces
	hdepth
	iconplot
	plothulls
	plotsummary
	puticon
	skyline.hist
	slider
	slider.bootstrap.lm.plot
	slider.brush
	slider.hist
	slider.lowess.plot
	slider.smooth.plot.ts
	slider.split.plot.ts
	slider.stem.leaf
	slider.zoom.plot.ts
	spin3R
	stem.leaf
	Index

