
Package ‘asremlPlus’
June 10, 2025

Version 4.4.49

Date 2025-06-10

Title Augments 'ASReml-R' in Fitting Mixed Models and Packages
Generally in Exploring Prediction Differences

Depends R (>= 3.5.0)

Imports dae, devtools, doParallel, dplyr, foreach, ggplot2, graphics,
grDevices, methods, nloptr, parallel, qqplotr, RColorBrewer,
reshape2, rlang, stats, sticky, stringr, tryCatchLog, utils

Suggests emmeans (>= 1.8.8), lattice, lmerTest, pbkrtest, R.rsp,
testthat, tictoc

Enhances asreml

VignetteBuilder R.rsp

SystemRequirements asreml

LazyData true

Description Assists in automating the selection of terms to include in mixed models when
'asreml' is used to fit the models. Procedures are available for choosing models that
conform to the hierarchy or marginality principle, for fitting and choosing between
two-dimensional spatial models using correlation, natural cubic smoothing spline and
P-spline models. A history of the fitting of a sequence of models is kept in a data frame.
Also used to compute functions and contrasts of, to investigate differences between and
to plot predictions obtained using any model fitting function. The content falls into
the following natural groupings: (i) Data, (ii) Model modification functions, (iii) Model
selection and description functions, (iv) Model diagnostics and simulation functions,
(v) Prediction production and presentation functions, (vi) Response transformation
functions, (vii) Object manipulation functions, and (viii) Miscellaneous functions
(for further details see 'asremlPlus-package' in help). The 'asreml' package provides a
computationally efficient algorithm for fitting a wide range of linear mixed models using
Residual Maximum Likelihood. It is a commercial package and a license for it can be
purchased from 'VSNi' <https://vsni.co.uk/> as 'asreml-R', who will supply a zip file
for local installation/updating (see <https://asreml.kb.vsni.co.uk/>). It is not needed
for functions that are methods for 'alldiffs' and 'data.frame' objects. The package
'asremPlus' can also be installed from <http://chris.brien.name/rpackages/>.

License MIT + file LICENSE

URL http://chris.brien.name

BugReports https://github.com/briencj/asremlPlus/issues

1

https://vsni.co.uk/
https://asreml.kb.vsni.co.uk/
http://chris.brien.name/rpackages/
http://chris.brien.name
https://github.com/briencj/asremlPlus/issues

2 Contents

NeedsCompilation no

Author Chris Brien [aut, cre] (ORCID: <https://orcid.org/0000-0003-0581-1817>)

Maintainer Chris Brien <chris.brien@adelaide.edu.au>

Contents
asremlPlus-package . 4
addBacktransforms.alldiffs . 11
addSpatialModel.asrtests . 13
addSpatialModelOnIC.asrtests . 21
addto.test.summary . 29
allDifferences.data.frame . 31
alldiffs.object . 38
angular . 41
angular.mod . 42
as.alldiffs . 42
as.asrtests . 45
as.predictions.frame . 47
asremlPlus-deprecated . 49
asremlPlusTips . 50
asrtests.object . 51
bootREMLRT.asreml . 52
changeModelOnIC.asrtests . 55
changeTerms.asrtests . 59
ChickpeaEnd.dat . 62
chooseModel . 63
chooseModel.asrtests . 64
chooseModel.data.frame . 67
chooseSpatialModelOnIC.asrtests . 69
convAsremlobj.asreml . 78
convEffectNames2DataFrame.asreml . 79
estimateV.asreml . 80
exploreLSDs.alldiffs . 82
facCombine.alldiffs . 85
facRecast.alldiffs . 87
facRename.alldiffs . 89
findLSDminerrors.alldiffs . 91
getASRemlVersionLoaded . 94
getFormulae.asreml . 95
getTestEntry.asrtests . 96
getTestPvalue.asrtests . 97
infoCriteria . 98
is.alldiffs . 100
is.asrtests . 101
is.predictions.frame . 102
isCompoundSymmetric.matrix . 104
iterate.asrtests . 105
Ladybird.dat . 106
linTransform.alldiffs . 107
loadASRemlVersion . 113
LSD.frame . 114

https://orcid.org/0000-0003-0581-1817

Contents 3

makeTPPSplineMats.data.frame . 116
newfit.asreml . 120
num.recode . 122
Oats.dat . 123
pairdiffsTransform.alldiffs . 124
permute.square . 128
permute.to.zero.lowertri . 129
pickLSDstatistics.alldiffs . 130
plotLSDerrors.alldiffs . 132
plotLSDerrors.data.frame . 136
plotLSDs.alldiffs . 138
plotLSDs.data.frame . 142
plotPredictions.data.frame . 144
plotPvalues.alldiffs . 148
plotPvalues.data.frame . 151
plotVariofaces.data.frame . 154
powerTransform . 156
predictions.frame . 158
predictPlus.asreml . 159
predictPresent.asreml . 167
print.alldiffs . 175
print.asrtests . 176
print.LSDdata . 177
print.predictions.frame . 178
print.test.summary . 179
print.wald.tab . 180
printFormulae.asreml . 181
R2adj.asreml . 182
ratioTransform.alldiffs . 185
recalcLSD.alldiffs . 187
recalcWaldTab.asrtests . 190
redoErrorIntervals.alldiffs . 192
REMLRT.asreml . 196
renewClassify.alldiffs . 198
reparamSigDevn.asrtests . 200
rmboundary.asrtests . 204
setvarianceterms.call . 206
simulate.asreml . 208
sort.alldiffs . 210
sort.predictions.frame . 214
subset.alldiffs . 217
subset.list . 219
testranfix.asrtests . 220
testresidual.asrtests . 223
testswapran.asrtests . 227
validAlldiffs . 230
validAsrtests . 231
validPredictionsFrame . 232
variofaces.asreml . 233
WaterRunoff.dat . 237
Wheat.dat . 237

Index 239

4 asremlPlus-package

asremlPlus-package Augments ’ASReml-R’ in Fitting Mixed Models and Packages Gener-
ally in Exploring Prediction Differences

Description

Assists in automating the selection of terms to include in mixed models when ’asreml’ is used
to fit the models. Procedures are available for choosing models that conform to the hierarchy or
marginality principle, for fitting and choosing between two-dimensional spatial models using cor-
relation, natural cubic smoothing spline and P-spline models. A history of the fitting of a sequence
of models is kept in a data frame. Also used to compute functions and contrasts of, to investigate
differences between and to plot predictions obtained using any model fitting function. The content
falls into the following natural groupings: (i) Data, (ii) Model modification functions, (iii) Model
selection and description functions, (iv) Model diagnostics and simulation functions, (v) Prediction
production and presentation functions, (vi) Response transformation functions, (vii) Object manip-
ulation functions, and (viii) Miscellaneous functions (for further details see ’asremlPlus-package’
in help). The ’asreml’ package provides a computationally efficient algorithm for fitting a wide
range of linear mixed models using Residual Maximum Likelihood. It is a commercial package and
a license for it can be purchased from ’VSNi’ <https://vsni.co.uk/> as ’asreml-R’, who will supply
a zip file for local installation/updating (see <https://asreml.kb.vsni.co.uk/>). It is not needed for
functions that are methods for ’alldiffs’ and ’data.frame’ objects. The package ’asremPlus’ can also
be installed from <http://chris.brien.name/rpackages/>.

Version: 4.4.49

Date: 2025-06-10

Index

Note that many of the function below are S3 methods so that the suffix can be omitted. Of
course, whether or not the suffix is omitted, the object supplied to the first argument must be of
the class specified by the suffix. For example getFormulae.asreml is a getFormulae method for
an asreml.object and so .asreml can be omitted and the object supplied to the first argument
must be of class asreml.

(i) Data

Oats.dat Data for an experiment to investigate nitrogen response of
3 oats varieties.

Wheat.dat Data for an experiment to investigate 25 varieties of
wheat.

WaterRunoff.dat Data for an experiment to investigate the quality of
water runoff over time

(ii) Model modification

addSpatialModel.asrtests Adds, to a supplied model, a spatial model that accounts for
local spatial variation.

addSpatialModelOnIC.asrtests Uses information criteria to decide whether to add a spatial
model to account for local spatial variation.

changeTerms.asrtests Adds and drops terms from one or both of the fixed or random
model, replaces the residual (rcov) model with a new model

asremlPlus-package 5

and changes bounds or initial values of terms.
iterate.asrtests Subject the fitted asreml.obj stored in an asrtests.object

to further iterations of the fitting process.
newfit.asreml Refits an asreml model with changed arguments by extracting,

modifying and evaluating its call - an alternate to
update.asreml.

reparamSigDevn.asrtests Reparamterizes each random (deviations) term
involving ’devn.fac’ to a fixed term and ensures
that the same term, with ’trend.num’ replacing
’devn.fac’, is included if any other term with
’trend.num’ is included in ’terms’.

rmboundary.asrtests Removes any boundary or singular variance components
from the fit stored in ’asreml.obj’ and records their
removal in an asrtests.object.

setvarianceterms.call Allows the setting of bounds and initial values
for terms in the ’random’ and ’residual’ arguments of an
’asreml’ call.

(iii) Model selection and description

addto.test.summary Adds a row to a test.summary data.frame.
changeModelOnIC.asrtests Uses information criteria to decide whether to change an

already fitted model.
chooseModel.asrtests Determines and records the set of significant terms using an

asrtests.object, taking into account the hierarchy
or marginality relations of the terms..

chooseModel.data.frame Determines the set of significant terms from results stored
in a data.frame, taking into account the marginality
relations of terms and recording the tests used in a
data.frame.

chooseSpatialModelOnIC.asrtests Uses information criteria to choose the best fitting
spatial model for accounting for local spatial variation.

getTestPvalue.asrtests Gets the p-value for a test recorded in the test.summary
data.frame of an asrtests.object.

infoCriteria.asreml Computes AIC and BIC for models.
infoCriteria.list Computes AIC and BIC for models.
R2adj.asreml Calculates the adjusted coefficient of determination for a

specified combination of fixed and random terms.
recalcWaldTab.asrtests Recalculates the denDF, F.inc and P values for a table

of Wald test statistics obtained using ’wald.asreml’.
REMLRT.asreml Performs a REML ratio test.
bootREMLRT.asreml Performs a REML ratio test using the parametric

bootstrap.
testranfix.asrtests Tests for a single fixed or random term in model

fitted using ’asreml’ and records the result in an
asrtests.object.

testresidual.asrtests Fits a new residual formula using ’asreml’, tests
whether the change is significant and records the
result in an asrtests.object.

testswapran.asrtests Tests, using a REMLRT, the significance of the difference
between the current random model and one in which oldterms
are dropped and newterms are added. The result is recorded

6 asremlPlus-package

in an asrtests.object.

(iv) Model diagnostics and simulation

plotVariofaces Plots empirical variogram faces, including envelopes,
from supplied residuals as described by Stefanova, Smith
& Cullis (2009).

variofaces.asreml Calculates and plots empirical variogram faces, including
envelopes, as described by Stefanova, Smith & Cullis (2009).

estimateV.asreml Forms the estimated variance, random or residual matrix for
the observations from the variance parameter estimates.

simulate.asreml Produce sets of simulated data from a multivariate normal
distribution and save quantities related to the simulated data.

(v) Prediction production and presentation

addBacktransforms.alldiffs Adds or recalculates the backtransforms component of an
alldiffs.object.

allDifferences.data.frame Using supplied predictions and standard errors of pairwise
differences or the variance matrix of predictions, forms
all pairwise differences between the set of predictions, and
p-values for the differences.

exploreLSDs Explores the computed LSD values for pairwise differences
between predictions.

findLSDminerrors Find LSD values that minimize the number of errors in
pairwise comparisons of predictions.

linTransform.alldiffs Calculates a linear transformation of the
predictions stored in an alldiffs.object.

pairdiffsTransform.alldiffs Calculates the differences between nominated pairs of
predictions stored in an alldiffs.object

pickLSDstatistics Pick LSDstatistics whose values minimize the number of
errors in pairwise comparisons of predictions.

plotLSDerrors.data.frame Plots a map of the supplied errors that occur in using the
computed LSD values for pairwise differences between
predictions.

plotLSDerrors.alldiffs Plots a map of the errors that occur in using the computed
LSD values for pairwise differences between predictions.

plotLSDs.data.frame Plots a heat map of computed LSD values for pairwise
differences between predictions.

plotLSDs.alldiffs Plots a heat map of computed LSD values for pairwise
differences between predictions.

plotPredictions.data.frame Plots the predictions for a term, possibly with
error bars.

plotPvalues.alldiffs Plots the p-values in the p.differences components
of an alldiffs.object as a heat map.

plotPvalues.data.frame Plots the p-values in data.frame as a heat map.
predictPlus.asreml Forms the predictions and associated statistics for

a term, using an asreml object and a wald.tab and
taking into account that a numeric vector
and a factor having parallel values may occur in the
model. It stores the results in an object of class
’alldifffs’ and may print the results. It can be

asremlPlus-package 7

when there are not parallel values.
predictPresent.asreml Forms the predictions for each of one or more terms

and presents them in tables and/or graphs.
ratioTransform.alldiffs Calculates the ratios of nominated pairs of predictions

stored in an alldiffs.object.
recalcLSD.alldiffs Adds or recalculates the LSD.frame that is a

component of an alldiffs.object.
redoErrorIntervals.alldiffs Adds or replaces the error intervals stored in the

prediction component of an alldiffs.object.
renewClassify.alldiffs Renews the components in an alldiffs.object

according to a new classify.
sort.alldiffs Sorts the components in an alldiffs.object

according to the predicted values associated with a factor.
subset.alldiffs Subsets the components in an alldiffs.object according

to the supplied condition.
sort.predictions.frame Sorts a predictions.frame according to the

predicted values. associated with a factor.
(vi) Response transformation

angular Applies the angular transformation to proportions.
angular.mod Applies the modified angular transformation to a

vector of counts.
powerTransform Performs a combination of a linear and a power

transformation on a variable. The transformed
variable is stored in the ’data.frame data’.

(vii) Object manipulation

as.alldiffs Forms an alldiffs.object from the supplied
predictions, along with those statistics, associated with
the predictions and their pairwise differences, that have
been supplied.

asrtests Pseudonym for as.asrtests.
as.asrtests Forms an asrtests.object that stores

(i) a fitted asreml object,
(ii) a pseudo-anova table for the fixed terms and
(iii) a history of changes and hypothesis testing
used in obtaining the model.

as.predictions.frame Forms a predictions.frame from a data.frame, ensuring
that the correct columns are present.

convAsremlobj.asreml Recreates an asreml object so that it is compatible with the
currently loaded asreml version.

convEffectNames2DataFrame.asreml Converts the effects names for a term stored in the component of an
asreml object into a data.frame.

facCombine.alldiffs Combines several factors into one in the components of
an alldiffs.object.

facRecast.alldiffs Reorders and/or revises the factor levels using the order of
old levels in levels.order and the new labels for the
levels given in newlabels.

facRename.alldiffs Renames factors in the prediction component
of an alldiffs.object.

getFormulae.asreml Gets the formulae from an asreml object.

8 asremlPlus-package

is.alldiffs A single-line function that tests whether an object is
of class alldiffs.

is.asrtests A single-line function that tests whether an object is
of class asrtests.

is.predictions.frame A single-line function that tests whether an object is
of classes predictions.frame and data.frame.

makeTPPSplineMats.data.frame Make the spline basis matrices and data needed to fit
Tensor Product P-Splines.

print.alldiffs Prints the values in an alldiffs.object in a nice format.
print.asrtests Prints the values in an asrtests.object.
print.LSDdata Prints the components of a list containing data on the

LSDs for all pairwise differences of predictions.
print.predictions.frame Prints the values in a predictions.frame, with or without

title and heading.
print.test.summary Prints a data.frame containing a test.summary.
print.wald.tab Prints a data.frame containing a Wald or pseudoanova table.
printFormulae.asreml Prints the formulae from an asreml object.
sort.alldiffs Sorts the components of an alldiffs.object according to

the predicted values associated with a factor.
subset.alldiffs Subsets the components in an alldiffs.object according

to the supplied condition.
subset.list Forms a list that contains a subset of the components of

the supplied list.
validAlldiffs Checks that an object is a valid alldiffs.object.
validAsrtests Checks that an object is a valid asrtests.object.
validPredictionsFrame Checks that an object is a valid predictions.frame.

(viii) Miscellaneous

getASRemlVersionLoaded Finds the version of asreml that is loaded and
returns the initial characters in version.

isCompoundSymmetric Tests whether an object of class matrix is
compound symmetric

loadASRemlVersion Ensures that a specific version of asreml is loaded.
num.recode Recodes the unique values of a vector using the values

in a new vector.
permute.square Permutes the rows and columns of a square matrix.
permute.to.zero.lowertri Permutes a square matrix until all the lower

triangular elements are zero.

The functions whose names end in ’alldiffs" utilize an alldiffs.object that stores: (i) a predictions.frame,
being a data frame containing predicted values, variables indexing them and their standard errors
and estimability status; the lower and upper limits of error intervals will be included when these
are requested, (ii) optionally, square matrices containing all pairwise differences, the standard er-
rors and p-values of the differences, and a data.frame containing LSD values and their summary
statistics, (iii) optionally, the variance matrix of the predictions, and (iv) if the response was trans-
formed for analysis, a data frame with backtransforms of the predicted values.

The functions whose names end in ’asrtests’, which are most of the model functions, utilize an
asrtests.object that stores: (i) the currently fitted model in asreml.obj, (ii) the table of test
statistics for the fixed effects in wald.tab, and (iii) a data frame that contains a history of the
changes made to the model in test.summary.

asremlPlus-package 9

Author(s)

Chris Brien [aut, cre] (ORCID: <https://orcid.org/0000-0003-0581-1817>)

Maintainer: Chris Brien <chris.brien@adelaide.edu.au>

References

Butler, D. G., Cullis, B. R., Gilmour, A. R., Gogel, B. J. and Thompson, R. (2023). ASReml-R
Reference Manual Version 4.2. VSN International Ltd, https://asreml.kb.vsni.co.uk/

See Also

asreml

Examples

Not run:
Analyse wheat dat using asreml and asremlPlus (see the WheatSpatial Vignette for details)
Set up for analysis
library(dae)
library(asreml)
library(asremlPlus)
use ?Wheat.dat for data set details
data(Wheat.dat)

Add row and column covariates for the spatial modelling
tmp.dat <- within(Wheat.dat,

{
cColumn <- dae::as.numfac(Column)
cColumn <- cColumn - mean(unique(cColumn))
cRow <- dae::as.numfac(Row)
cRow <- cRow - mean(unique(cRow))

})

Fit an initial model - Row and column random
current.asr <- do.call(asreml,

list(yield ~ Rep + WithinColPairs + Variety,
random = ~ Row + Column,
residual = ~ Row:Column,
data = tmp.dat))

Intialize a model sequence by loading the current fit into an asrtests object
current.asrt <- as.asrtests(current.asr, NULL, NULL, IClikelihood = "full",

label = "Initial model")

Check for and remove any boundary terms and print a summary of the fit in the asrtests object
current.asrt <- rmboundary(current.asrt)
print(current.asrt)

Compare a series of information criteria to select a linear mixed model for the data

Check the need for the term for within Column pairs (a post hoc factor)
current.asrt <- changeModelOnIC(current.asrt, dropFixed = "WithinColPairs",

label = "Try dropping withinColPairs", IClikelihood = "full")
print(current.asrt)

https://asreml.kb.vsni.co.uk/

10 asremlPlus-package

Fit an ar1 model for local spatial variation
spatial.ar1.asrt <- addSpatialModelOnIC(current.asrt, spatial.model = "corr",

row.covar = "cRow", col.covar = "cColumn",
row.factor = "Row", col.factor = "Column",
IClikelihood = "full")

spatial.ar1.asrt <- rmboundary(spatial.ar1.asrt)
infoCriteria(list(nonspatial = current.asrt$asreml.obj,

ar1 = spatial.ar1.asrt$asreml.obj))
print(spatial.ar1.asrt)

Choose a model for local spatial variation from several potential models
suppressWarnings(

spatial.asrts <- chooseSpatialModelOnIC(current.asrt,
row.covar = "cRow", col.covar = "cColumn",
row.factor = "Row", col.factor = "Column",
dropRandom = "Row + Column",
rotateX = TRUE, ngridangles = NULL,
asreml.option = "grp", return.asrts = "all"))

Output the results
print(spatial.asrts$spatial.IC)
print(R2adj(spatial.asrts$asrts$TPNCSS$asreml.obj, include.which.random = ~ .))
print(spatial.asrts$best.spatial.mod)
print(spatial.asrts$asrts$TPNCSS)
printFormulae(spatial.asrts$asrts$TPNCSS$asreml.obj)

Diagnosting checking using residual plots and variofaces

Get current fitted asreml object and update to include standardized residuals
current.asr <- spatial.asrts$asrts$TPNCSS$asreml.obj
current.asr <- update(current.asr, aom=TRUE)
Wheat.dat$res <- residuals(current.asr, type = "stdCond")
Wheat.dat$fit <- fitted(current.asr)

Do residuals-versus-fitted values plot
with(Wheat.dat, plot(fit, res))

Plot variofaces
variofaces(current.asr, V=NULL, units="addtores",

maxiter=50, update = FALSE,
ncores = parallel::detectCores())

Plot normal quantile plot
ggplot(data = Wheat.dat, mapping = aes(sample = res)) +

stat_qq_band(bandType = "ts") + stat_qq_line() + stat_qq_point() +
labs(x = "Theoretical Quantiles", y = "Sample Quantiles",

title = "Normal probability plot") +
theme(plot.title = element_text(size = 12, face = "bold")) + theme_bw()

Prediction production and presentation

Get Variety predictions and all pairwise prediction differences and p-values
Var.diffs <- predictPlus(classify = "Variety",

asreml.obj=current.asr,
error.intervals="halfLeast",
wald.tab=current.asrt$wald.tab,
sortFactor = "Variety",
tables = "predictions")

addBacktransforms.alldiffs 11

Plot the Variety predictions, with halfLSD intervals, and the p-values
plotPredictions(Var.diffs$predictions,

classify = "Variety", y = "predicted.value",
error.intervals = "half")

plotPvalues(Var.diffs)

End(Not run)

addBacktransforms.alldiffs

Adds or recalculates the backtransforms component of an
alldiffs.object.

Description

Given an alldiffs.object, adds or recalculate its backtransforms component. The values of
transform.power, offset, scale and transform.function from the backtransforms compo-
nent will be used, unless this component is NULL when the values supplied in the call will be used.

Usage

S3 method for class 'alldiffs'
addBacktransforms(alldiffs.obj,

transform.power = 1, offset = 0, scale = 1,
transform.function = "identity", ...)

Arguments

alldiffs.obj An alldiffs.object.
transform.power

A numeric specifying the power of a transformation, if one has been applied
to the response variable. Unless it is equal to 1, the default, back-transforms of
the predictions will be obtained and presented in tables or graphs as appropriate.
The back-transformation raises the predictions to the power equal to the recip-
rocal of transform.power, unless it equals 0 in which case the exponential of
the predictions is taken.

offset A numeric that has been added to each value of the response after any scaling
and before applying any power transformation.

scale A numeric by which each value of the response has been multiplied before
adding any offset and applying any power transformation.

transform.function

A character giving the name of a function that specifies the scale on which
the predicted values are defined. This may be the result of a transformation
of the data using the function or the use of the function as a link function
in the fitting of a generalized linear (mixed) model (GL(M)M). The possible
transform.functions are identity, log, inverse, sqrt, logit, probit, and
cloglog. The predicted.values and error.intervals, if not StandardError
intervals, will be back-transformed using the inverse function of the transform.function.
The standard.error column will be set to NA, unless (i) asreml returns columns
named transformed.value and approx.se, as well as those called predicted.values

12 addBacktransforms.alldiffs

and standard.error (such as when a GLM is fitted) and (ii) the values in
transformed.value are equal to those obtained by backtransforming the predicted.values
using the inverse function of the transform.function. Then, the approx.se
values will be saved in the standard.error column of the backtransforms
component of the returned alldiffs.obj. Also, the transformed.value and
approx.se columns are removed from both the predictions and backtransforms
components of the alldiffs.obj. Note that the values that end up in the
standard errors column are approximate for the backtransformed values and
are not used in calculating error.intervals.

... Provision for passing arguments to functions called internally - not used at
present.

Value

An alldiffs.object with components predictions, vcov, differences, p.differences, sed,
LSD and backtransforms.

The backtransforms component will have the attributes (i) LSDtype, LSDby and LSDstatistic
added from the predictions component and (ii) transform.power, offset, scale, and link.

Author(s)

Chris Brien

See Also

asremlPlus-package, as.alldiffs, sort.alldiffs, subset.alldiffs, print.alldiffs,
renewClassify.alldiffs, redoErrorIntervals.alldiffs, plotPredictions.data.frame,
predictPlus.asreml, predictPresent.asreml

Examples

##Subset WaterRunoff data to reduce time to execute
data(WaterRunoff.dat)
tmp <- subset(WaterRunoff.dat, Date == "05-18" & Benches != "3")

##Use asreml to get predictions and associated statistics

Not run:
asreml.options(keep.order = TRUE) #required for asreml-R4 only
current.asr <- asreml(fixed = log.Turbidity ~ Benches + (Sources * (Type + Species)),

random = ~ Benches:MainPlots,
keep.order=TRUE, data= tmp)

current.asrt <- as.asrtests(current.asr, NULL, NULL)
TS.diffs <- predictPlus(classify = "Sources:Type",

asreml.obj = current.asr,
wald.tab = current.asrt$wald.tab,
present = c("Sources", "Type", "Species"))

End(Not run)

##Use lmeTest and emmmeans to get predictions and associated statistics

if (requireNamespace("lmerTest", quietly = TRUE) &&
requireNamespace("emmeans", quietly = TRUE))

{

addSpatialModel.asrtests 13

m1.lmer <- lmerTest::lmer(log.Turbidity ~ Benches + (Sources * (Type + Species)) +
(1|Benches:MainPlots),

data=tmp)
TS.emm <- emmeans::emmeans(m1.lmer, specs = ~ Sources:Species)
TS.preds <- summary(TS.emm)
den.df <- min(TS.preds$df, na.rm = TRUE)
Modify TS.preds to be compatible with a predictions.frame
TS.preds <- as.predictions.frame(TS.preds, predictions = "emmean",

se = "SE", interval.type = "CI",
interval.names = c("lower.CL", "upper.CL"))

Form an all.diffs object and check its validity
TS.vcov <- vcov(TS.emm)
TS.diffs <- allDifferences(predictions = TS.preds, classify = "Sources:Species",

vcov = TS.vcov, tdf = den.df)
validAlldiffs(TS.diffs)

}

Recalculate the back-transforms of the predictions obtained using asreml or lmerTest
if (exists("TS.diffs"))
{

TS.diffs <- addBacktransforms.alldiffs(TS.diffs, transform.power = 0)
}

addSpatialModel.asrtests

Adds, to a supplied model, a spatial model that accounts for local
spatial variation.

Description

Adds either a correlation, two-dimensional tensor-product natural cubic smoothing spline (TP-
NCSS), or a two-dimensional tensor-product penalized P-spline model (TPPS) to account for the
local spatial variation exhibited by a response variable measured on a potentially irregular grid of
rows and columns of the units. The data may be arranged in sections, for each of which there is a
grid and for which the model is to be fitted separately. Also, the rows and columns of a grid are not
necessarily one observational unit wide. For TPPS models for which the order of differencing the
penalty matrix is two, the an optimal rotation of the null-space eigenvectors of the penalty matrix
can be investigated.

No hypothesis testing or comparison of information criteria is made. To use information criteria to
decide whether to change the model use chooseSpatialModelOnIC.asrtests.

The model fit supplied in the asrtests.obj should not include terms that will be included in the
local spatial model. All spatial model terms are fitted as fixed or random. Consequently, the residual
model does not have to be iid.

One or more rows is added for each section to the test.summary data.frame. Convergence and
the occurrence of fixed correlations in fitting the model is checked and a note included in the action
if there was not. All components of the asrtests.object are updated for the new model.

Usage

S3 method for class 'asrtests'
addSpatialModel(asrtests.obj, spatial.model = "TPPS",

14 addSpatialModel.asrtests

sections = NULL,
row.covar = "cRow", col.covar = "cCol",
row.factor = "Row", col.factor = "Col",
corr.funcs = c("ar1", "ar1"), corr.orders = c(0, 0),
row.corrFitfirst = TRUE,
allow.corrsJointFit = TRUE, nugget.variance = TRUE,
dropFixed = NULL, dropRandom = NULL,
nsegs = NULL, nestorder = c(1,1),
degree = c(3,3), difforder = c(2,2),
usRandLinCoeffs = TRUE,
rotateX = FALSE, ngridangles = NULL,
which.rotacriterion = "AIC", nrotacores = 1,
asreml.option = "grp", tpps4mbf.obj = NULL,
allow.unconverged = TRUE, allow.fixedcorrelation = TRUE,
checkboundaryonly = FALSE, update = TRUE, trace = FALSE,
maxit = 30, IClikelihood = "full", which.IC = "AIC", ...)

Arguments

asrtests.obj An asrtests.object containing the components (i) asreml.obj, (ii) wald.tab,
and (iii) test.summary.

spatial.model A single character string nominating the type of spatial model to fit. Possible
values are corr, TPNCSS and TPPS.

sections A single character string that specifies the name of the column in the data.frame
that contains the factor that identifies different sections of the data to which
separate spatial models are to be fitted. Note that, for other terms that involve
sections in the random formula, there should be separate terms for each level
of sections. For example, in a blocked experiment involving multiple sites,
there should be the sum of separate terms for the Blocks at each Site i.e. a
formula that contains terms like at(Site, i):Block for each site and these are sep-
arated by '+'. Otherwise, the combined term (e.g. Site:Block) will impact on
the fitting of the local spatial models for the different Sites. Similarly, a separate
residual variance for each of the sections should be fitted, unless there is a need
to fit a different variance structure to the residual, e.g. heterogeneous residual
variances depending on treatments. Separate residual variances for sections
can be achieved using the asreml functions dsum or idh. Because, unlike ran-
dom terms, terms for residual variances are not removed from the model, com-
pound residual terms can be used to include them in the model, e.g. terms with
idh or dsum with multiple levels in the list or leaving levels out altogether.
In addition to allowing the independent fitting of models to the sections, sepa-
rate residual variance terms allows a nugget variance to be fitted in a correlation
model for each of the sections.

row.covar A single character string nominating a numeric that contains the values of a
centred covariate indexing the rows of a grid. The numeric must be a column in
the data.frame stored in the asreml.obj that is a component of the supplied
asrtests.obj.

col.covar A single character string nominating a numeric that contains the values of
a centred covariate indexing the columns of a grid. The numeric must be a
column in the data.frame stored in the asreml.obj that is a component of the
supplied asrtests.obj.

row.factor A single character string nominating a factor that indexes the rows of a grid
that are to be one dimension of a spatial correlation model. The factor must a

addSpatialModel.asrtests 15

column in the data.frame stored in the asreml.obj that is a component of the
supplied asrtests.obj.

col.factor A single character string nominating a factor that indexes the columns of a
grid that are to be one dimension of a spatial correlation model. The factor
must a column in the data.frame stored in the asreml.obj that is a component
of the supplied asrtests.obj.

corr.funcs A single character string of length two that specifies the asreml one-dimensional
correlation or variance model function for the row and column dimensions of a
two-dimensional separable spatial correlation model to be fitted when spatial.model
is corr; the two-dimensional model is fitted as a random term. If a correlation
or variance model is not to be investigated for one of the dimensions, specify ""
for that dimension. If the correlation model is corb, the values of corr.orders
are used for its order argument (b).

corr.orders A numeric of length two that specifies the order argument (b) values for the
row and column dimensions of a two-dimensional separable spatial correlation
model when spatial.model is corr and the corr.funcs for a dimension is
corb, the asreml banded correlation model. If one of the dimensions does not
involve an order argument, set the value of corr.orders for that dimension to
zero. For a dimension for which the corr.funcs is corb and corr.orders is
zero, a model with a single band, the correlation between immediate neighbours,
will be fitted and then further bands, up to a maximum of 10 bands, will be added
until the addition of an extra band does not reduce the information criterion
nominated using which.IC. Note that the two-dimensional spatial model is fitted
as a random term.

row.corrFitfirst

A logical. If TRUE then, in fitting the model for spatial.model set to corr,
the row correlation or variance function is fitted first, followed by the addition
of the column correlation or variance function. If FALSE, the order of fitting is
reversed.

allow.corrsJointFit

A logical which, if TRUE, will allow the simultaneous fitting of correlation
functions for the two dimensions of the grid when separate fits have failed to fit
any correlation functions. This argument is available for when a joint fit hangs
the system.

nugget.variance

A logical which, if TRUE, will result in an attempt to fit a nugget or unit-specific
variance. Otherwise, a nugget or unit-specific variance will not be fitted.

dropFixed A single character string or a character vector of strings with an element
for each level of sections in the same order as the sections levels. Each
string, which if it is not NA and after the addition of ". ~ . -" and conversion
to a formula that is then expanded, specifies the sum of a set of terms to be
dropped from the fixed formula in fitting splines (TPPS and TPNCSS). The result
is that the fitted model supplied in the asrtests.obj, that includes these terms,
will be compared with the fitted model that has had them removed and a spatial
model added.
An element that is NA indicates that no term pertaining to the corresponding
sections level is to be removed. If sections is not NULL and a single character
string has been supplied, the terms specified by the string are taken to be terms
that are independent of the sections and will be removed when adding the
spatial model for the first sections.

16 addSpatialModel.asrtests

The terms must match those in the wald.tab component of the asrtests.obj.
The fixed terms will be reordered so that single-variable terms come first, fol-
lowed by two-variable terms and so on. Note also that multiple terms specified
using a single asreml::at function can only be dropped as a whole. If the term
was specified using an asreml::at function with a single level, then it can be
removed and either the level itself or its numeric position in the levels returned
by the levels function can be specified.

dropRandom A single character string or a character vector of strings with an element
for each level of sections in the same order as the sections levels. Each
string, which if it is not NA and after the addition of " ~ . -" and conversion to a
formula that is then expanded, specifies the sum of a set of terms to be dropped
from the random formula in fitting splines (TPPS and TPNCSS). The result is that
the fitted model supplied in the asrtests.obj, that includes these terms, will be
compared with the fitted model that has had them removed and a spatial model
added.
An element that is NA indicates that no term pertaining to the corresponding
sections level is to be removed. If sections is not NULL and a single character
string has been supplied, the terms specified by the string are taken to be terms
that are independent of the sections and will be removed when adding the
spatial model for the first sections.
The terms must match those in the vparameters component of the asreml.obj
component in the asrtests.obj. Note also that multiple terms specified using
a single asreml::at function can only be dropped as a whole. If the term
was specified using an asreml::at function with a single level, then it can be
removed and either the level itself or its numeric position in the levels returned
by the levels function can be specified.

nsegs A pair of numeric values giving the number of segments into which the column
and row ranges are to be split, respectively, for fitting a P-spline model (TPPS)
(each value specifies the number of internal knots + 1). If not specified, then
(number of unique values - 1) is used in each dimension; for a grid layout with
equal spacing, this gives a knot at each data value. If sections is not NULL
and the grid differs between the sections, then nsegs will differ between the
sections.

nestorder A numeric of length 2. The order of nesting for column and row dimensions,
respectively, in fitting a P-spline model (TPPS). A value of 1 specifies no nesting,
a value of 2 generates a spline with half the number of segments in that dimen-
sion, etc. The number of segments in each direction must be a multiple of the
order of nesting.

degree A numeric of length 2. The degree of polynomial spline to be used for column
and row dimensions respectively, in fitting a P-spline (TPPS).

difforder A numeric of length 2. The order of differencing for column and row dimen-
sions, respectively, in fitting a P-spline (TPPS).

usRandLinCoeffs

A logical which, if TRUE, will attempt to fit an unstructured variance model to
the constant and linear terms in the interactions for constant and linear terms in
one grid dimension interacting with smooth terms in the second grid dimension.
The unstructured variance model can only be fitted if both the constant and linear
interaction terms have been retained in the fitted model. This argument can be
used to omit the attempt to fit an unstructured variance model when the attempt
results in a system error.

addSpatialModel.asrtests 17

rotateX A logical indicating whether to rotate the eigenvectors of the penalty matrix, as
described by Piepho, Boer and Williams (2022), when fitting a P-spline (TPPS).
Setting rotateX to TRUE results in a search for an optimized rotation under a
model that omits the random spline interaction terms. If ngridangles is set to
NULL, the optimal rotation us found using an optimizer (nloptr::bobyqa). Oth-
erwise, the optimal rotation is found by exploring the fit over a two-dimensional
grid of rotation angle pairs. The optimization seeks to optimize the criterion
nominated in which.rotacriterion. Rotation of the eigenvectors is only rel-
evant for difforder values greater than 1 and has only been implemented for
difforder equal to 2.

ngridangles A numeric of length 2. If NULL (the default), the optimal pair of angles for
rotating the eigenvectors of the penalty matrix of a P-spline (TPPS) will be de-
termined using a nonlinear optimizer (nloptr::bobyqa). Otherwise, its two
values specify the numbers of angles between 0 and 90 degrees for each of the
row and column dimensions to be used in determining the optimal pair of angles.
Specifying factors of 90 will result in integer-valued angles. The number of grid
points, and hence re-analyses will be the product of the values of (ngridangles
+ 1).

which.rotacriterion

A single character string nominating which of the criteria, out of the deviance,
the likelihood, the AIC and the BIC, is to be used in determining the optimal
rotation of the eigenvectors of the penalty matrix. The deviance uses the REML
value computed by asreml; the other criteria use the full likelihood, evaluated
using the REML estimates, that is computed by infoCriteria.asreml.

nrotacores A numeric specifying the number of cores to deploy for running the analyses
required to search the two-dimensional grid of rotation angles when rotateX is
TRUE. Parallel processing has been implemented for analyzing, for each column
angle, the set of angles to be investigated for the row dimension. The default
value of one means that parallel processing will not be used. The value chosen
for nrotacores needs to balanced against the other processes that are using
parallel processing at the same time.

asreml.option A single character string specifying whether the grp or mbf methods are to
be used to supply externally formed covariate matrices to asreml when fit-
ting a P-spline (TPPS). Compared to the mbf method, the grp method is some-
what faster, but creates large asrtests.objects for which the time it takes
to save them can exceed any gains in execution speed. The grp method adds
columns to the data.frame containing the data. On the other hand, the mbf
method adds only the fixed covariates to data and stores the random covariates
in the environment of the internal function that calls the spline-fitting function;
there are three smaller data.frames for each section that are not stored in the
asreml.object resulting from the fitted model.

tpps4mbf.obj An object made with makeTPPSplineMats.data.frame that contains the spline
basis information for fitting P-splines. The argument tpps4mbf.obj only needs
to be set when the mbf option of asreml.option is being used and it is de-
sired to use mbf data.frames that have been created and stored prior to calling
addSpatialModel.asrtests. If tpps4mbf.obj is NULL,
makeTPPSplineMats.data.frame will be called internally to produce the re-
quired mbf data.frames.

allow.unconverged

A logical indicating whether to accept a new model even when it does not
converge. If FALSE and the fit of the new model does not converge, the supplied

18 addSpatialModel.asrtests

asrtests.obj is returned. Also, if FALSE and the fit of the new model has
converged, but that of the old model has not, the new model will be accepted.

allow.fixedcorrelation

A logical indicating whether to accept a new model even when it contains
correlations in the model whose values have been designated as fixed, bound
or singular. If FALSE and the new model contains correlations whose values
have not been able to be estimated, the supplied asrtests.obj is returned.
The fit in the asreml.obj component of the supplied asrtests.obj will also
be tested and a warning issued if both fixed correlations are found in it and
allow.fixedcorrelation is FALSE.

checkboundaryonly

If TRUE then boundary and singular terms are not removed by rmboundary.asrtests;
a warning is issued instead. Note that, for correlation models, the fitting of each
dimension and the test for a nugget term are performed with checkboundaryonly
set to TRUE and its supplied setting only honoured using a call to rmboundary.asrtests
immediately prior to returning the final result of the fitting.

update If TRUE, then newfit.asreml is called to fit the model to be tested, using the
values of the variance parameters stored in the asreml.object, that is stored
in asrtests.obj, as starting values. If FALSE, then newfit.asreml will not
use the stored variance parameter values as starting values when fitting the new
model, the only modifications being (i) to add the terms for the spatial models
and (ii) those specified via

trace If TRUE then the stages in fitting a correlation model are displayed.

maxit A numeric specifying the maximum number of iterations that asreml should
perform in fitting a model.

IClikelihood A character that controls both the occurrence and the type of likelihood for
information criterion in the test.summary of the new asrtests.object. If
none, none are included. Otherwise, if REML, then the AIC and BIC based on the
Restricted Maximum Likelihood are included; if full, then the AIC and BIC
based on the full likelihood, evaluated using REML estimates, are included.
(See also infoCriteria.asreml.)

which.IC A character specifying the information criterion to be used in selecting the
best model. Possible values are AIC and BIC. The value of the criterion for
supplied model must exceed that for changed model for the changed model to
be returned. (For choosing the rotation angle of the eigenvectors of the penalty
matrix, see which.rotacriterion.

... Further arguments passed to changeModelOnIC.asrtests, newfit.asreml, asreml
and tpsmmb.

Details

The model to which the spatial models is to be added is supplied in the asrtests.obj. It should
not include terms that will be included in the local spatial model. All spatial model terms are fitted
as fixed or random. Consequently, the residual model does not have to be iid. The improvement
in the fit resulting from the addition of a spatial model to the supplied model is evaluated. Note
that the data must be in the order that corresponds to the residual argument with a variable to the
right of another variable changes levels in the data frame faster than those of the other variable e.g.
Row:Column implies that all levels for Column in consecutive rows of the data.frame with a single
Row level.

For the corr spatial model, the default model is an autocorrelation model of order one (ar1) for each
dimension. However, any of the single dimension correlation/variance models from asreml can be

addSpatialModel.asrtests 19

specified for each dimension, as can no correlation model for a dimension; the models for the two
dimensions can differ. Using a forward selection procedure, a series of models are tried, without
removing boundary or singular terms, beginning with the addition of row correlation and followed
by the addition of column correlation or, if the row.corrFitfirst is set to FALSE, the reverse order.
If the fitting of the first-fitted correlation did not result in a model change because the fitting did
not converge or correlations were fixed, but the fit of the second correlation was successful, then
adding the first correlation will be retried. If one of the metric correlation functions is specified
(e.g. exp), then the row.covar or col.covar will be used in the spatial model. However, because
the correlations are fitted separately for the two dimensions, the row.factor and col.factor are
needed for all models and is used for a dimension that does not involve a correlation/variance
function for the fit being performed. Also, the correlation models are fitted as random terms and
so the correlation model will include a variance parameter for the grid even when ar1 is used to
specify the correlation model, i.e. the model fitted is a variance model and there is no difference
between ar1 and ar1v in fitting the model. The variance parameter for this term represents the
spatial variance and the fit necessarily includes a nugget term, this being the residual variance. If any
correlation is retained in the model, for a section if sections is not NULL, then the need for a nugget
term is assessed by fixing the corresponding residual variance to one, unless there are multiple
residual variances and these are not related to the sections. Once the fitting of the correlation
model has been completed, the rmboundary function will be executed with the checkboundaryonly
value supplied in the addSpatialModel.asrtests call. Finally, checking for bound and singular
random terms associated with the correlation model and residual terms will be carried out when
there are correlation terms in the model and checkboundaryonly has been set to FALSE; as many
as possible will be removed from the fitted model, in some cases by fixing variance terms to one.

The tensor-product natural-cubic-smoothing-spline (TPNCSS) spatial model is as described by Ver-
byla et al. (2018), the tensor-product penalized-cubic-spline (TPPSC2) model with second-order
differencing of the penalty is similar to that described by Rodriguez-Alvarez et al. (2018), and the
tensor-product, first-difference-penalty, linear spline (TPPSL1) model is amongst those described
by Piepho, Boer and Williams (2022). The fixed terms for the spline models are row.covar +
col.covar + row.covar:col.covar and the random terms are spl(row.covar) + spl(col.covar)
+ dev(row.covar) + dev(col.covar) + spl(row.covar):col.covar + row.covar:spl(col.covar)
+ spl(row.covar):spl(col.covar), except that spl(row.covar) + spl(col.covar) is replaced
with spl(row.covar):int(col.covar) + int(row.covar):spl(col.covar) in the TPPSC2 model,
where int(.) indicates an intercept or constant value specific to its argument. For TPPSL1 mod-
els, the terms spl(row.covar):col.covar + row.covar:spl(col.covar) are omitted, The sup-
plied model should not include any of these terms. However, any fixed or random main-effect
Row or Column term that has been included as an initial model for comparison with a spatial
model can be removed prior to fitting the spatial model using dropFixed or dropRandom. For
the P-spline models with second-order differencing, the model matrices used to fit the pairs of
random terms (i) spl(row.covar):int(col.covar) and spl(row.covar):col.covar and (ii)
int(row.covar):spl(col.covar) and row.covar:spl(col.covar) are transformed using the
spectral decomposition of their penalty matrices. An unstructured variance model is tried for each
of these pairs. For TPPSC2, it is also possible to optimize the rotation of the null-space eigenvectors
of the penalty matrix for each of these random-term pairs (for more information see Piepho, Boer
and Williams, 2022). The optimization is achieved either using an optimizer or takes the form of
a search over a grid of rotation angles for a reduced model; the fit of the full model with rotation
using the optimal rotation angles will be returned.

The TPPCS and TPP1LS models are fitted using functions from the R package TPSbits authored
by Sue Welham (2022). There are two methods for supplying the spline basis information pro-
duced by tpsmmb to asreml. The grp method adds it to the data.frame supplied in the data
argument of the asreml call. The mbf method creates smaller data.frames with the spline ba-
sis information in the same environment as the internal function that calls the spline-fitting func-
tion. If it is desired to use in a later session, an asreml function, or asrtests function that

20 addSpatialModel.asrtests

calls asreml, (e.g. predict.asreml, predictPlus.asreml, or changeTerms.asrtests) on an
asreml.object created using mbf terms, then the mbf data.frames will need to be recreated us-
ing makeTPPSplineMats.data.frame in the new session, supplying, if there has been rotation of
the penalty matrix eigenvectors, the theta values that are returned as the attribute theta.opt of
the asreml.obj.

All models utlize the function changeTerms.asrtests to fit the spatial model. Arguments from
tpsmmb and changeTerms.asrtests can be supplied in calls to addSpatialModel.asrtests and
will be passed on to the relevant function through the ellipses argument (. . .).

The data for experiment can be divided sections and the same spatial model fitted separately to
each. The fit over all of the sections is assessed. For more detail see sections above.

Each combination of a row.coords and a col.coords does not have to specify a single observation;
for example, to fit a local spatial model to the main units of a split-unit design, each combination
would correspond to a main unit and all subunits of the main unit would have the same combination.

Value

An asrtests.object containing the components (i) asreml.obj, possibly with attribute theta.opt,
(ii) wald.tab, and (iii) test.summary for the model that includes the spatial model, unless the spa-
tial model fails to be fitted when allow.unconverged and/or allow.fixedcorrelation is set to
FALSE. If the asrtests.object is the result of fitting a TPPCS model with an exploration of the
rotation of the eigenvectors of the penalty matrix for the linear components, then the asreml.obj
will have an attribute theta.opt that contains the optimal rotation angles of the eigenvectors.

Author(s)

Chris Brien

References

Piepho, H.-P., Boer, M. P., & Williams, E. R. (2022). Two-dimensional P-spline smoothing for
spatial analysis of plant breeding trials. Biometrical Journal, 64, 835-857.

Rodriguez-Alvarez, M. X., Boer, M. P., van Eeuwijk, F. A., & Eilers, P. H. C. (2018). Correcting
for spatial heterogeneity in plant breeding experiments with P-splines. Spatial Statistics, 23, 52-71.

Verbyla, A. P., De Faveri, J., Wilkie, J. D., & Lewis, T. (2018). Tensor Cubic Smoothing Splines
in Designed Experiments Requiring Residual Modelling. Journal of Agricultural, Biological and
Environmental Statistics, 23(4), 478-508.

Welham, S. J. (2022) TPSbits: Creates Structures to Enable Fitting and Examination of 2D Tensor-
Product Splines using ASReml-R. Version 1.0.0 https://mmade.org/tpsbits/

See Also

as.asrtests, makeTPPSplineMats.data.frame, addSpatialModelOnIC.asrtests,
chooseSpatialModelOnIC.asrtests, changeModelOnIC.asrtests, changeTerms.asrtests,
rmboundary.asrtests, testranfix.asrtests, testresidual.asrtests, newfit.asreml,
reparamSigDevn.asrtests, changeTerms.asrtests, infoCriteria.asreml

Examples

Not run:

data(Wheat.dat)

https://mmade.org/tpsbits/

addSpatialModelOnIC.asrtests 21

#Add row and column covariates
Wheat.dat <- within(Wheat.dat,

{
cColumn <- dae::as.numfac(Column)
cColumn <- cColumn - mean(unique(cColumn))
cRow <- dae::as.numfac(Row)
cRow <- cRow - mean(unique(cRow))

})

#Fit initial model
current.asr <- asreml(yield ~ Rep + WithinColPairs + Variety,

random = ~ Row + Column,
data=Wheat.dat)

#Create an asrtests object, removing boundary terms
current.asrt <- as.asrtests(current.asr, NULL, NULL,

label = "Random Row and Column effects")
current.asrt <- rmboundary(current.asrt)

#Create an asrtests object with a P-spline spatial variation model
spatial.asrt <- addSpatialModel(current.asrt, spatial.model = "TPPS",

row.covar = "cRow", col.covar = "cColumn",
dropRowterm = "Row", dropColterm = "Column",
asreml.option = "grp")

infoCriteria(current.asrt$asreml.obj)

#Create an asrtests object with a P-spline spatial variation model
#that includes rotation of the eigenvectors of the penalty matrix
spatial.asrt <- addSpatialModel(current.asrt, spatial.model = "TPPS",

row.covar = "cRow", col.covar = "cColumn",
dropRowterm = "Row", dropColterm = "Column",
rotateX = TRUE,
which.rotacriterion = "dev",
nrotacores = parallel::detectCores(),
asreml.option = "mbf")

infoCriteria(current.asrt$asreml.obj)

End(Not run)

addSpatialModelOnIC.asrtests

Uses information criteria to decide whether to add a spatial model to
account for local spatial variation.

Description

Adds either a correlation, two-dimensional tensor-product natural cubic smoothing spline (TP-
NCSS), or a two-dimensional tensor-product penalized P-spline model (TPPS) to account for the
local spatial variation exhibited by a response variable measured on a potentially irregular grid of
rows and columns of the units. The data may be arranged in sections for each of which there is a
grid and for which the model is to be fitted separately. Also, the rows and columns of a grid are not
necessarily one observational unit wide. The spatial model is only added if the information criterion
of the supplied model is decreased with the addition of the local spatial model. For TPPS models for
which the order of differencing the penalty matrix is two, the improvement in the fit from rotating

22 addSpatialModelOnIC.asrtests

the eigenvectors of the penalty matrix can be investigated; if there is no improvement, the unrotated
fit will be returned.

A row is added for each section to the test.summary data.frame of the asrtests.object
stating whether or not the new model has been swapped for a model in which the spatial model
has been add to the supplied model. Convergence and the occurrence of fixed correlations in fitting
the model is checked and a note included in the action if there was not. All components of the
asrtests.object are updated to exhibit the differences between the supplied and the new model,
if a spatial model is added.

Usage

S3 method for class 'asrtests'
addSpatialModelOnIC(asrtests.obj, spatial.model = "TPPS",

sections = NULL,
row.covar = "cRow", col.covar = "cCol",
row.factor = "Row", col.factor = "Col",
corr.funcs = c("ar1", "ar1"), corr.orders = c(0, 0),
row.corrFitfirst = TRUE,
allow.corrsJointFit = TRUE, nugget.variance = TRUE,
dropFixed = NULL, dropRandom = NULL,
nsegs = NULL, nestorder = c(1,1),
degree = c(3,3), difforder = c(2,2),
usRandLinCoeffs = TRUE,
rotateX = FALSE, ngridangles = NULL,
which.rotacriterion = "AIC", nrotacores = 1,
asreml.option = "grp", tpps4mbf.obj = NULL,
allow.unconverged = TRUE, allow.fixedcorrelation = TRUE,
checkboundaryonly = FALSE, update = TRUE, trace = FALSE,
maxit = 30, IClikelihood = "full", which.IC = "AIC", ...)

Arguments

asrtests.obj An asrtests.object containing the components (i) asreml.obj, (ii) wald.tab,
and (iii) test.summary.

spatial.model A single character string nominating the type of spatial model to fit. Possible
values are corr, TPNCSS and TPPS.

sections A single character string that specifies the name of the column in the data.frame
that contains the factor that identifies different sections of the data to which
separate spatial models are to be fitted. Note that, for other terms that involve
sections in the random formula, there should be separate terms for each level
of sections. For example, in a blocked experiment involving multiple sites,
there should be the sum of separate terms for the Blocks at each Site i.e. a
formula that contains terms like at(Site, i):Block for each site and these are sep-
arated by '+'. Otherwise, the combined term (e.g. Site:Block) will impact on
the fitting of the local spatial models for the different Sites. Similarly, a separate
residual variance for each of the sections should be fitted, unless there is a need
to fit a different variance structure to the residual, e.g. heterogeneous residual
variances depending on treatments. Separate residual variances for sections
can be achieved using the asreml functions dsum or idh. Because, unlike ran-
dom terms, terms for residual variances are not removed from the model, com-
pound residual terms can be used to include them in the model, e.g. terms with
idh or dsum with multiple levels in the list or leaving levels out altogether.

addSpatialModelOnIC.asrtests 23

In addition to allowing the independent fitting of models to the sections, sepa-
rate residual variance terms allows a nugget variance to be fitted in a correlation
model for each of the sections.

row.covar A single character string nominating a numeric that contains the values of a
centred covariate indexing the rows of a grid. The numeric must be a column in
the data.frame stored in the asreml.obj that is a component of the supplied
asrtests.obj.

col.covar A single character string nominating a numeric that contains the values of
a centred covariate indexing the columns of a grid. The numeric must be a
column in the data.frame stored in the asreml.obj that is a component of the
supplied asrtests.obj.

row.factor A single character string nominating a factor that indexes the rows of a grid
that are to be one dimension of a spatial correlation model. The factor must a
column in the data.frame stored in the asreml.obj that is a component of the
supplied asrtests.obj.

col.factor A single character string nominating a factor that indexes the columns of a
grid that are to be one dimension of a spatial correlation model. The factor
must a column in the data.frame stored in the asreml.obj that is a component
of the supplied asrtests.obj.

corr.funcs A single character string of length two that specifies the asreml one-dimensional
correlation or variance model function for the row and column dimensions of a
two-dimensional separable spatial correlation model to be fitted when spatial.model
is corr; the two-dimensional model is fitted as a random term. If a correlation
or variance model is not to be investigated for one of the dimensions, specify ""
for that dimension. If the correlation model is corb, the values of corr.orders
are used for its order argument (b).

corr.orders A numeric of length two that specifies the order argument (b) values for the
row and column dimensions of a two-dimensional separable spatial correlation
model when spatial.model is corr and the corr.funcs for a dimension is
corb, the asreml banded correlation model. If one of the dimensions does not
involve an order argument, set the value of corr.orders for that dimension to
zero. For a dimension for which the corr.funcs is corb and corr.orders is
zero, a model with a single band, the correlation between immediate neighbours,
will be fitted and then further bands, up to a maximum of 10 bands, will be added
until the addition of an extra band does not reduce the information criterion
nominated using which.IC. Note that the two-dimensional spatial model is fitted
as a random term.

row.corrFitfirst

A logical. If TRUE then, in fitting the model for spatial.model set to corr,
the row correlation or variance function is fitted first, followed by the addition
of the column correlation or variance function. If FALSE, the order of fitting is
reversed.

allow.corrsJointFit

A logical which, if TRUE, will allow the simultaneous fitting of correlation
functions for the two dimensions of the grid when separate fits have failed to fit
any correlation functions. This argument is available for when a joint fit hangs
the system.

nugget.variance

A logical which, if TRUE, will result in an attempt to fit a nugget or unit-specific
variance. Otherwise, a nugget or unit-specific variance will not be fitted.

24 addSpatialModelOnIC.asrtests

dropFixed A single character string or a character vector of strings with an element
for each level of sections in the same order as the sections levels. Each
string, which if it is not NA and after the addition of ". ~ . -" and conversion
to a formula that is then expanded, specifies the sum of a set of terms to be
dropped from the fixed formula in fitting splines (TPPS and TPNCSS). The result
is that the fitted model supplied in the asrtests.obj, that includes these terms,
will be compared with the fitted model that has had them removed and a spatial
model added.
An element that is NA indicates that no term pertaining to the corresponding
sections level is to be removed. If sections is not NULL and a single character
string has been supplied, the terms specified by the string are taken to be terms
that are independent of the sections and will be removed when adding the
spatial model for the first sections.
The terms must match those in the wald.tab component of the asrtests.obj.
The fixed terms will be reordered so that single-variable terms come first, fol-
lowed by two-variable terms and so on. Note also that multiple terms specified
using a single asreml::at function can only be dropped as a whole. If the term
was specified using an asreml::at function with a single level, then it can be
removed and either the level itself or its numeric position in the levels returned
by the levels function can be specified.

dropRandom A single character string or a character vector of strings with an element
for each level of sections in the same order as the sections levels. Each
string, which if it is not NA and after the addition of " ~ . -" and conversion to a
formula that is then expanded, specifies the sum of a set of terms to be dropped
from the random formula in fitting splines (TPPS and TPNCSS). The result is that
the fitted model supplied in the asrtests.obj, that includes these terms, will be
compared with the fitted model that has had them removed and a spatial model
added.
An element that is NA indicates that no term pertaining to the corresponding
sections level is to be removed. If sections is not NULL and a single character
string has been supplied, the terms specified by the string are taken to be terms
that are independent of the sections and will be removed when adding the
spatial model for the first sections.
The terms must match those in the vparameters component of the asreml.obj
component in the asrtests.obj. Note also that multiple terms specified using
a single asreml::at function can only be dropped as a whole. If the term
was specified using an asreml::at function with a single level, then it can be
removed and either the level itself or its numeric position in the levels returned
by the levels function can be specified.

nsegs A pair of numeric values giving the number of segments into which the column
and row ranges are to be split, respectively, for fitting a P-spline model (TPPS)
(each value specifies the number of internal knots + 1). If not specified, then
(number of unique values - 1) is used in each dimension; for a grid layout with
equal spacing, this gives a knot at each data value. If sections is not NULL
and the grid differs between the sections, then nsegs will differ between the
sections.

nestorder A numeric of length 2. The order of nesting for column and row dimensions,
respectively, in fitting a P-spline model (TPPS). A value of 1 specifies no nesting,
a value of 2 generates a spline with half the number of segments in that dimen-
sion, etc. The number of segments in each direction must be a multiple of the
order of nesting.

addSpatialModelOnIC.asrtests 25

degree A numeric of length 2. The degree of polynomial spline to be used for column
and row dimensions respectively, in fitting a P-spline (TPPS).

difforder A numeric of length 2. The order of differencing for column and row dimen-
sions, respectively, in fitting a P-spline (TPPS).

usRandLinCoeffs

A logical which, if TRUE, will attempt to fit an unstructured variance model to
the constant and linear terms in the interactions for constant and linear terms in
one grid dimension interacting with smooth terms in the second grid dimension.
The unstructured variance model can only be fitted if both the constant and linear
interaction terms have been retained in the fitted model. This argument can be
used to omit the attempt to fit an unstructured variance model when the attempt
results in a system error.

rotateX A logical indicating whether to rotate the eigenvectors of the penalty matrix, as
described by Piepho, Boer and Williams (2022), when fitting a P-spline (TPPS).
Setting rotateX to TRUE results in a search for an optimized rotation under a
model that omits the random spline interaction terms. If ngridangles is set to
NULL, the optimal rotation us found using an optimizer (nloptr::bobyqa). Oth-
erwise, the optimal rotation is found by exploring the fit over a two-dimensional
grid of rotation angle pairs. The optimization seeks to optimize the criterion
nominated in which.rotacriterion. Rotation of the eigenvectors is only rel-
evant for difforder values greater than 1 and has only been implemented for
difforder equal to 2.

ngridangles A numeric of length 2. If NULL (the default), the optimal pair of angles for
rotating the eigenvectors of the penalty matrix of a P-spline (TPPS) will be de-
termined using a nonlinear optimizer (nloptr::bobyqa). Otherwise, its two
values specify the numbers of angles between 0 and 90 degrees for each of the
row and column dimensions to be used in determining the optimal pair of angles.
Specifying factors of 90 will result in integer-valued angles. The number of grid
points, and hence re-analyses will be the product of the values of (ngridangles
+ 1).

which.rotacriterion

A single character string nominating which of the criteria out of the deviance,
the likelihood, the AIC and the BIC in determining the optimal rotation of
the eigenvectors of the penalty matrix. The deviance uses the REML value
computed by asreml; the other criteria use the full likelihood, evaluated using
the REML estimates, that is computed by infoCriteria.asreml.

nrotacores A numeric specifying the number of cores to deploy for running the analyses
required to search the two-dimensional grid of rotation angles when rotateX is
TRUE. Parallel processing has been implemented for analyzing, for each column
angle, the set of angles to be investigated for the row dimension. The default
value of one means that parallel processing will not be used. The value chosen
for nrotacores needs to balanced against the other processes that are using
parallel processing at the same time.

asreml.option A single character string specifying whether the grp or mbf methods are to
be used to supply externally formed covariate matrices to asreml when fit-
ting a P-spline (TPPS). Compared to the mbf method, the grp method is some-
what faster, but creates large asrtests.objects for which the time it takes
to save them can exceed any gains in execution speed. The grp method adds
columns to the data.frame containing the data. On the other hand, the mbf
method adds only the fixed covariates to data and stores the random covariates
in the environment of the internal function that calls the spline-fitting function;

26 addSpatialModelOnIC.asrtests

there are three smaller data.frames for each section that are not stored in the
asreml.object resulting from the fitted model.

tpps4mbf.obj An object made with makeTPPSplineMats.data.frame that contains the spline
basis information for fitting P-splines. The argument tpps4mbf.obj only needs
to be set when the mbf option of asreml.option is being used and it is desired
to use mbf data.frames that have been created and stored prior to calling
addSpatialModelOnIC.asrtests. If tpps4mbf.obj is NULL, makeTPPSplineMats.data.frame
will be called internally to produce the required mbf data.frames.

allow.unconverged

A logical indicating whether to accept a new model even when it does not
converge. If FALSE and the fit of the new model does not converge, the supplied
asrtests.obj is returned. Also, if FALSE and the fit of the new model has
converged, but that of the old model has not, the new model will be accepted.

allow.fixedcorrelation

A logical indicating whether to accept a new model even when it contains
correlations in the model whose values have been designated as fixed, bound
or singular. If FALSE and the new model contains correlations whose values
have not been able to be estimated, the supplied asrtests.obj is returned.
The fit in the asreml.obj component of the supplied asrtests.obj will also
be tested and a warning issued if both fixed correlations are found in it and
allow.fixedcorrelation is FALSE.

checkboundaryonly

If TRUE then boundary and singular terms are not removed by rmboundary.asrtests;
a warning is issued instead. Note that, for correlation models, the fitting of each
dimension and the test for a nugget term are performed with checkboundaryonly
set to TRUE and its supplied setting only honoured using a call to rmboundary.asrtests
immediately prior to returning the final result of the fitting.

update If TRUE, then newfit.asreml is called to fit the model to be tested, using the
values of the variance parameters stored in the asreml.object, that is stored
in asrtests.obj, as starting values. If FALSE, then newfit.asreml will not
use the stored variance parameter values as starting values when fitting the new
model, the only modifications being (i) to add the terms for the spatial models
and (ii) those specified via

trace If TRUE then the stages in fitting a correlation model are displayed.

which.IC A character specifying the information criterion to be used in selecting the
best model. Possible values are AIC and BIC. The value of the criterion for
supplied model must exceed that for changed model for the changed model to
be returned. (For choosing the rotation angle of the eigenvectors of the penalty
matrix, see which.rotacriterion.

maxit A numeric specifying the maximum number of iterations that asreml should
perform in fitting a model.

IClikelihood A character specifying whether Restricted Maximum Likelihood (REML) or
the full likelihood, evaluated using REML estimates, (full) are to be used in
calculating the information criteria to be included in the test.summary of an
asrtests.object or to be used in choosing the best model.

... Further arguments passed to changeModelOnIC.asrtests, asreml and tpsmmb.

Details

A fitted spatial model is only returned if it improves the fit over and above that of achieved with the
model fit supplied in the asrtests.obj. To fit the spatial model without any hypotheses testing or

addSpatialModelOnIC.asrtests 27

comparison of information criteria use addSpatialModel.asrtests. The model fit supplied in the
asrtests.obj should not include terms that will be included in the local spatial model. All spatial
model terms are fitted as fixed or random. Consequently, the residual model does not have to be iid.
Note that the data must be in the order that corresponds to the residual argument with a variable to
the right of another variable changes levels in the data frame faster than those of the other variable
e.g. Row:Column implies that all levels for Column in consecutive rows of the data.frame with a
single Row level.

For the corr spatial model, the default model is an autocorrelation model of order one (ar1) for each
dimension. However, any of the single dimension correlation/variance models from asreml can be
specified for each dimension, as can no correlation model for a dimension; the models for the two
dimensions can differ. Using a forward selection procedure, a series of models are tried, without
removing boundary or singular terms, beginning with the addition of row correlation and followed
by the addition of column correlation or, if the row.corrFitfirst is set to FALSE, the reverse order.
If the fitting of the first-fitted correlation did not result in a model change because the fitting did not
converge or correlations were fixed, but the fit of the second correlation was successful, then adding
the first correlation will be retried. If one of the metric correlation functions is specified (e.g. exp),
then the row.covar or col.covar will be used in the spatial model. However, because the corre-
lations are fitted separately for the two dimensions, the row.factor and col.factor are needed
for all models and is used for a dimension that does not involve a correlation/variance function for
the fit being performed. Also, the correlation models are fitted as random terms and so the corre-
lation model will include a variance parameter for the grid even when ar1 is used to specify the
correlation model, i.e. the model fitted is a variance model and there is no difference between ar1
and ar1v in fitting the model. The variance parameter for this term represents the spatial variance
and the fit necessarily includes a nugget term, this being the residual variance. If any correlation
is retained in the model, for a section if sections is not NULL, then the need for a nuggest term
is assessed by fixing the corresponding residual variance to one, unless there are multiple residual
variances and these are not related to the sections. Once the fitting of the correlation model has
been completed, the rmboundary function will be executed with the checkboundaryonly value
supplied in the addSpatialModelOnIC.asrtests call. Finally, checking for bound and singular
random terms associated with the correlation model and residual terms will be carried out when
there are correlation terms in the model and checkboundaryonly has been set to FALSE; as many
as possible will be removed from the fitted model, in some cases by fixing variance terms to one.

The tensor-product natural-cubic-smoothing-spline (TPNCSS) spatial model is as described by Ver-
byla et al. (2018), the tensor-product penalized-cubic-spline (TPPSC2) model with second-order
differencing of the penalty is similar to that described by Rodriguez-Alvarez et al. (2018), and the
tensor-product, first-difference-penalty, linear spline (TPPSL1) model is amongst those described
by Piepho, Boer and Williams (2022). The fixed terms for the spline models are row.covar +
col.covar + row.covar:col.covar and the random terms are spl(row.covar) + spl(col.covar)
+ dev(row.covar) + dev(col.covar) + spl(row.covar):col.covar + row.covar:spl(col.covar)
+ spl(row.covar):spl(col.covar), except that spl(row.covar) + spl(col.covar) is replaced
with spl(row.covar):int(col.covar) + int(row.covar):spl(col.covar) in the TPPSC2 model,
where int(.) indicates an intercept or constant value specific to its argument. For TPPSL1 mod-
els, the terms spl(row.covar):col.covar + row.covar:spl(col.covar) are omitted, The sup-
plied model should not include any of these terms. However, any fixed or random main-effect
Row or Column term that has been included as an initial model for comparison with a spatial
model can be removed prior to fitting the spatial model using dropFixed or dropRandom. For
the P-spline models with second-order differencing, the model matrices used to fit the pairs of
random terms (i) spl(row.covar):int(col.covar) and spl(row.covar):col.covar and (ii)
int(row.covar):spl(col.covar) and row.covar:spl(col.covar) are transformed using the
spectral decomposition of their penalty matrices. An unstructured variance model is tried for each
of these pairs and retained if it improves the fit. For TPPSC2, it is also possible to optimize the
rotation of the null-space eigenvectors of the penalty matrix for each of these random-term pairs

28 addSpatialModelOnIC.asrtests

(for more information see Piepho, Boer and Williams, 2022). The optimization is achieved either
using an optimizer or takes the form of a search over a grid of rotation angles for a reduced model;
the fit of the full model with rotation using the optimal rotation angles will only be returned if it
improves on the fit of the full, unrotated model.

The TPPCS and TPP1LS models are fitted using functions from the R package TPSbits authored
by Sue Welham (2022). There are two methods for supplying the spline basis information pro-
duced by tpsmmb to asreml. The grp method adds it to the data.frame supplied in the data
argument of the asreml call. The mbf method creates smaller data.frames with the spline ba-
sis information in the same environment as the internal function that calls the spline-fitting func-
tion. If it is desired to use in a later session, an asreml function, or asrtests function that
calls asreml, (e.g. predict.asreml, predictPlus.asreml, or changeTerms.asrtests) on an
asreml.object created using mbf terms, then the mbf data.frames will need to be recreated us-
ing makeTPPSplineMats.data.frame in the new session, supplying, if there has been rotation of
the penalty matrix eigenvectors, the theta values that are returned as the attribute theta.opt of
the asreml.obj.

All models utlize the function changeModelOnIC.asrtests to assess the model fit, the informa-
tion criteria used in assessing the fit being calculated using infoCriteria. Any bound terms are
removed from the model. Arguments from tpsmmb and changeModelOnIC.asrtests can be sup-
plied in calls to addSpatialModelOnIC.asrtests and will be passed on to the relevant function
through the ellipses argument (. . .).

The data for experiment can be divided sections and the same spatial model fitted separately to
each. The fit over all of the sections is assessed. For more detail see sections above.

Each combination of a row.coords and a col.coords does not have to specify a single observation;
for example, to fit a local spatial model to the main units of a split-unit design, each combination
would correspond to a main unit and all subunits of the main unit would have the same combination.

Value

An asrtests.object containing the components (i) asreml.obj, possibly with attribute theta.opt,
(ii) wald.tab, and (iii) test.summary for the model whose fit has the smallest information criterion
between the supplied and spatial model. The values of the degrees of freedom and the information
criteria in the test.summary are differences between those of the changed model and those of the
model supplied to addSpatialModelOnIC. If the asrtests.object is the result of fitting a TPPCS
model with an exploration of the rotation of the eigenvectors of the penalty matrix for the linear
components, then the asreml.obj will have an attribute theta.opt that contains the optimal rota-
tion angles of the eigenvectors.

Author(s)

Chris Brien

References

Piepho, H.-P., Boer, M. P., & Williams, E. R. (2022). Two-dimensional P-spline smoothing for
spatial analysis of plant breeding trials. Biometrical Journal, 64, 835-857.

Rodriguez-Alvarez, M. X., Boer, M. P., van Eeuwijk, F. A., & Eilers, P. H. C. (2018). Correcting
for spatial heterogeneity in plant breeding experiments with P-splines. Spatial Statistics, 23, 52-71.

Verbyla, A. P., De Faveri, J., Wilkie, J. D., & Lewis, T. (2018). Tensor Cubic Smoothing Splines
in Designed Experiments Requiring Residual Modelling. Journal of Agricultural, Biological and
Environmental Statistics, 23(4), 478-508.

addto.test.summary 29

Welham, S. J. (2022) TPSbits: Creates Structures to Enable Fitting and Examination of 2D Tensor-
Product Splines using ASReml-R. Version 1.0.0 https://mmade.org/tpsbits/

See Also

as.asrtests, makeTPPSplineMats.data.frame, addSpatialModel.asrtests,
chooseSpatialModelOnIC.asrtests, changeModelOnIC.asrtests, changeTerms.asrtests,
rmboundary.asrtests, testranfix.asrtests, testresidual.asrtests, newfit.asreml,
reparamSigDevn.asrtests, changeTerms.asrtests, infoCriteria.asreml

Examples

Not run:

data(Wheat.dat)

#Add row and column covariates
Wheat.dat <- within(Wheat.dat,

{
cColumn <- dae::as.numfac(Column)
cColumn <- cColumn - mean(unique(cColumn))
cRow <- dae::as.numfac(Row)
cRow <- cRow - mean(unique(cRow))

})

#Fit initial model
current.asr <- asreml(yield ~ Rep + WithinColPairs + Variety,

random = ~ Row + Column,
data=Wheat.dat)

#Create an asrtests object, removing boundary terms
current.asrt <- as.asrtests(current.asr, NULL, NULL,

label = "Random Row and Column effects")
current.asrt <- rmboundary(current.asrt)

current.asrt <- addSpatialModelOnIC(current.asrt, spatial.model = "TPPS",
row.covar = "cRow", col.covar = "cColumn",
dropRowterm = "Row", dropColterm = "Column",
asreml.option = "grp")

infoCriteria(current.asrt$asreml.obj)

End(Not run)

addto.test.summary Adds a row to a test.summary data.frame.

Description

A row that summarizes the result of a proposed change to a model is added to a test.summary
data.frame. Only the values of those arguments for which there are columns in test.summary
will be included in the row.

https://mmade.org/tpsbits/

30 addto.test.summary

Usage

addto.test.summary(test.summary, terms, DF = 1, denDF = NA,
p = NA, AIC = NA, BIC = NA,
action = "Boundary")

Arguments

test.summary A data.frame whose columns are a subset of terms, DF, denDF, p, AIC, BIC
and action. Each row summarizes the results of proposed changes to the fitted
model. See asrtests.object for more information.

terms A character giving the name of a term that might be added to or removed from
the model or a label indicating a change that might be made to the model.

DF A numeric giving the numerator degrees of freedom for a Wald F-statistic or
the number of variance parameters in the current model minus the number in the
proposed model.

denDF A numeric giving the denominator degrees of freedom for a Wald F-statistic.

p A numeric giving the p-value for a Wald F-statistic or REML ratio test.

AIC A numeric giving Akiake Information Criterion (AIC) for a model or the differ-
ence between the AIC values for the current and proposed models.

BIC A numeric giving Bayesian (Schwarz) Information Criterion for a model or the
difference between the AIC values for the current and proposed models.

action A character giving what action was taken with respect to the proposed change.
See asrtests.object for more information.

Value

A data.frame.

Author(s)

Chris Brien

See Also

asremlPlus-package, asrtests.object, print.test.summary

Examples

Not run:
data(Wheat.dat)

Fit an autocorrelation model
ar1.asr <- asreml(yield ~ Rep + WithinColPairs + Variety,

random = ~ Row + Column + units,
residual = ~ ar1(Row):ar1(Column),
data=Wheat.dat)

ar1.asrt <- as.asrtests(ar1.asr, NULL, NULL,
label = "Autocorrelation model")

ar1.asrt <- rmboundary.asrtests(ar1.asrt)

Fit a tensor spline
Wheat.dat <- within(Wheat.dat,

allDifferences.data.frame 31

{
cRow <- dae::as.numfac(Row)
cRow <- cRow - mean(unique(cRow))
cColumn <- dae::as.numfac(Column)
cColumn <- cColumn - mean(unique(cColumn))

})
ts.asr <- asreml(yield ~ Rep + cRow + cColumn + WithinColPairs +

Variety,
random = ~ spl(cRow) + spl(cColumn) +

dev(cRow) + dev(cColumn) +
spl(cRow):cColumn + cRow:spl(cColumn) +
spl(cRow):spl(cColumn),

residual = ~ Row:Column,
data=Wheat.dat)

ts.asrt <- as.asrtests(ts.asr, NULL, NULL,
label = "Tensor spline model")

ts.asrt <- rmboundary.asrtests(ts.asrt)
ar1.ic <- infoCriteria(ar1.asrt$asreml.obj)
ts.ic <- infoCriteria(ts.asrt$asreml.obj)
if (ar1.ic$AIC < ts.ic$AIC)
{

ic.diff <- ar1.ic - ts.ic
new.asrt <- ar1.asrt
new.asrt$test.summary <- addto.test.summary(ar1.asrt$test.summary,

terms = "Compare ar1 to ts",
DF = ic.diff$varDF,
AIC = ic.diff$AIC, BIC = ic.diff$BIC,
action = "Chose ar1")

} else
{

ic.diff <- ts.ic - ar1.ic
new.asrt <- ts.asrt
new.asrt$test.summary <- addto.test.summary(ts.asrt$test.summary,

terms = "Compare ar1 to ts",
DF = ic.diff$varDF,
AIC = ic.diff$AIC, BIC = ic.diff$BIC,
action = "Chose ts")

}

End(Not run)

allDifferences.data.frame

Using supplied predictions and standard errors of pairwise differences
or the variance matrix of predictions, forms all pairwise differences
between the set of predictions, and p-values for the differences.

Description

Uses supplied predictions and standard errors of pairwise differences, or the variance matrix of
predictions to form, in an alldiffs.object, for those components not already present, (i) a table
of all pairwise differences of the predictions, (ii) the p-value of each pairwise difference, and (iii)
the minimum, mean, maximum and accuracy of LSD values. Predictions that are aliased (or in-
estimable) are removed from the predictions component of the alldiffs.object and standard
errors of differences involving them are removed from the sed component.

32 allDifferences.data.frame

If necessary, the order of the columns of the variables in the predictions component are changed
to be the initial columns of the predictions.frame and to match their order in the classify.
Also, the rows of predictions component are ordered so that they are in standard order for the
variables in the classify. That is, the values of the last variable change with every row, those of
the second-last variable only change after all the values of the last variable have been traversed; in
general, the values of a variable are the same for all the combinations of the values to the variables
to its right in the classify. The sortFactor or sortOrder arguments can be used to order of the
values for the classify variables, which is achieved using sort.alldiffs.

Each p-value is computed as the probability of a t-statistic as large as or larger than the abso-
lute value of the observed difference divided by its standard error. The p-values are stored in the
p.differences component. The degrees of freedom of the t-distribution is the degrees of freedom
stored in the tdf attribute of the alldiffs.object. This t-distribution is also used in calculating
the LSD statistics stored in the LSD component of the alldiffs.object.

Usage

S3 method for class 'data.frame'
allDifferences(predictions, classify, vcov = NULL,

differences = NULL, p.differences = NULL, sed = NULL,
LSD = NULL, LSDtype = "overall", LSDsupplied = NULL,
LSDby = NULL, LSDstatistic = "mean",
LSDaccuracy = "maxAbsDeviation",
retain.zeroLSDs = FALSE,
zero.tolerance = .Machine$double.eps ^ 0.5,
backtransforms = NULL,
response = NULL, response.title = NULL,
term = NULL, tdf = NULL,
x.num = NULL, x.fac = NULL,
level.length = NA,
pairwise = TRUE, alpha = 0.05,
transform.power = 1, offset = 0, scale = 1,
transform.function = "identity",
inestimable.rm = TRUE,
sortFactor = NULL, sortParallelToCombo = NULL,
sortNestingFactor = NULL, sortOrder = NULL,
decreasing = FALSE, ...)

Arguments

predictions A predictions.frame, or a data.frame, beginning with the variables clas-
sifying the predictions and also containing columns named predicted.value,
standard.error and est.status; each row contains a single predicted value.
It may also contain columns for the lower and upper limits of error intervals for
the predictions. Note that the names standard.error and est.status have
been changed to std.error and status in the pvals component produced by
asreml-R4; if the new names are in the data.frame supplied to predictions,
they will be returned to the previous names.

classify A character string giving the variables that define the margins of the multiway
table that has been predicted. Multiway tables are specified by forming an inter-
action type term from the classifying variables, that is, separating the variable
names with the : operator.

allDifferences.data.frame 33

vcov A matrix containing the variance matrix of the predictions; it is used in com-
puting the variance of linear transformations of the predictions.

differences A matrix containing all pairwise differences between the predictions; it should
have the same number of rows and columns as there are rows in predictions.

p.differences A matrix containing p-values for all pairwise differences between the predic-
tions; each p-value is computed as the probability of a t-statistic as large as or
larger than the observed difference divided by its standard error. The degrees of
freedom of the t distribution for computing it are computed as the denominator
degrees of freedom of the F value for the fixed term, if available; otherwise, the
degrees of freedom stored in the attribute tdf are used; the matrix should be of
the same size as that for differences.

sed A matrix containing the standard errors of all pairwise differences between the
predictions; they are used in computing the p-values.

LSD An LSD.frame containing the mean, minimum and maximum LSD for deter-
mining the significance of pairwise differences, as well as an assigned LSD and
a measure of the accuracy of the LSD. If LSD is NULL then the LSD.frame stored
in the LSD component will be calculated and the values of LSDtype, LSDby and
LSDstatistic added as attributes of the alldiffs.object. The LSD for a
single prediction assumes that any predictions to be compared are independent;
this is not the case if residual errors are correlated.

LSDtype A character string that can be overall, factor.combinations, per.prediction
or supplied. It determines whether the values stored in a row of a LSD.frame
are the values calculated (i) overall from the LSD values for all pairwise
comparison2, (ii) the values calculated from the pairwise LSDs for the lev-
els of each factor.combination, unless there is only one prediction for a
level of the factor.combination, when a notional LSD is calculated, (iii)
per.prediction, being based, for each prediction, on all pairwise differences
involving that prediction, or (iv) as supplied values of the LSD, specified
with the LSDsupplied argument; these supplied values are to be placed in the
assignedLSD column of the LSD.frame stored in an alldiffs.object so that
they can be used in LSD calculations.
See LSD.frame for further information on the values in a row of this data.frame
and how they are calculated.

LSDsupplied A data.frame or a named numeric containing a set of LSD values that cor-
respond to the observed combinations of the values of the LSDby variables in
the predictions.frame or a single LSD value that is an overall LSD. If a
data.frame, it may have (i) a column for the LSDby variable and a column of
LSD values or (ii) a single column of LSD values with rownames being the com-
binations of the observed values of the LSDby variables. Any name can be used
for the column of LSD values; assignedLSD is sensible, but not obligatory. Oth-
erwise, a numeric containing the LSD values, each of which is named for the ob-
served combination of the values of the LSDby variables to which it corresponds.
(Applying the function dae::fac.combine to the predictions component is
one way of forming the required combinations for the (row) names.) The val-
ues supplied will be incorporated into assignedLSD column of the LSD.frame
stored as the LSD component of the alldiffs.object.

LSDby A character (vector) of variables names, being the names of the factors or
numerics in the classify; for each combination of their levels and values,
there will be or is a row in the LSD.frame stored in the LSD component of the
alldiffs.object when LSDtype is factor.combinatons.

34 allDifferences.data.frame

LSDstatistic A character nominating one or more of minimum, q10, q25, mean, median,
q75, q90 or maximum as the value(s) to be stored in the assignedLSD column
in an LSD.frame; the values in the assignedLSD column are used in computing
halfLeastSignificant error.intervals. Here q10, q25, q75 and q90 indi-
cate the sample quantiles corresponding to probabilities of 0.1, 0.25, 0.75 and
0.9 for the group of LSDs from which a single LSD value is calculated. The
function quantile is used to obtain them. The mean LSD is calculated as the
square root of the mean of the squares of the LSDs for the group. The median
is calculated using the median function. Multiple values are only produced for
LSDtype set to factor.combination, in which case LSDby must not be NULL
and the number of values must equal the number of observed combinations of
the values of the variables specified by LSDby. If LSDstatistic is NULL, it is
reset to mean.

LSDaccuracy A character nominating one of maxAbsDeviation, maxDeviation, q90Deviation
or RootMeanSqDeviation as the statistic to be calculated as a measure of the ac-
curacy of assignedLSD. The option q90Deviation produces the sample quan-
tile corresponding to a probability of 0.90. The deviations are the differences
between the LSDs used in calculating the LSD statistics and each assigned LSD
and the accuracy is expressed as a proportion of the assigned LSD value. The
calculated values are stored in the column named accuracyLSD in an LSD.frame.

retain.zeroLSDs

A logical indicating whether to retain or omit LSDs that are zero when calcu-
lating the summaries of LSDs.

zero.tolerance A numeric specifying the value such that if an LSD is less than it, the LSD will
be considered to be zero.

backtransforms A data.frame containing the backtransformed values of the predicted values
that is consistent with the predictions component, except that the column
named predicted.value is replaced by one called backtransformed.predictions.
Any error.interval values will also be the backtransformed values. Each row
contains a single predicted value.

response A character specifying the response variable for the predictions. It is stored as
an attribute to the alldiffs.object.

response.title A character specifying the title for the response variable for the predictions. It
is stored as an attribute to the alldiffs.object.

term A character string giving the variables that define the term that was fitted using
asreml and that corresponds to classify. It only needs to be specified when
it is different to classify; it is stored as an attribute of the alldiffs.object.
It is likely to be needed when the fitted model includes terms that involve both
a numeric covariate and a factor that parallel each other; the classify would
include the covariate and the term would include the factor.

tdf an integer specifying the degrees of freedom of the standard error. It is used as
the degrees of freedom for the t-distribution on which p-values and confidence
intervals are based. It is stored as an attribute to the alldiffs.object.

x.num A character string giving the name of the numeric covariate that (i) is poten-
tially included in terms in the fitted model and (ii) is the x-axis variable for plots.
Its values will not be converted to a factor.

x.fac A character string giving the name of the factor that (i) corresponds to x.num
and (ii) is potentially included in terms in the fitted model. It should have the
same number of levels as the number of unique values in x.num. The levels of
x.fac must be in the order in which they are to be plotted - if they are dates, then

allDifferences.data.frame 35

they should be in the form yyyymmdd, which can be achieved using as.Date.
However, the levels can be non-numeric in nature, provided that x.num is also
set.

level.length The maximum number of characters from the levels of factors to use in the row
and column labels of the tables of pairwise differences and their p-values and
standard errors.

pairwise A logical indicating whether all pairwise differences of the predictions and
their standard errors and p-values are to be computed and stored. If FALSE,
the components differences and p.differences will be NULL in the returned
alldiffs.object.

alpha A numeric giving the significance level for LSDs or one minus the confidence
level for confidence intervals. It is stored as an attribute to the alldiffs.object.

transform.power

A numeric specifying the power of a transformation, if one has been applied
to the response variable. Unless it is equal to 1, the default, back-transforms of
the predictions will be obtained and presented in tables or graphs as appropriate.
The back-transformation raises the predictions to the power equal to the recip-
rocal of transform.power, unless it equals 0 in which case the exponential of
the predictions is taken.

offset A numeric that has been added to each value of the response after any scaling
and before applying any power transformation.

scale A numeric by which each value of the response has been multiplied before
adding any offset and applying any power transformation.

transform.function

A character giving the name of a function that specifies the scale on which
the predicted values are defined. This may be the result of a transformation
of the data using the function or the use of the function as a link function
in the fitting of a generalized linear (mixed) model (GL(M)M). The possible
transform.functions are identity, log, inverse, sqrt, logit, probit, and
cloglog. The predicted.values and error.intervals, if not StandardError
intervals, will be back-transformed using the inverse function of the transform.function.
The standard.error column will be set to NA, unless (i) asreml returns columns
named transformed.value and approx.se, as well as those called predicted.values
and standard.error (such as when a GLM is fitted) and (ii) the values in
transformed.value are equal to those obtained by backtransforming the predicted.values
using the inverse function of the transform.function. Then, the approx.se
values will be saved in the standard.error column of the backtransforms
component of the returned alldiffs.obj. Also, the transformed.value and
approx.se columns are removed from both the predictions and backtransforms
components of the alldiffs.obj. Note that the values that end up in the
standard errors column are approximate for the backtransformed values and
are not used in calculating error.intervals.

inestimable.rm A logical indicating whether rows for predictions that are not estimable are to
be removed from the components of the alldiffs.object.

sortFactor A character containing the name of the factor that indexes the set of pre-
dicted values that determines the sorting of the components. If there is only
one variable in the classify term then sortFactor can be NULL and the order
is defined by the complete set of predicted values. If there is more than one
variable in the classify term then sortFactor must be set. In this case the
sortFactor is sorted in the same order within each combination of the values

36 allDifferences.data.frame

of the sortParallelToCombo variables: the classify variables, excluding the
sortFactor. There should be only one predicted value for each unique value
of sortFactor within each set defined by a combination of the values of the
classify variables, excluding the sortFactor factor. The order to use is
determined by either sortParallelToCombo or sortOrder.

sortParallelToCombo

A list that specifies a combination of the values of the factors and numerics,
excluding sortFactor, that are in classify. Each of the components of the
supplied list is named for a classify variable and specifies a single value for
it. The combination of this set of values will be used to define a subset of the
predicted values whose order will define the order of sortFactor. Each of the
other combinations of the values of the factors and numerics will be sorted in
parallel. If sortParallelToCombo is NULL then the first value of each classify
variable, except for the sortFactor factor, in the predictions component
is used to define sortParallelToCombo. If there is only one variable in the
classify then sortParallelToCombo is ignored.

sortNestingFactor

A character containing the name of the factor that defines groups of the
sortFactor within which the predicted values are to be ordered. If there is only
one variable in the classify then sortNestingFactor is ignored.

sortOrder A character vector whose length is the same as the number of levels for
sortFactor in the predictions component of the alldiffs.object. It speci-
fies the desired order of the levels in the reordered components of the alldiffs.object.
The argument sortParallelToCombo is ignored.
The following creates a sortOrder vector levs for factor f based on the values
in x:
levs <- levels(f)[order(x)].

decreasing A logical passed to order that detemines whether the order for sorting the
components of the alldiffs.object is for increasing or decreasing magnitude
of the predicted values.

... provision for passsing arguments to functions called internally - not used at
present.

Value

An alldiffs.object with components predictions, vcov, differences, p.differences sed,
and LSD.

The name of the response, the response.title, the term, the classify, tdf, alpha, sortFactor
and the sortOrder will be set as attributes to the object. Note that the classify in an alldiffs.object
is based on the variables indexing the predictions, which may differ from the classify used to
obtain the original predictions (for example, when the alldiffs.objects stores a linear transfor-
mation of predictions.

Also, see predictPlus.asreml for more information.

Author(s)

Chris Brien

See Also

asremlPlus-package, as.alldiffs, as.predictions.frame, sort.alldiffs, subset.alldiffs,
print.alldiffs, renewClassify.alldiffs, redoErrorIntervals.alldiffs,

allDifferences.data.frame 37

recalcLSD.alldiffs, pickLSDstatistics.alldiffs, plotPredictions.data.frame,
predictPlus.asreml, predictPresent.asreml

Examples

data(Oats.dat)

Use asreml to get predictions and associated statistics

Not run:
m1.asr <- asreml(Yield ~ Nitrogen*Variety,

random=~Blocks/Wplots,
data=Oats.dat)

current.asrt <- as.asrtests(m1.asr)
Var.pred <- asreml::predict.asreml(m1.asr, classify="Nitrogen:Variety",

sed=TRUE)
if (getASRemlVersionLoaded(nchar = 1) == "3")

Var.pred <- Var.pred$predictions
Var.preds <- Var.pred$pvals
Var.sed <- Var.pred$sed
Var.vcov <- NULL
wald.tab <- current.asrt$wald.tab
den.df <- wald.tab[match("Variety", rownames(wald.tab)), "denDF"]

End(Not run)

Use lmerTest and emmmeans to get predictions and associated statistics
if (requireNamespace("lmerTest", quietly = TRUE) &

requireNamespace("emmeans", quietly = TRUE))
{

m1.lmer <- lmerTest::lmer(Yield ~ Nitrogen*Variety + (1|Blocks/Wplots),
data=Oats.dat)

Var.emm <- emmeans::emmeans(m1.lmer, specs = ~ Nitrogen:Variety)
Var.preds <- summary(Var.emm)
den.df <- min(Var.preds$df)
Modify Var.preds to be compatible with a predictions.frame
Var.preds <- as.predictions.frame(Var.preds, predictions = "emmean",

se = "SE", interval.type = "CI",
interval.names = c("lower.CL", "upper.CL"))

Var.vcov <- vcov(Var.emm)
Var.sed <- NULL

}

Use the predictions obtained with either asreml or lmerTest
if (exists("Var.preds"))
{

Order the Varieties in decreasing order for the predictions values in the
first N level
Var.diffs <- allDifferences(predictions = Var.preds,

classify = "Nitrogen:Variety",
sed = Var.sed, vcov = Var.vcov, tdf = den.df,
sortFactor = "Variety", decreasing = TRUE)

print.alldiffs(Var.diffs, which="differences")

Change the order of the factors in the alldiffs object and reorder components
Var.reord.diffs <- allDifferences(predictions = Var.preds,

classify = "Variety:Nitrogen",

38 alldiffs.object

sed = Var.sed, vcov = Var.vcov, tdf = den.df)
print.alldiffs(Var.reord.diffs, which="predictions")

}

alldiffs.object Description of an alldiffs object

Description

An object of S3-class alldiffs that stores the predictions for a model, along with supplied statistics
for all pairwise differences. While alldiffs.object can be constructed by defining a list with
the appropriate components, it can be formed by passing the components to as.alldiffs, or from
a predictions data.frame using allDifferences.data.frame.

as.alldiffs is function that assembles an object of this class from supplied components.

is.alldiffs is the membership function for this class; it tests that an object is of class alldiffs.

validAlldiffs(object) can be used to test the validity of an object with this class.

allDifferences.data.frame is the function that constructs an object of this class by calculating
components from statistics supplied via its arguments and then using as.alldiffs to make the
object.

Value

A list of class alldiffs containing the following components: predictions, vcov, differences,
p.differences, sed, LSD and backtransforms. Except for predictions, the components are op-
tional and can be set to NULL.

An alldiffs.object also has attributes response, response.title, term, classify, tdf, alpha,
sortFactor and sortOrder, which may be set to NULL.

The details of the components are as follows:

1. predictions: A predictions.frame, being a data.frame beginning with the variables
classifying the predictions, in the same order as in the classify, and also containing columns
named predicted.value, standard.error and est.status; each row contains a single
predicted value. The number of rows should equal the number of unique combinations of
the classify variables and will be in standard order for the classify variables. That is, the
values of the last variable change with every row, those of the second-last variable only change
after all the values of the last variable have been traversed; in general, the values of a variable
are the same for all the combinations of the values to the variables to its right in the classify.
The data.frame may also include columns for the lower and upper values of error intervals,
either standard error, confidence or half-LSD intervals. The names of these columns will
consist of three parts separated by full stops: 1) the first part will be lower or upper; 2) the
second part will be one of Confidence, StandardError or halfLeastSignificant; 3) the
third component will be limits.
Note that the names standard.error and est.status have been changed to std.error
and status in the pvals component produced by asreml-R4; if the new names are in the
data.frame supplied to predictions, they will be returned to the previous names.

2. differences: A matrix containing all pairwise differences between the predictions; it should
have the same number of rows and columns as there are rows in predictions.

alldiffs.object 39

3. p.differences: A matrix containing p-values for all pairwise differences between the pre-
dictions; each p-value is computed as the probability of a t-statistic as large as or larger than
the observed difference divided by its standard error. The degrees of freedom of the t distribu-
tion for computing it are computed as the denominator degrees of freedom of the F value for
the fixed term, if available; otherwise, the degrees of freedom stored in the attribute tdf are
used; the matrix should be of the same size as that for differences.

4. sed: A matrix containing the standard errors of all pairwise differences between the predic-
tions; they are used in computing the p-values in p.differences.

5. vcov: A matrix containing the variance matrix of the predictions; it is used in computing the
variance of linear transformations of the predictions.

6. LSD: An LSD.frame containing (i) c, the number of pairwise predictions comparisons for
each LSD value and the mean, minimum, maximum and assigned LSD, (ii) the column
accuracyLSD that gives a measure of the accuracy of the assigned LSD. given the variation in
LSD values, and (iii) the columns false.pos and false.neg that contain the number of false
positives and negatives if the assignedLSD value(s) is(are) used to determine the significance
of the pairwise predictions differences. The LSD values in the assignedLSD column is used to
determine the significance of pairwise differences that involve predictions for the combination
of levels given by a row name. The value in the assignedLSD column is specified using the
LSDstatistic argument.

7. backtransforms: When the response values have been transformed for analysis, a data.frame
containing the backtransformed values of the predicted values is added to the alldiffs.object.
This data.frame is consistent with the predictions component, except that the column
named predicted.value is replaced by one called backtransformed.predictions. Any
error.interval values will also be the backtransformed values. Each row contains a single
predicted value.

The details of the attributes of an alldiffs.object are:

1. response: A character specifying the response variable for the predictions.

2. response.title: A character specifying the title for the response variable for the predic-
tions.

3. term: A character giving the variables that define the term that was fitted using asreml and
that corresponds to classify. It is often the same as classify.

4. classify: A character giving the variables that define the margins of the multiway table
used in the prediction. Multiway tables are specified by forming an interaction type term from
the classifying variables, that is, separating the variable names with the : operator.

5. tdf: An integer specifying the degrees of freedom of the standard error. It is used as the
degrees of freedom for the t-distribution on which p-values and confidence intervals are based.

6. alpha: An integer specifying the significance level. It is used as the significance level
calculating LSDs.

7. LSDtype: If the LSD component is not NULL then LSDtype is added as an attribute. A character
nominating the type of grouping of seds to be used in combining LSDs.

8. LSDby: If the LSD component is not NULL then LSDby is added as an attribute. A character
vector containing the names of the factors and numerics within whose combinations the
LSDs are to be summarized.

9. LSDstatistic: If the LSD component is not NULL then LSDstatistic is added as an attribute.
A character nominating what statistic to use in summarizing a set of LSDs.

10. LSDaccuracy: If the LSD component is not NULL then LSDaccuracy is added as an attribute.
A character nominating the method of calculating a measure of the accuracy of the LSDs
stored in the assignedLSD column of the LSD.frame.

40 alldiffs.object

11. sortFactor: factor that indexes the set of predicted values that determined the sorting of
the components.

12. sortOrder: A character vector that is the same length as the number of levels for sortFactor
in the predictions component of the alldiffs.object. It specifies the order of the levels
in the reordered components of the alldiffs.object.

The following creates a sortOrder vector levs for factor f based on the values in x:
levs <- levels(f)[order(x)].

See predictPlus.asreml for more information.

Author(s)

Chris Brien

See Also

is.alldiffs, as.alldiffs, validAlldiffs, allDifferences.data.frame

Examples

data(Oats.dat)

Use asreml to get predictions and associated statistics

Not run:
m1.asr <- asreml(Yield ~ Nitrogen*Variety,

random=~Blocks/Wplots,
data=Oats.dat)

current.asrt <- as.asrtests(m1.asr)
Var.pred <- asreml::predict.asreml(m1.asr, classify="Nitrogen:Variety",

sed=TRUE)
if (getASRemlVersionLoaded(nchar = 1) == "3")

Var.pred <- Var.pred$predictions
Var.preds <- Var.pred$pvals
Var.sed <- Var.pred$sed
Var.vcov <- NULL

End(Not run)

Use lmerTest and emmmeans to get predictions and associated statistics
if (requireNamespace("lmerTest", quietly = TRUE) &

requireNamespace("emmeans", quietly = TRUE))
{
m1.lmer <- lmerTest::lmer(Yield ~ Nitrogen*Variety + (1|Blocks/Wplots),

data=Oats.dat)
Var.emm <- emmeans::emmeans(m1.lmer, specs = ~ Nitrogen:Variety)
Var.preds <- summary(Var.emm)
den.df <- min(Var.preds$df)
Modify Var.preds to be compatible with a predictions.frame
Var.preds <- as.predictions.frame(Var.preds, predictions = "emmean",

se = "SE", interval.type = "CI",
interval.names = c("lower.CL", "upper.CL"))

Var.vcov <- vcov(Var.emm)
Var.sed <- NULL

}

angular 41

Use the predictions obtained with either asreml or lmerTest
if (exists("Var.preds"))
{

Form an all.diffs object
Var.diffs <- as.alldiffs(predictions = Var.preds, classify = "Nitrogen:Variety",

sed = Var.sed, vcov = Var.vcov, tdf = den.df)

Check the class and validity of the alldiffs object
is.alldiffs(Var.diffs)
validAlldiffs(Var.diffs)

}

angular Applies the angular transformation to proportions.

Description

Applies the angular transformation to numeric values. It is given by sin−1(
√
proportions)

Usage

angular(proportions, n)

Arguments

proportions The proportions.

n The divisor(s) for each proportion

Value

A numeric.

Author(s)

Chris Brien

See Also

angular.mod, powerTransform.

Examples

n <-25
y <- rbinom(10, n, 0.5)
y <- c(y,0,n)
p <- y/n
p.ang <- angular(p, n)

42 as.alldiffs

angular.mod Applies the modified angular transformation to a vector of counts.

Description

Applies the angular transformation to a vector of counts. A modified transformation is used that is
appropriate when N < 50 and the proportion is not between 0.3 and 0.7. The transformation is given
by sin−1 count+0.375

n+0.75 .

Usage

angular.mod(count, n)

Arguments

count The numeric vector of counts.

n The number(s) of observations from which the count(s) were obtained.

Value

A numeric vector.

Author(s)

Chris Brien

See Also

angular, powerTransform.

Examples

n <-25
y <- rbinom(10, n, 0.5)
y <- c(y,0,n)
p.ang.mod <- angular.mod(y, n)

as.alldiffs Forms an alldiffs.object from the supplied predictions, along with
those statistics, associated with the predictions and their pairwise dif-
ferences, that have been supplied.

Description

Creates an alldiffs.object that consists of a list containing the following components: predictions,
vcov, differences, p.differences, sed, LSD and backtransforms. Predictions must be sup-
plied to the function while the others will be set only if they are supplied; those not supplied are
set to NULL. It also has attributes response, response.title, term, classify, tdf, tdf, alpha,
sortFactor and sortOrder. which will be set to the values supplied or NULL if none are supplied.

as.alldiffs 43

Usage

as.alldiffs(predictions, vcov = NULL, differences = NULL,
p.differences = NULL, sed = NULL, LSD = NULL,
backtransforms = NULL,
response = NULL, response.title = NULL,
term = NULL, classify = NULL,
tdf = NULL, alpha = 0.05,
sortFactor = NULL, sortOrder = NULL)

Arguments

predictions A predictions.frame, being a data.frame beginning with the variables clas-
sifying the predictions and also containing columns named predicted.value,
standard.error and est.status; each row contains a single predicted value.
It may also contain columns for the lower and upper limits of error intervals for
the predictions. Note that the names standard.error and est.status have
been changed to std.error and status in the pvals component produced by
asreml-R4; if the new names are in the data.frame supplied to predictions,
they will be returned to the previous names.

differences A matrix containing all pairwise differences between the predictions; it should
have the same number of rows and columns as there are rows in predictions.

p.differences A matrix containing p-values for all pairwise differences between the predic-
tions; each p-value is computed as the probability of a t-statistic as large as or
larger than the observed difference divided by its standard error. The degrees of
freedom of the t distribution for computing it are computed as the denominator
degrees of freedom of the F value for the fixed term, if available; otherwise, the
degrees of freedom stored in the attribute tdf are used; the matrix should be of
the same size as that for differences.

sed A matrix containing the standard errors of all pairwise differences between the
predictions; they are used in computing the p-values.

vcov A matrix containing the variance matrix of the predictions; it is used in com-
puting the variance of linear transformations of the predictions.

LSD An LSD.frame containing the mean, minimum and maximum LSD for deter-
mining the significance of pairwise differences, as well as an assigned LSD and
a measure of the accuracy of the LSD. If LSD is NULL then the LSD.frame stored
in the LSD component will be calculated and the values of LSDtype, LSDby and
LSDstatistic added as attributes of the alldiffs.object. The LSD for a
single prediction assumes that any predictions to be compared are independent;
this is not the case if residual errors are correlated.

backtransforms A data.frame containing the backtransformed values of the predicted values
that is consistent with the predictions component, except that the column
named predicted.value is replaced by one called backtransformed.predictions.
Any error.interval values will also be the backtransformed values. Each row
contains a single predicted value.

response A character specifying the response variable for the predictions. It is stored as
an attribute to the alldiffs.object.

response.title A character specifying the title for the response variable for the predictions. It
is stored as an attribute to the alldiffs.object.

term A character string giving the variables that define the term that was fitted using
asreml and that corresponds to classify. It only needs to be specified when

44 as.alldiffs

it is different to classify; it is stored as an attribute of the alldiffs.object.
It is likely to be needed when the fitted model includes terms that involve both
a numeric covariate and a factor that parallel each other; the classify would
include the covariate and the term would include the factor.

classify A character string giving the variables that define the margins of the multiway
table used in the prediction. Multiway tables are specified by forming an inter-
action type term from the classifying variables, that is, separating the variable
names with the : operator. It is stored as an attribute to the alldiffs.object.

tdf an integer specifying the degrees of freedom of the standard error. It is used as
the degrees of freedom for the t-distribution on which p-values and confidence
intervals are based. It is stored as an attribute to the alldiffs.object.

alpha A numeric giving the significance level for LSDs or one minus the confidence
level for confidence intervals. It is stored as an attribute to the alldiffs.object.

sortFactor A character containing the name of the factor that indexes the set of predicted
values that determined the sorting of the components.

sortOrder A character vector that is the same length as the number of levels for sortFactor
in the predictions component of the alldiffs.object. It specifies the order
of the levels in the reordered components of the alldiffs.object.
The following creates a sortOrder vector levs for factor f based on the values
in x: levs <- levels(f)[order(x)].

Value

An S3-class alldiffs.object. Also, see predictPlus.asreml for more information.

Author(s)

Chris Brien

See Also

asremlPlus-package, alldiffs.object, is.alldiffs, as.alldiffs, print.alldiffs,
sort.alldiffs, subset.alldiffs, allDifferences.data.frame,
renewClassify.alldiffs, redoErrorIntervals.alldiffs, recalcLSD.alldiffs,
predictPlus.asreml, plotPredictions.data.frame, predictPresent.asreml

Examples

data(Oats.dat)

Use asreml to get predictions and associated statistics

Not run:
m1.asr <- asreml(Yield ~ Nitrogen*Variety,

random=~Blocks/Wplots,
data=Oats.dat)

current.asrt <- as.asrtests(m1.asr)
Var.pred <- asreml::predict.asreml(m1.asr, classify="Nitrogen:Variety",

sed=TRUE)
if (getASRemlVersionLoaded(nchar = 1) == "3")

Var.pred <- Var.pred$predictions
Var.preds <- Var.pred$pvals
Var.sed <- Var.pred$sed

as.asrtests 45

Var.vcov <- NULL

End(Not run)

Use lmerTest and emmmeans to get predictions and associated statistics
if (requireNamespace("lmerTest", quietly = TRUE) &

requireNamespace("emmeans", quietly = TRUE))
{

m1.lmer <- lmerTest::lmer(Yield ~ Nitrogen*Variety + (1|Blocks/Wplots),
data=Oats.dat)

Var.emm <- emmeans::emmeans(m1.lmer, specs = ~ Nitrogen:Variety)
Var.preds <- summary(Var.emm)
den.df <- min(Var.preds$df)
Modify Var.preds to be compatible with a predictions.frame
Var.preds <- as.predictions.frame(Var.preds, predictions = "emmean",

se = "SE", interval.type = "CI",
interval.names = c("lower.CL", "upper.CL"))

Var.vcov <- vcov(Var.emm)
Var.sed <- NULL

}

Use the predictions obtained with either asreml or lmerTest
if (exists("Var.preds"))
{

Form an all.diffs object
Var.diffs <- as.alldiffs(predictions = Var.preds, classify = "Nitrogen:Variety",

sed = Var.sed, vcov = Var.vcov, tdf = den.df)

Check the class and validity of the alldiffs object
is.alldiffs(Var.diffs)
validAlldiffs(Var.diffs)

}

as.asrtests Forms an asrtests object that stores (i) a fitted asreml object, (ii) a
pseudo-anova table for the fixed terms and (iii) a history of changes
and hypothesis testing used in obtaining the model.

Description

An asrtests.object that is a list consisting of the components asreml.obj, wald.tab and
test.summary.

A call to as.asrtests with test.summary = NULL re-initializes the test.summary
data.frame.

If there is no wald.tab, wald.asreml is called. In all cases, recalcWaldTab is called and any
changes made as specified by the recalcWaldTab arguments supplied via

The label argument can be used to include an entry in test.summary for the starting model. If a
label is included, (i) the information criteria calculated using the asreml.obj will be added to the
test.summary, if IClikelihood is not set to none and (ii) the number of variance parameters is
included in the denDF column, if IClikelihood is set to none.

46 as.asrtests

Usage

as.asrtests(asreml.obj, wald.tab = NULL, test.summary = NULL,
denDF = "numeric", label = NULL,
IClikelihood = "none", bound.exclusions = c("F","B","S","C"), ...)

Arguments

asreml.obj an asreml object for a fitted model.

wald.tab A data.frame containing a pseudo-anova table for the fixed terms produced by
wald.asreml; it should have 4 or 6 columns. Sometimes wald.asreml returns a
data.frame and at other times a list. For example, it may return a list when
denDF is used. In this case, the Wald component of the list is to be extracted
and stored. It is noted that, as of asreml version 4, wald.asreml has a kenadj
argument.

test.summary A data.frame with columns term, DF, denDF, p and action containing the
results of previous hypothesis tests.

denDF Specifies the method to use in computing approximate denominator degrees of
freedom when wald.asreml is called. Can be none to suppress the compu-
tations, numeric for numerical methods, algebraic for algebraic methods or
default, the default, to automatically choose numeric or algebraic computa-
tions depending on problem size. The denominator degrees of freedom are cal-
culated according to Kenward and Roger (1997) for fixed terms in the dense part
of the model.

label A character to use as an entry in the terms column in test.summary to indi-
cate as far as is possible the nature of the model that has been fitted. The action
column in test.summary will be Starting model.

IClikelihood A character that controls both the occurrence and the type of likelihood for
information criterion in the test.summary of the new asrtests.object. If
none, none are included. Otherwise, if REML, then the AIC and BIC based on the
Restricted Maximum Likelihood are included; if full, then the AIC and BIC
based on the full likelihood, evaluated using REML estimates, are included.
(See also infoCriteria.asreml.)

bound.exclusions

A character specifying the bound (constraint) codes that will result in a vari-
ance parameter being excluded from the count of estimated variance parameters
in calculating information criteria. If set to NULL then none will be excluded.

... further arguments passed to wald.asreml and recalcWaldTab.

Value

An object of S3-class asrtests that also inherits S3-class list.

Author(s)

Chris Brien

References

Kenward, M. G., & Roger, J. H. (1997). Small sample inference for fixed effects from restricted
maximum likelihood. Biometrics, 53, 983-997.

as.predictions.frame 47

See Also

asremlPlus-package, is.alldiffs, as.alldiffs, recalcWaldTab,
testranfix.asrtests, chooseModel.asrtests, rmboundary.asrtests,
reparamSigDevn.asrtests

Examples

Not run:
data(Wheat.dat)

Fit initial model
current.asr <- asreml(yield ~ Rep + WithinColPairs + Variety,

random = ~ Row + Column + units,
residual = ~ ar1(Row):ar1(Column),
data=Wheat.dat)

Load current fit into an asrtests object
current.asrt <- as.asrtests(current.asr, NULL, NULL)

Check for and remove any boundary terms
current.asrt <- rmboundary(current.asrt)

End(Not run)

as.predictions.frame Forms a predictions.frame from a data.frame, ensuring that the
correct columns are present.

Description

Creates a predictions.frame from a data.frame by adding the class predictions.frame to it,
and renaming the columns containing the predictions, se, est.status and error.intervals.

Usage

as.predictions.frame(data, classify = NULL,
predictions = NULL, se = NULL, est.status = NULL,
interval.type = NULL, interval.names = NULL)

Arguments

data A data.frame containing columns giving the variables that uniquely index the
predicted values and columns with the predicted values, their standard errors
and, optionally, their estimation status (est.status).

classify A character string giving the variables that define the margins of the multiway
table that was predicted. Multiway tables are specified by forming an interaction
type term from the classifying variables, that is, separating the variable names
with the : operator. For predicting the overall mean, the classify is set to
"(Intercept)".

predictions A character giving the name of the column in data that contains the predicted
values. This column will be renamed to predicted.value.

48 as.predictions.frame

se A character giving the name of the column in data that contains the standard
errors of the predicted values. This column will be renamed to standard.error.

est.status A character giving the name of the column in data that contains the estimation
status of the predicted values. It will have a value Estimable for predicted
values that have been estimated and a value Aliased for predicted values that
are NA. If a column named est.status is not present in data and est.status
is NULL, a column est.status will be generated.

interval.type A character specifying the type of error.intervals stored in data that re-
quire renaming. If NULL, error.intervals will not be renamed, even if they
are present. Otherwise, interval.type should be set to one of "CI", "SE" or
"halfLSD".

interval.names A character specifying the column names of the lower and upper limits stored
in data that are to be renamed. The character must be of length two, with the
first element being the name of the ’lower’ limit and the second element being
the name of the ’upper’ limit.

Value

An S3-class predictions.frame.

Author(s)

Chris Brien

See Also

asremlPlus-package, predictions.frame, is.predictions.frame, predictions.frame,
validPredictionsFrame

Examples

data(Oats.dat)

Use asreml to get predictions and associated statistics

Not run:
m1.asr <- asreml(Yield ~ Nitrogen*Variety,

random=~Blocks/Wplots,
data=Oats.dat)

current.asrt <- as.asrtests(m1.asr)
Var.pred <- asreml::predict.asreml(m1.asr, classify="Nitrogen:Variety",

sed=TRUE)
if (getASRemlVersionLoaded(nchar = 1) == "3")

Var.pred <- Var.pred$predictions
#Form predictions.frame changing asreml-R4 names to the standard names, if these are present
Var.preds <- as.predictions.frame(Var.pred$pvals, se = "std.error",

est.status = "status")

End(Not run)

Use lmerTest and emmmeans to get predictions and associated statistics
if (requireNamespace("lmerTest", quietly = TRUE) &

requireNamespace("emmeans", quietly = TRUE))
{

asremlPlus-deprecated 49

m1.lmer <- lmerTest::lmer(Yield ~ Nitrogen*Variety + (1|Blocks/Wplots),
data=Oats.dat)

Var.emm <- emmeans::emmeans(m1.lmer, specs = ~ Nitrogen:Variety)
Var.preds <- summary(Var.emm)
Var.preds <- as.predictions.frame(Var.preds, predictions = "emmean",

se = "SE", interval.type = "CI",
interval.names = c("lower.CL", "upper.CL"))

}

Check the class and validity of the alldiffs object
if (exists("Var.preds"))
{

is.predictions.frame(Var.preds)
validPredictionsFrame(Var.preds)

}

asremlPlus-deprecated Deprecated Functions in the Package asremlPlus

Description

These functions have been renamed and deprecated in asremlPlus:

1. addrm.terms.asreml and addrm.terms.asrtests -> changeTerms.asrtests,

2. alldiffs -> as.alldiffs,

3. asrtests-> as.asrtests,

4. choose.model.asreml and choose.model.asrtests -> chooseModel.asrtests,

5. facRecode and facRecode.alldiffs -> facRecast.alldiffs,

6. info.crit and info.crit.asreml -> infoCriteria.asreml,

7. newrcov.asrtests -> changeTerms.asrtests,

8. plotvariofaces.asreml -> plotVariofaces.data.frame,

9. power.transform -> powerTransform,

10. predictiondiffs.asreml -> allDifferences.data.frame,

11. predictionplot.asreml -> plotPredictions.data.frame,

12. predictparallel.asreml -> predictPlus.asreml,

13. pred.present.asreml -> predictPresent.asreml,

14. recalc.wald.tab.asreml and recalc.wald.tab.asrtests -> recalcWaldTab.asrtests,

15. reorderClassify and reorderClassify.alldiffs -> renewClassify.alldiffs,

16. reml.lrt and reml.lrt.asreml -> REMLRT.asreml,

17. rmboundary.asreml -> rmboundary.asrtests,

18. setvarianceterms.asreml -> setvarianceterms.call,

19. sig.devn.reparam.asreml and sig.devn.reparam.asrtests -> reparamSigDevn.asrtests,

20. testranfix.asreml -> testranfix.asrtests,

21. testrcov.asreml and testrcov.asrtests -> testresidual.asrtests,

22. testswapran.asreml -> testswapran.asrtests

50 asremlPlusTips

Usage

addrm.terms.asreml(...)
addrm.terms.asrtests(...)
alldiffs(...)
asrtests(...)
choose.model.asreml(...)
choose.model.asrtests(...)
facRecode(...)
facRecode.alldiffs(...)
info.crit(...)
info.crit.asreml(...)
newrcov.asrtests(...)
plotvariofaces.asreml(...)
power.transform(...)
predictiondiffs.asreml(...)
predictionplot.asreml(...)
predictparallel.asreml(...)
pred.present.asreml(...)
recalc.wald.tab.asreml(...)
recalc.wald.tab.asrtests(...)
reml.lrt(...)
reml.lrt.asreml(...)
S3 method for class 'alldiffs'
reorderClassify(...)
S3 method for class 'asreml'
rmboundary(...)
setvarianceterms.asreml(...)
sig.devn.reparam.asreml(...)
sig.devn.reparam.asrtests(...)
testranfix.asreml(...)
testrcov.asreml(...)
testrcov.asrtests(...)
S3 method for class 'asreml'
testswapran(...)

Arguments

... absorbs arguments passed from the old functions of the style foo.bar().

Author(s)

Chris Brien

asremlPlusTips The randomly-presented, startup tips.

Description

The intermittent, randomly-presented, startup tips.

asrtests.object 51

Startup tips

Need help? The manual is a vignette and is in the vignettes subdirectory of the package’s install
directory.

Find out what has changed in asremlPlus: enter news(package = ’asremlPlus’).

Need help getting started? Enter vignette(package = ’asremlPlus’).

To avoid start-up message that ASReml-R is needed, load asreml before asremlPlus.

The methods for alldiffs and data.frame do not require asreml

Use suppressPackageStartupMessages() to eliminate all package startup messages.

To see all the intermittent, randomly-presented, startup tips enter ?asremlPlusTips.

To install the latest version: go to http://chris.brien.name/rpackages.

For versions between CRAN releases (and more) go to http://chris.brien.name/rpackages.

Author(s)

Chris Brien

asrtests.object Description of an asrtests object

Description

An object of S3-class asrtests that contains information derived from the fits of a mixed model
using asreml.

as.asrtests is function that makes an object of this class.

is.list is the membership function for this class; it tests that an object is of class list.

validAsrtests can be used to test the validity of an asrtests.object.

Value

A list that contains three components:

1. asreml.obj: an object of class asreml that contains the fit of a model;
2. wald.tab: A data.frame containing a pseudo-anova table for the fixed terms produced by

wald.asreml. It has rownames that correspond to the fixed terms that were fitted and four
columns. If denominator degrees of freedom were calculated then the columns are DF, denDF,
F.inc, Pr; otherwise the columns are Df, Sum of Sq, Wald statistic, and Pr(Chisq).

3. test.summary: A data.frame with columns terms, DF, denDF, p, AIC, BIC and action, each
row of which summarizes the results of proposed changes to the fitted model.
Possible codes for action are: Dropped, Retained, Swapped, Unswapped, Unchanged, Significant,
Nonsignificant, Absent, Added, Removed and Boundary. If the either of the models did not
converge, unconverged will be added to the code. Unchanged is used when allow.unconverged
is FALSE. Note that the logical asreml.obj$converge also reflects whether there is conver-
gence.
A row is added to the test.summary for each term that is dropped, added or tested or a note
that several terms have been added or removed. When values for the AIC and BIC are included
in the row, then the DF are the number of fixed parameters in the model and denDF are the
numbers of variance parameters. When changeModelOnIC adds a row then the values of the
degrees of freedom and information criteria are differences between those for the model that
is supplied and the model changed by changeModelOnIC.

http://chris.brien.name/rpackages
http://chris.brien.name/rpackages

52 bootREMLRT.asreml

Author(s)

Chris Brien

See Also

as.asrtests, as.asrtests, validAsrtests

bootREMLRT.asreml Uses the parametric bootstrap to calculate the p-value for a REML
ratio test to compare two models.

Description

Extracts the REML log likelihood for two asreml objects and forms the observed REML ratio
statistic. It assumes that the second asreml object is the result of fitting a model that is a reduced
version of the model for the first object and is considered to the null model. Using the mean and
V, nboot bootstrap samples of simulated response values are generated in parallel; that is, ncores
cores are used and each is used to generate and analyse a sample. The full and reduced models are
fitted to the data and if either analysis fails to converge another sample is generated and analysed
using the current core, with a maximum of max.retries attempts to obtain a sample that con-
verges for both analysis. Thus the maximum number of data sets that will be generated is nboot
* max.retries. If a bootstrap sample converges for both analyses, the REML ratio test statistic is
formed for it. The p-value is then calculated as (k+1)/(b+1) where k is the number of simulated
ratio test statistics greater than the observed test statistic and s is the number of bootstrap samples
that were returned.

The function checks that the models do not differ in either their fixed or sparse models. It also check
the difference in the number of variance parameters between the two fits to the models, taking into
account the bound.exclusions.

Usage

S3 method for class 'asreml'
bootREMLRT(h0.asreml.obj, h1.asreml.obj,

nboot = 100, max.retries = 5, seed = NULL,
means=NULL, V = NULL, extra.matrix = NULL, ignore.terms = NULL,
fixed.spline.terms = NULL,
bound.exclusions = c("F","B","S","C"),
tolerance = 1E-10, update = TRUE, trace = FALSE,
ncores = 2, ...)

Arguments

h0.asreml.obj asreml object containing the fit under the model for the null hypothesis.

h1.asreml.obj asreml object containing the fit under the model for the alternative hypothesis.

nboot The number of bootstrap samples to be generated.

max.retries The maximum number of attempts to generate a sample whose analyses con-
verge for both models.

seed A single value, interpreted as an integer, that specifies the starting value of the
random number generator. The "L’Ecuyer-CMRG" random generator is used
and nextRNGStream is used to seed each core from the original seed.

bootREMLRT.asreml 53

means The vector of means to be used in generating simulated bootstrap samples. If it
is NULL, the fitted values based on object are used. It must be the same length
as the response variable for object.

V The fitted variance matrix, i.e. having the pattern and values that conform to
the model fit stored in the supplied object. If it is NULL, estimateV.asreml
is used to estimate the variance matrix for the observations from the variance
parameter estimates from the reduced.asreml.obj.

extra.matrix A matrix of order equal to the number of observations that is to be added to
the variance matrix, the latter based on the information in asreml.obj. It is
assumed that the sigma-parameterized values of the variance parameter esti-
mates, such as is given in the varcomp component of summary.asreml, have
been used in calculating extra.matrix; the values in the vparameters compo-
nent of G.param and R.param may be either gamma- or sigma-parameterized.
The argument extra.matrix can be used in conjunction with ignore.terms as
a workaround to include components of the variance matrix for variance func-
tions that have not been implemented in estimateV.

ignore.terms A character giving terms from either the random or residual models that are
to be ignored in that their contributions to the variance is not to be included in the
estimated matrix. The term names are those given in the vparameters compo-
nent of the asreml object or the varcomp component produced by summary.asreml,
but only up to the first exclamation mark (!). This can be used in conjunction
with estimateV.asreml as a workaround to include components of the variance
matrix for variance functions that have not been implemented in estimateV.

fixed.spline.terms

A character vector giving one or more spline terms in the random model
that are regarded as fixed and so are to be ignored because they are not re-
garded as contributing to the variance. The term names are those given in the
vparameters component of the asreml object or the varcomp component pro-
duced by summary.asreml, but only up to the first exclamation mark (!).

bound.exclusions

A character specifying one or more bound codes that will result in a variance
parameter in the random model being excluded from contributing to the vari-
ance. If set to NULL then none will be excluded.

tolerance The value such that eigenvalues less than it are considered to be zero.

update If TRUE then the arguments R.param and G.param are set to those in the asreml
object supplied in object so that the values from the original model are used
as starting values. If FALSE then asreml calls are evaluated, the only changes
from the previous call being that (i) the model is fitted to simulated data and (ii)
modifications specified via ... are mode, except that changes cannot be made
to any of the models.

trace If TRUE then partial iteration details are displayed when ASReml-R functions are
invoked; if FALSE then no output is displayed.

ncores A numeric specifying the number of cores to use in doing the simulations. In
choosing a value for ncores, it is necessary to take into account other processes
that are using parallel processing at the same time.

... Other arguments that are passed down to the function asreml. Changes to the
models are not allowed. Other changes are dangerous and generally should be
avoided.

54 bootREMLRT.asreml

Value

A list with the following components:

1. REMLRT: the observed REML ratio statistic.

2. p: the bootstrap p-value for the observed test statistic.

3. DF: the calculated difference in DF for the variance parameters in the two models.

4. totalunconverged: the total number of unconverged analyses over the simulations.

5. REMLRT.sim: a numeric containing the values of the ratio statistics for the simulated data.
It has an attribute called na.action that can be retrieved using attr(REMLRT.sim, which
= "na.action"); it contains a list of the simulation numbers that were abandoned because
max.retries failed to converge for both models.

6. nunconverged: the number of unconverged analyses for each bootstrap sample, the maximum
being max.retries.

Note

A bootstrap sample is generated using a multivariate normal distribution with expected value as
specified by means and variance matrix given by V. Each simulated sample is analysed according to
the reduced model and, provided this analysis converges, according to the full.model. If one of these
analyses fails to converge, it is abandoned and another sample is generated for this simulation. As
many as max.retries attempts are made to generate a data set for which both analyses converge.
If data set that converges for both analyses is not generated for a simulation, NA is returned for
that bootstrap sample. Hence, the maximum number of data sets that will be generated is nboot *
max.retries and less than nboot samples will be generated if a data set that converges for both
analyses is not obtained within max.retries attempts.

If a bootstrap sample converges for both analyses, the REML ratio test statistic is calculated as
2(log(REML)F − log(REML)R).

The DF is calculated from the information in full.asreml.obj and reduced.asreml.obj. The de-
grees of freedom are computed as the difference between the two models in the number of variance
parameters whose estimates do not have a code for bound specified in bound.exclusions.

If ASReml-R version 4 is being used then the codes specified in bound.exclusions are not re-
stricted to a subset of the default codes, but a warning is issued if a code other than these is specified.
For ASReml-R version 3, only a subset of the default codes are allowed: F (Fixed), B (Boundary),
C (Constrained) and S (Singular).

Author(s)

Chris Brien

See Also

REMLRT.asreml, infoCriteria.asreml, newfit.asreml, testranfix.asrtests

Examples

Not run:
bootREMLRT(ICV.max, ICV.red, ncores = parallel::detectCores())

End(Not run)

changeModelOnIC.asrtests 55

changeModelOnIC.asrtests

Uses information criteria to decide whether to change an already fitted
model.

Description

Uses information criteria to decide whether to change the fitted model stored in the supplied asrtests.object
according to the specified modifications. The function changeTerms is used to change the model.
Thus, the model can be modified using a combination of adding and removing sets of terms from
one or both of the fixed or random models, replacing the residual model and changing the bounds
and/or initial values of some terms. The model will be unchanged if terms specified in dropFixed
or dropRandom are not in the fitted model.

A row is added to the test.summary data.frame of the asrtests.object using the supplied
label and stating whether or not the new model has been swapped for the supplied model. Con-
vergence in fitting the model is checked and a note included in the action if there was not. All
components of the asrtests.object are updated to exhibit the differences between the supplied
and new models.

To obtain a list of the information criteria for a set of models use changeTerms.asrtests with
IClikelihood set to REML or full, or use infoCriteria.asreml.

Usage

S3 method for class 'asrtests'
changeModelOnIC(asrtests.obj,

dropFixed = NULL, addFixed = NULL,
dropRandom = NULL, addRandom = NULL,
newResidual = NULL,
allow.absentDropTerms = FALSE, label = "Changed terms",
allow.unconverged = TRUE, allow.fixedcorrelation = TRUE,
checkboundaryonly = FALSE,
trace = FALSE, update = TRUE, denDF = "numeric",
set.terms = NULL, ignore.suffices = TRUE,
bounds = "P", initial.values = NA,
which.IC = "AIC", IClikelihood = "REML",
fixedDF = NULL, varDF = NULL,
bound.exclusions = c("F","B","S","C"),

...)

Arguments

asrtests.obj An asrtests.object containing the components (i) asreml.obj, (ii) wald.tab,
and (iii) test.summary.

dropFixed A single character string in the form of a formula which, after addition of ". ~
. -" and after expansion, specifies the sum of a set of terms to be dropped from
the fixed formula. The names must match those in the wald.tab component
of the asrtests.obj. The fixed terms will be reordered so that single-variable
terms come first, followed by two-variable terms and so on. Note that multiple
terms specified using a single asreml::at function can only be dropped as a
whole. If the term was specified using an asreml::at function with a single

56 changeModelOnIC.asrtests

level, then it can be removed and either the level itself or its numeric position in
the levels returned by the levels function can be specified.

addFixed A single character string in the form of a formula which, after addition of ".
~ . +" and expansion, specifies the sum of a set of terms to be added to the fixed
formula. The fixed terms will be reordered so that single-variable terms come
first, followed by two-variable terms and so on.

dropRandom A single character string in the form of a formula which, after addition of " ~
. -" and expansion, specifies the sum of a set of terms to be dropped from the
random formula. The names must match those in the vparameters component
of the asreml.obj component in the asrtests.obj. Note that multiple terms
specified using a single asreml::at function can only be dropped as a whole.
If the term was specified using an asreml::at function with a single level, then
it can be removed and either the level itself or its numeric position in the levels
returned by the levels function can be specified.

addRandom A single character string in the form of a formula which, after addition of " ~
. +"and expansion, specifies the sum of a set of terms to be added to the random
formula.

newResidual A single character string in the form of a formula which, after addition of " ~
", specifies the residual (or rcov) model. To remove the model, enter "-(.)".

allow.absentDropTerms

A logical indicating whether to to change the model when terms specified in
dropFixed or dropRandom are not in the fitted model.

label A character to use as an entry in the terms column in test.summary to indi-
cate as far as is possible the terms that are being manipulated.

allow.unconverged

A logical indicating whether to accept a new model even when it does not
converge. If FALSE and the fit of the new model does not converge, the supplied
asrtests.obj is returned. Also, if FALSE and the fit of the new model has
converged, but that of the old model has not, the new model will be accepted.

allow.fixedcorrelation

A logical indicating whether to accept a new model even when it contains
correlations in the model whose values have been designated as fixed, bound
or singular. If FALSE and the new model contains correlations whose values
have not been able to be estimated, the supplied asrtests.obj is returned.
The fit in the asreml.obj component of the supplied asrtests.obj will also
be tested and a warning issued if both fixed correlations are found in it and
allow.fixedcorrelation is FALSE.

checkboundaryonly

If TRUE then boundary and singular terms are not removed by rmboundary.asrtests;
a warning is issued instead.

trace If TRUE then partial iteration details are displayed when ASReml-R functions
are invoked; if FALSE then no output is displayed.

update If TRUE, and set.terms is NULL, then newfit.asreml is called to fit the model
to be tested, using the values of the variance parameters stored in the asreml.object,
that is stored in asrtests.obj, as starting values. If FALSE or set.terms is not
NULL, then newfit.asreml will not use the stored variance parameter values
as starting values when fitting the new model, the only modifications being (i)
those specified by this function’s arguments and (ii) those specified via

changeModelOnIC.asrtests 57

denDF Specifies the method to use in computing approximate denominator degrees of
freedom when wald.asreml is called. Can be none to suppress the compu-
tations, numeric for numerical methods, algebraic for algebraic methods or
default, the default, to automatically choose numeric or algebraic computa-
tions depending on problem size. The denominator degrees of freedom are cal-
culated according to Kenward and Roger (1997) for fixed terms in the dense part
of the model.

set.terms A character vector specifying the terms that are to have bounds and/or ini-
tial values set prior to fitting the new model. The names must match those in the
vparameters component of the asreml.obj component in the new asrtests.object.
The terms in the model do not need to change from those in the model in the
supplied asrtests.obj.

ignore.suffices

A logical vector specifying whether the suffices of the asreml-assigned names
of the variance terms (i.e. the information to the right of an "!", other than
"R!") is to be ignored in matching elements of terms. If TRUE for an element
of terms, the suffices are stripped from the asreml-assigned names. If FALSE
for an element of terms, the element must exactly match an asreml-assigned
name for a variance term. This vector must be of length one or the same length
as terms. If it is of length one then the same action is applied to the asreml-
assigned suffices for all the terms in terms.

bounds A character vector specifying the bounds to be applied to the terms speci-
fied in set.terms. This vector must be of length one or the same length as
set.terms. If it is of length one then the same constraint is applied to all the
terms in set.terms. If any of the bounds are equal to NA then they are left
unchanged for those terms.

which.IC A character specifying the information criterion to be used in selecting the
best model. Possible values are AIC and BIC. The value of the criterion for
supplied model must exceed that for changed model for the changed model to
be returned.

IClikelihood A character specifying whether Restricted Maximum Likelihood (REML) or
the full likelihood, evaluated using REML estimates, (full) are to be used in
calculating the information criteria for choosing between models when family
is set to asr_gaussian. For family set to asr_binomial or asr_poisson and
with dispersion set to 1, the deviance is extracted from object and used
to calculate the AIC and BIC (as suggested by Damian Collins); the setting
of IClikelihood is ignored and the log-likelihood set to NA. The information
criteria are not valid for other settings of family and dispersion.

fixedDF A numeric giving the number of estimated fixed parameters. If NULL then this
is determined from the information in asreml.obj.

varDF A numeric giving the number of estimated variance parameters. If NULL then
this is determined from the information in asreml.obj. It replaces the varDF
argument.

initial.values A character vector specifying the initial values for the terms specified in terms.
This vector must be of length one or the same length as terms. If it is of length
one then the same initial value is applied to all the terms in terms. If any of the
initial.values are equal to NA then they are left unchanged for those terms.

bound.exclusions

A character specifying the bound (constraint) codes that will result in a vari-
ance parameter being excluded from the count of estimated variance parameters
in calculating the information criteria. If set to NULL then none will be excluded.

58 changeModelOnIC.asrtests

... Further arguments passed to asreml, wald.asreml and as.asrtests.

Value

An asrtests.object containing the components (i) asreml.obj, (ii) wald.tab, and (iii) test.summary.
The values of the degrees of freedom and the information criteria are differences between those of
the changed model and those of the model supplied to changeModelOnIC.

Author(s)

Chris Brien

See Also

as.asrtests, rmboundary.asrtests, testranfix.asrtests, testresidual.asrtests,
newfit.asreml, reparamSigDevn.asrtests, chooseModel.asrtests, changeTerms.asrtests,
infoCriteria.asreml

Examples

Not run:

data(Wheat.dat)
current.asr <- asreml(yield ~ Rep + WithinColPairs + Variety,

random = ~ Row + Column + units,
residual = ~ ar1(Row):ar1(Column),
data=Wheat.dat)

current.asrt <- as.asrtests(current.asr, NULL, NULL,
label = "Maximal model")

current.asrt <- rmboundary(current.asrt)

Drop both Row and Column terms
current.asrt <- changeModelOnIC(current.asrt,

dropRandom = "Row + Column",
checkboundaryonly = TRUE,
which.IC = "AIC", IClikelihood = "full")

current.asrt <- iterate(current.asrt)

Add and drop both fixed and random terms
current.asrt <- changeModelOnIC(current.asrt,

addFixed = "vRow", dropFixed = "WithinColPairs",
addRandom = "spl(vRow)", dropRandom = "units",
checkboundaryonly = TRUE,
which.IC = "AIC", IClikelihood = "full")

Replace residual with model without Row autocorrelation
current.asrt <- changeModelOnIC(current.asrt,

newResidual = "Row:ar1(Column)",
label="Row autocorrelation",
IClikelihood = "full")

End(Not run)

changeTerms.asrtests 59

changeTerms.asrtests Adds and drops terms from one or both of the fixed or random model,
replaces the residual (rcov) model with a new model and changes
bounds or initial values of terms.

Description

The specified terms are simply added or dropped, without testing, from either the fixed or random
model and/or the residual (rcov) model replaced. Also, the bounds and/or initial values of some
terms can be changed. No hypothesis testing is performed, but a check is made for boundary or
singular terms.

A row is added to the test.summary data.frame of the asrtests.object using the supplied
label and stating which models have been changed. Information criteria can be included in the
row of the test.summary. Convergence in fitting the model is checked and a note included in the
action if there was not. All components of the asrtests.object are updated.

To only change the terms based on a comparison of information criteria use changeModelOnIC.asrtests.

Usage

S3 method for class 'asrtests'
changeTerms(asrtests.obj,

dropFixed = NULL, addFixed = NULL,
dropRandom = NULL, addRandom = NULL,
newResidual = NULL, label = "Changed terms",
allow.unconverged = TRUE, allow.fixedcorrelation = TRUE,
checkboundaryonly = FALSE,
trace = FALSE, update = TRUE, denDF = "numeric",
set.terms = NULL, ignore.suffices = TRUE,
bounds = "P", initial.values = NA,
IClikelihood = "none", bound.exclusions = c("F","B","S","C"),
...)

Arguments

asrtests.obj An asrtests.object containing the components (i) asreml.obj, (ii) wald.tab,
and (iii) test.summary.

dropFixed A single character string in the form of a formula which, after addition of ". ~
. -" and after expansion, specifies the sum of a set of terms to be dropped from
the fixed formula. The names must match those in the wald.tab component
of the asrtests.obj. The fixed terms will be reordered so that single-variable
terms come first, followed by two-variable terms and so on. Note that multiple
terms specified using a single asreml::at function can only be dropped as a
whole. If the term was specified using an asreml::at function with a single
level, then it can be removed and either the level itself or its numeric position in
the levels returned by the levels function can be specified.

addFixed A single character string in the form of a formula which, after addition of ".
~ . +" and expansion, specifies the sum of a set of terms to be added to the fixed
formula. The fixed terms will be reordered so that single-variable terms come
first, followed by two-variable terms and so on.

60 changeTerms.asrtests

dropRandom A single character string in the form of a formula which, after addition of " ~
. -" and expansion, specifies the sum of a set of terms to be dropped from the
random formula. The terms must match those in the vparameters component
of the asreml.obj component in the asrtests.obj. Note that multiple terms
specified using a single asreml::at function can only be dropped as a whole.
If the term was specified using an asreml::at function with a single level, then
it can be removed and either the level itself or its numeric position in the levels
returned by the levels function can be specified.

addRandom A single character string in the form of a formula which, after addition of " ~
. +"and expansion, specifies the sum of a set of terms to be added to the random
formula.

newResidual A single character string in the form of a formula which, after addition of " ~
", specifies the residual (or rcov) model. To remove the model, enter "-(.)".

label A character to use as an entry in the terms column in test.summary to indi-
cate as far as is possible the terms that are being manipulated.

allow.unconverged

A logical indicating whether to accept a new model even when it does not
converge. If FALSE and the fit does not converge, the supplied asrtests.obj is
returned.

allow.fixedcorrelation

A logical indicating whether to accept a new model even when it contains
correlations in the model whose values have been designated as fixed, bound
or singular. If FALSE and the new model contains correlations whose values
have not been able to be estimated, the supplied asrtests.obj is returned.
The fit in the asreml.obj component of the supplied asrtests.obj will also
be tested and a warning issued if both fixed correlations are found in it and
allow.fixedcorrelation is FALSE.

checkboundaryonly

If TRUE then boundary and singular terms are not removed by rmboundary.asrtests;
a warning is issued instead.

trace If TRUE then partial iteration details are displayed when ASReml-R functions
are invoked; if FALSE then no output is displayed.

update If TRUE, and set.terms is NULL, then newfit.asreml is called to fit the model
to be tested, using the values of the variance parameters stored in the asreml.object,
that is stored in asrtests.obj, as starting values. If FALSE or set.terms is not
NULL, then newfit.asreml will not use the stored variance parameter values
as starting values when fitting the new model, the only modifications being (i)
those specified by this function’s arguments and (ii) those specified via

denDF Specifies the method to use in computing approximate denominator degrees of
freedom when wald.asreml is called. Can be none to suppress the compu-
tations, numeric for numerical methods, algebraic for algebraic methods or
default, the default, to automatically choose numeric or algebraic computa-
tions depending on problem size. The denominator degrees of freedom are cal-
culated according to Kenward and Roger (1997) for fixed terms in the dense part
of the model.

set.terms A character vector specifying the terms that are to have bounds and/or ini-
tial values set prior to fitting the new model. The names must match those in the
vparameters component of the asreml.obj component in the new asrtests.object.
The terms in the model do not need to change from those in the model in the
supplied asrtests.obj.

changeTerms.asrtests 61

ignore.suffices

A logical vector specifying whether the suffices of the asreml-assigned names
of the variance terms (i.e. the information to the right of an "!", other than
"R!") is to be ignored in matching elements of terms. If TRUE for an element
of terms, the suffices are stripped from the asreml-assigned names. If FALSE
for an element of terms, the element must exactly match an asreml-assigned
name for a variance term. This vector must be of length one or the same length
as terms. If it is of length one then the same action is applied to the asreml-
assigned suffices for all the terms in terms.

bounds A character vector specifying the bounds to be applied to the terms speci-
fied in set.terms. This vector must be of length one or the same length as
set.terms. If it is of length one then the same constraint is applied to all the
terms in set.terms. If any of the bounds are equal to NA then they are left
unchanged for those terms.

initial.values A character vector specifying the initial values for the terms specified in terms.
This vector must be of length one or the same length as terms. If it is of length
one then the same initial value is applied to all the terms in terms. If any of the
initial.values are equal to NA then they are left unchanged for those terms.

IClikelihood A character that controls both the occurrence and the type of likelihood for
information criterion in the test.summary of the new asrtests.object. If
none, none are included. Otherwise, if REML and family is set to asr_guassian
(the default), then the AIC and BIC based on the Restricted Maximum Likeli-
hood are included; if full and family is set to asr_guassian, then the AIC
and BIC based on the full likelihood, evaluated using REML estimates, are in-
cluded. if family is asr_binomial or asr_poisson, with dispersion set to 1,
the deviance is extracted from object and used to calculate the AIC and BIC.
(See also infoCriteria.asreml.)

bound.exclusions

A character specifying the bound (constraint) codes that will result in a vari-
ance parameter being excluded from the count of estimated variance parameters
in calculating the information criteria. If set to NULL then none will be excluded.

... Further arguments passed to asreml, wald.asreml and as.asrtests.

Value

An asrtests.object containing the components (i) asreml.obj, (ii) wald.tab, and (iii) test.summary.

Author(s)

Chris Brien

References

Kenward, M. G., & Roger, J. H. (1997). Small sample inference for fixed effects from restricted
maximum likelihood. Biometrics, 53, 983-997.

See Also

as.asrtests, rmboundary.asrtests, testranfix.asrtests, testresidual.asrtests,
newfit.asreml, reparamSigDevn.asrtests, chooseModel.asrtests,
changeModelOnIC.asrtests, infoCriteria.asreml

62 ChickpeaEnd.dat

Examples

Not run:
terms <- "(Date/(Sources * (Type + Species)))"
current.asrt <- changeTerms(current.asrt, addFixed = terms)

current.asrt <- changeTerms(current.asrt, dropFixed = "A + B", denDF = "algebraic")

data(Wheat.dat)
current.asr <- asreml(yield ~ Rep + WithinColPairs + Variety,

random = ~ Row + Column + units,
residual = ~ ar1(Row):ar1(Column),
data=Wheat.dat)

current.asrt <- as.asrtests(current.asr, NULL, NULL)
current.asrt <- rmboundary(current.asrt)
Add and drop both fixed and random terms
current.asrt <- changeTerms(current.asrt,

addFixed = "vRow", dropFixed = "WithinColPairs",
addRandom = "spl(vRow)", dropRandom = "units",
checkboundaryonly = TRUE)

Replace residual with model without Row autocorrelation
current.asrt <- changeTerms(current.asrt,

newResidual = "Row:ar1(Column)",
label="Row autocorrelation")

End(Not run)

ChickpeaEnd.dat A large data set comprising the end of imaging data from a chick pea
experiment conducted in high-throughput greenhouses

Description

The data collected after imaging had been completed on the 1056 plants in the experiment reported
by Atieno et al. (2017). The design employed for the experiment was a split-plot design in which
two consecutive carts formed a main plot. The split-plot design assigned 245 genotypes to main
plots, the genotypes being unequally replicated 2 or 3 times. Treatments (non-saline, saline) were
randomized to the two subplots (carts) within each main plot.

The columns in the data.frame are: Smarthouse, Lane, Position, Zone, Mainplot, Subplot, Repli-
cate, xLane, xPosition, Genotypes, Treatments, Biomass, PlantHeight, SenescenceRank, TotalPods,
FilledPods, EmptyPods, SeedNo, TotalSeedWt, SeedWt100.

The columns Smarthouse, Lane and Position uniquely identify the rows of observations. Zones
are groups of 4 Lanes, Mainplots are the 44 pairs of consecutive Subplots within each Zone, and a
Subplot is a cart containing a single plant. The columns xLane and xPosition are numeric covariates
for location within a Smarthouse. Genotypes and Treatments indicate the genotype and treatment
that each plant was allocated. The response variables are Biomass, PlantHeight, SenescenceRank,
TotalPods, FilledPods, EmptyPods, SeedNo, TotalSeedWt and SeedWt100.

Usage

data(ChickpeaEnd.dat)

chooseModel 63

Format

A data.frames with 1056 rows by 20 columns.

References

Atieno, J., Li, Y., Langridge, P., Dowling, K., Brien, C., Berger, B., Varshney, R. K., and Sutton, T.
(2017). Exploring genetic variation for salinity tolerance in chickpea using image-based phenotyp-
ing. Scientific Reports, 7, 1300. doi:10.1038/s41598017012117

chooseModel Determines the set of significant terms using p-values and records the
tests performed in a data.frame, taking into account the marginality
relations of terms.

Description

Using p-values from hypothesis tests, determines the set of significant terms, taking into account
the hierarchy or marginality of terms. In particular, a term will not be tested if it is marginal to (or
nested in) one that is significant. For example, if A:B is significant, then neither A nor B will be
tested. The tests conducted in choosing selected model are listed in a summary data.frame.

Usage

chooseModel(object, ...)

Arguments

object an object using which p-values can be obtained for use in model selection.

... further arguments passed to or from other methods.

Details

chooseModel is the generic function for the chooseModel method. Use methods("chooseModel")
to get all the methods for the chooseModel generic.

chooseModel.asrtests is a method for an asrtests.object. It uses testranfix.asrtests to
conduct tests to determine the p-values used in the model selection.

chooseModel.data.frame is a method for a data.frame. It uses the p-values stored in the data.frame
in the model selection.

Author(s)

Chris Brien

See Also

chooseModel.asrtests, chooseModel.asrtests, changeModelOnIC.asrtests, testranfix.asrtests

https://doi.org/10.1038/s41598-017-01211-7

64 chooseModel.asrtests

chooseModel.asrtests Determines and records the set of significant terms using an
asrtests.object, taking into account the hierarchy or marginality
relations of the terms.

Description

Performs a series of hypothesis tests on a set of fixed and/or random terms taking into account the
marginality of terms. In particular, a term will not be tested if it is marginal to (or nested in) one
that is significant. For example, if A:B is significant, then neither A nor B will be tested. For
a random term, the term is removed from the model fit, any boundary terms are removed using
rmboundary.asrtests and a REML likelihood ratio test is performed using REMLRT.asreml. If
it is not significant and drop.ran.ns is TRUE, the term is permanently removed from the model.
Note that if boundary terms are removed, the reduced model may not be nested in the full model in
which case the test is not valid. For fixed terms, the Wald tests are performed and the p-value for the
term obtained. If it is not significant and drop.fix.ns is TRUE, the term is permanently removed
from the model. A row that records the outcome of a test is added to test.summary for each term
that is tested.

Usage

S3 method for class 'asrtests'
chooseModel(object, terms.marginality=NULL,

alpha = 0.05, allow.unconverged = TRUE,
allow.fixedcorrelation = TRUE,
checkboundaryonly = FALSE, drop.ran.ns=TRUE,
positive.zero = FALSE, bound.test.parameters = "none",
drop.fix.ns=FALSE, denDF = "numeric", dDF.na = "none",
dDF.values = NULL, trace = FALSE, update = TRUE,
set.terms = NULL, ignore.suffices = TRUE,
bounds = "P", initial.values = NA,
IClikelihood = "none", ...)

Arguments

object an asrtests.object containing the components (i) asreml.obj, (ii) wald.tab,
and (iii) test.summary.

terms.marginality

A square matrix of ones and zeros with row and column names being the names
of the terms to be tested. The names of fixed terms must match those in the
wald.tab component of the object, while the names of random terms must
match those in the vparameters component of the asreml.obj component in
the object. The diagonal elements of the matrix should be one, indicating that
a term is marginal to itself. Elements should be one if the row term is marginal
to the column term. All other elements should be zero.

alpha The significance level for the test.
allow.unconverged

A logical indicating whether to accept a new model even when it does not
converge. If FALSE and a fit when a term is removed does not converge, the term
will not be removed.

chooseModel.asrtests 65

allow.fixedcorrelation

A logical indicating whether to accept a new model even when it contains
correlations in the model whose values have been designated as fixed, bound
or singular. If FALSE and the new model contains correlations whose values
have not been able to be estimated, the supplied asrtests.obj is returned.
The fit in the asreml.obj component of the supplied asrtests.obj will also
be tested and a warning issued if both fixed correlations are found in it and
allow.fixedcorrelation is FALSE.

checkboundaryonly

If TRUE then boundary and singular terms are not removed by rmboundary.asrtests;
a warning is issued instead.

drop.ran.ns A logical indicating whether to drop nonsignificant random terms from the model.

positive.zero Indicates whether the hypothesized values for the variance components being
tested are on the boundary of the parameter space. For example, this is true for
positively-constrained variance components that, under the reduced model, are
zero. This argument does not need to be set if bound.test.parameters is set.

bound.test.parameters

Indicates whether for the variance components being tested, at least some of the
hypothesized values are on the boundary of the parameter space. The possibili-
ties are "none", "onlybound" and "one-and-one". The default is "none", al-
though if it is set to "none" and positive.zero is TRUE then bound.test.parameters
is taken to be "onlybound". When bound.test.parameters is set to "one-and-one",
it signifies that there are two parameters being tested, one of which is bound and
the other is not. For example, the latter is true for testing a covariance and a
positively-constrained variance component that, under the reduced model, are
zero.

drop.fix.ns A logical indicating whether to drop a fixed term from the model when it is
nonsignificant

denDF Specifies the method to use in computing approximate denominator degrees of
freedom when wald.asreml is called. Can be none to suppress the compu-
tations, numeric for numerical methods, algebraic for algebraic methods or
default, the default, to automatically choose numeric or algebraic computa-
tions depending on problem size. The denominator degrees of freedom are cal-
culated according to Kenward and Roger (1997) for fixed terms in the dense part
of the model.

dDF.na The method to use to obtain substitute denominator degrees of freedom. when
the numeric or algebraic methods produce an NA. If dDF.na = "none", no sub-
stitute denominator degrees of freedom are employed; if dDF.na = "residual",
the residual degrees of freedom from asreml.obj$nedf are used; if dDF.na =
"maximum", the maximum of those denDF that are available, excluding that for
the Intercept, is used; if all denDF are NA, asreml.obj$nedf is used. If dDF.na
= "supplied", a vector of values for the denominator degrees of freedom is to
be supplied in dDF.values. Any other setting is ignored and a warning message
produced. Generally, substituting these degrees of freedom is anticonservative
in that it is likely that the degrees of freedom used will be too large.

dDF.values A vector of values to be used when dDF.na = "supplied". Its values will be
used when denDF in a test for a fixed effect is NA. This vector must be the same
length as the number of fixed terms, including (Intercept) whose value could be
NA.

trace If TRUE then partial iteration details are displayed when ASReml-R functions
are invoked; if FALSE then no output is displayed.

66 chooseModel.asrtests

update If TRUE, and set.terms is NULL, then newfit.asreml is called to fit the model
to be tested, using the values of the variance parameters stored in the asreml.object,
that is stored in asrtests.obj, as starting values. If FALSE or set.terms is
not NULL, then newfit.asreml will not use the stored variance parameter val-
ues as starting values when fitting the new model, the only modifications be-
ing (i) to the terms in the fixed and random models corresponding to terms in
terms.marginality and (ii) those specified via

set.terms A character vector specifying the terms that are to have bounds and/or initial
values set prior to fitting. The names must match those in the vparameters
component of the asreml.obj component in the new asrtests.object.

ignore.suffices

A logical vector specifying whether the suffices of the asreml-assigned names
of the variance terms (i.e. the information to the right of an "!", other than
"R!") is to be ignored in matching elements of terms. If TRUE for an element
of terms, the suffices are stripped from the asreml-assigned names. If FALSE
for an element of terms, the element must exactly match an asreml-assigned
name for a variance term. This vector must be of length one or the same length
as terms. If it is of length one then the same action is applied to the asreml-
assigned suffices for all the terms in terms.

bounds A character vector specifying the bounds to be applied to the terms speci-
fied in set.terms. This vector must be of length one or the same length as
set.terms. If it is of length one then the same constraint is applied to all the
terms in set.terms. If any of the bounds are equal to NA then they are left
unchanged for those terms.

initial.values A character vector specifying the initial values for the terms specified in terms.
This vector must be of length one or the same length as terms. If it is of length
one then the same initial value is applied to all the terms in terms. If any of the
initial.values are equal to NA then they are left unchanged for those terms.

IClikelihood A character that controls both the occurrence and the type of likelihood for
information criterion in the test.summary of the new asrtests.object. If
none, none are included. Otherwise, if REML, then the AIC and BIC based on the
Restricted Maximum Likelihood are included; if full, then the AIC and BIC
based on the full likelihood, evaluated using REML estimates, are included.
(See also infoCriteria.asreml.)

... further arguments passed to asreml, wald.asreml and as.asrtests via testranfix.asrtests.

Value

A list containing:

1. asrtests.obj: an asrtests.object containing the components (i) asreml.obj, (ii) wald.tab,
and (iii) test.summary.;

2. sig.tests: a character vector whose elements are the significant terms amongst those
tested.

Author(s)

Chris Brien

References

Kenward, M. G., & Roger, J. H. (1997). Small sample inference for fixed effects from restricted
maximum likelihood. Biometrics, 53, 983-997.

chooseModel.data.frame 67

See Also

chooseModel, chooseModel.data.frame, as.asrtests, testranfix.asrtests,
testresidual.asrtests, REMLRT.asreml, rmboundary.asrtests, newfit.asreml,
changeModelOnIC.asrtests, changeTerms.asrtests, reparamSigDevn.asrtests

Examples

Not run:
data(WaterRunoff.dat)
asreml.options(keep.order = TRUE) #required for asreml-R4 only
current.asr <- asreml(log.Turbidity ~ Benches + (Sources * (Type + Species)) * Date,

random = ~Benches:MainPlots:SubPlots:spl(xDay),
data = WaterRunoff.dat, keep.order = TRUE)

current.asrt <- as.asrtests(current.asr, NULL, NULL)
terms.treat <- c("Sources", "Type", "Species",

"Sources:Type", "Sources:Species")
terms <- sapply(terms.treat,

FUN=function(term){paste("Date:",term,sep="")},
simplify=TRUE)

terms <- c("Date", terms)
terms <- unname(terms)
marginality <- matrix(c(1,0,0,0,0,0, 1,1,0,0,0,0, 1,0,1,0,0,0,

1,0,1,1,0,0, 1,1,1,0,1,0, 1,1,1,1,1,1), nrow=6)
rownames(marginality) <- terms
colnames(marginality) <- terms
choose <- chooseModel(current.asrt, marginality)
current.asrt <- choose$asrtests.obj
sig.terms <- choose$sig.terms

End(Not run)

chooseModel.data.frame

Determines the set of significant terms from results stored in a
data.frame, taking into account the marginality relations of terms
and recording the tests used in a data.frame.

Description

Uses the p.values from a set of hypothesis tests that are stored in the supplied data.frame to
choose a model to describe the effects of the terms corresponding to the p-values, taking into account
the hierarchy or marginality of terms. In particular, a term will not be tested if it is marginal to (or
nested in) one that is significant. For example, if A:B is significant, then neither A nor B will be
tested. The tests used in choosing the selected model are listed in the data.frame choose.summary.

No change is made to the p.values, the DF and denDF being for information only.

Usage

S3 method for class 'data.frame'
chooseModel(object, terms=NULL, p.values = "Pr",

DF = "Df", denDF = "denDF", omit.DF = FALSE,
terms.marginality=NULL, alpha = 0.05, ...)

68 chooseModel.data.frame

Arguments

object a data.frame object containing the results of hypothesis tests for a set of terms.
It components should include terms, p.values, and, if not set to NA, DF and
denDF.

terms A character giving the name of the column in object containing the terms
corresponding to the p.values. If NULL, it is assumed that the row names of
object give the terms.

p.values A character giving the name of the column in object containing the p-values
to use in deciding whether or not terms are significant.

DF Can be a character or a numeric that specifies the numerator degrees of free-
dom for the tests. If it is a character, it must be the name of a column in
object containing the numerator degrees of freedom that are to be included in
the choose.summary data.frame. if it is a numeric, its length must equal 1 or
the number of rows in object. In either case, a column labelled DF will be in-
cluded in the choose.summary data.frame. It will contain either the replicated
single value (which can be NA) or the values supplied.

denDF Can be a character or a numeric that specifies the denominator degrees of
freedom for the tests. If it is a character, it must be the name of a column in
object containing the denominator degrees of freedom that are to be included
in the choose.summary data.frame. if it is a numeric, its length must equal
1 or the number of rows in object. In either case, a column labelled denDF
will be included in the choose.summary data.frame. It will contain either the
replicated single value (which can be NA) or the values supplied.

omit.DF A logical indicating whether or not both the numerator and denominator de-
grees of freedom are to be omitted from choose.summary. Doing so will mean
that the choose.summary no longer has the same columns as a test.summary
from an asrtests.object.

terms.marginality

A square matrix of ones and zeros with row and column names being the names
of the those terms in the terms column of object that are to be tested. The
diagonal elements should be one, indicating that a term is marginal to itself.
Elements should be one if the row term is marginal to the column term. All
other elements should be zero. The names of the rows and columns should
match the those elements of terms that are to be tested.

alpha The significance level for the hypothesis testing.

... Provision for passing arguments to functions called internally - not used at
present.

Value

A list containing:

1. choose.summary: a data.frame summarizing the tests carried out in choosing the signifi-
cant terms; provided omit.DF = FALSE, it has the same columns as a test.summary from an
asrtests.object

2. sig.tests: a character vector whose elements are the significant terms amongst those
tested.

Author(s)

Chris Brien

chooseSpatialModelOnIC.asrtests 69

See Also

chooseModel, chooseModel.asrtests

Examples

data("Ladybird.dat")

Use asreml to get the table of p-values

Not run:
m1.asr <- asreml(logitP ~ Host*Cadavers*Ladybird,

random = ~ Run,
data = Ladybird.dat)

current.asrt <- as.asrtests(m1.asr)
fixed.tab <- current.asrt$wald.tab
col.p <- "Pr"
df = "Df"
den.df = "denDF"

End(Not run)

Use lmeTest to get the table of p-values
if (requireNamespace("lmerTest", quietly = TRUE) &

requireNamespace("emmeans", quietly = TRUE))
{

m1.lmer <- lmerTest::lmer(logitP ~ Host*Cadavers*Ladybird + (1|Run),
data=Ladybird.dat)

fixed.tab <- anova(m1.lmer, type = "II")
col.p <- "Pr(>F)"
df = "NumDF"
den.df = "DenDF"

}

Select a model using the table of p-values obtained with either asreml or lmerTest
if (exists("fixed.tab"))
{

term.marg <- dae::marginality(dae::pstructure(~ Host*Cadavers*Ladybird,
data = Ladybird.dat))

chosen <- chooseModel(fixed.tab, p.values = col.p, DF = df, denDF = den.df,
terms.marginality = term.marg)

}

chooseSpatialModelOnIC.asrtests

Uses information criteria to choose the best fitting spatial model for
accounting for local spatial variation.

Description

For a response variable measured on a potentially irregular grid of rows and columns of the units,
uses information criteria (IC) to decide whether the fit and parsimony of the model fitted to a set of
data can be improved by adding, to the fitted model stored in the supplied asrtests.object, one
of the following spatial models to account for the local spatial variation: (i) a two-dimensional first-
order autocorrelation model, (ii) a two-dimensional tensor-product natural cubic smoothing spline

70 chooseSpatialModelOnIC.asrtests

model (TPNCSS), (iii) a two-dimensional tensor-product penalized P-spline model with second-
difference penalties (TPPSC2) model, or (iv) a two-dimensional tensor-product penalized linear
spline model with first-difference penalties (TPPSL1). The models from which to select can be
reduced to a subset of these four models. For each model, a term from the spatial model is only
added to the supplied model if the IC of the supplied model is decreased with the addition of that
term. If no model improves the IC when a local spatial variation model is added, then the supplied,
nonspatial model will be returned. The data can be arranged in sections, for each of which there is
a grid and for which the model is to be fitted separately. Also, the rows and columns of a grid are
not necessarily one observational unit wide. For TPPSC2 models, the improvement in the fit from
rotating the eigenvectors of the penalty matrix can be investigated; if there is no improvement, the
unrotated fit will be returned.

One or more rows is added to the test.summary data.frame of the asrtests.object, for each
section and each spatial model, stating whether or not the new model has been swapped for a
model in which the spatial model has been added to the supplied model. Convergence in fitting
the model is checked and a note included in the action if there was not. All components of the
asrtests.object are updated to exhibit the differences between the supplied and any new model.

Usage

S3 method for class 'asrtests'
chooseSpatialModelOnIC(asrtests.obj, trySpatial = "all",

sections = NULL,
row.covar = "cRow", col.covar = "cCol",
row.factor = "Row", col.factor = "Col",
corr.funcs = c("ar1", "ar1"), corr.orders = c(0, 0),
row.corrFitfirst = TRUE,
allow.corrsJointFit = TRUE, nugget.variance = TRUE,
dropFixed = NULL, dropRandom = NULL,
nsegs = NULL, nestorder = c(1,1),
usRandLinCoeffs = TRUE,
rotateX = FALSE, ngridangles = NULL,
which.rotacriterion = "AIC", nrotacores = 1,
asreml.option = "grp", tpps4mbf.obj = NULL,
allow.unconverged = TRUE, allow.fixedcorrelation = TRUE,
checkboundaryonly = FALSE, update = TRUE, trace = FALSE,
maxit = 30, IClikelihood = "full", which.IC = "AIC",
return.asrts = "best", ...)

Arguments

asrtests.obj An asrtests.object containing the components (i) asreml.obj, (ii) wald.tab,
and (iii) test.summary.

trySpatial A character string nominating the types of spatial model whose fits are to be
assessed. Possible values are none, all, corr, TPNCSS, TPPSC2 (or TPPCS), and
TPPSL1 (or TPP1LS). If set to none, then just the supplied nonspatial model and
the information about its information criteria will be returned. If all, then corr,
TPNCSS, TPPSC2 and TPPSL1 will be fitted. Which fitted models are returned is
controlled by return.asrts.

sections A single character string that specifies the name of the column in the data.frame
that contains the factor that identifies different sections of the data to which
separate spatial models are to be fitted. Note that, for other terms that involve
sections in the random formula, there should be separate terms for each level

chooseSpatialModelOnIC.asrtests 71

of sections. For example, in a blocked experiment involving multiple sites,
there should be the sum of separate terms for the Blocks at each Site i.e. a
formula that contains terms like at(Site, i):Block for each site and these are sep-
arated by '+'. Otherwise, the combined term (e.g. Site:Block) will impact on
the fitting of the local spatial models for the different Sites. Similarly, a separate
residual variance for each of the sections should be fitted, unless there is a need
to fit a different variance structure to the residual, e.g. heterogeneous residual
variances depending on treatments. Separate residual variances for sections
can be achieved using the asreml functions dsum or idh. Because, unlike ran-
dom terms, terms for residual variances are not removed from the model, com-
pound residual terms can be used to include them in the model, e.g. terms with
idh or dsum with multiple levels in the list or leaving levels out altogether.
In addition to allowing the independent fitting of models to the sections, sepa-
rate residual variance terms allows a nugget variance to be fitted in a correlation
model for each of the sections.

row.covar A single character string nominating a numeric that contains the values of a
centred covariate indexing the rows of a grid. The numeric must be a column in
the data.frame stored in the asreml.obj that is a component of the supplied
asrtests.obj.

col.covar A single character string nominating a numeric that contains the values of
a centred covariate indexing the columns of a grid. The numeric must be a
column in the data.frame stored in the asreml.obj that is a component of the
supplied asrtests.obj.

row.factor A single character string nominating a factor that indexes the rows of a grid
that are to be one dimension of a spatial correlation model. The factor must a
column in the data.frame stored in the asreml.obj that is a component of the
supplied asrtests.obj.

col.factor A single character string nominating a factor that indexes the columns of a
grid that are to be one dimension of a spatial correlation model. The factor
must a column in the data.frame stored in the asreml.obj that is a component
of the supplied asrtests.obj.

corr.funcs A single character string of length two that specifies the asreml one-dimensional
correlation or variance model function for the row and column dimensions of a
two-dimensional separable spatial correlation model to be fitted when spatial.model
is corr; the two-dimensional model is fitted as a random term. If a correlation
or variance model is not to be investigated for one of the dimensions, specify ""
for that dimension. If the correlation model is corb, the values of corr.orders
are used for its order argument (b).

corr.orders A numeric of length two that specifies the order argument (b) values for the
row and column dimensions of a two-dimensional separable spatial correlation
model when spatial.model is corr and the corr.funcs for a dimension is
corb, the asreml banded correlation model. If one of the dimensions does not
involve an order argument, set the value of corr.orders for that dimension to
zero. For a dimension for which the corr.funcs is corb and corr.orders is
zero, a model with a single band, the correlation between immediate neighbours,
will be fitted and then further bands, up to a maximum of 10 bands, will be added
until the addition of an extra band does not reduce the information criterion
nominated using which.IC. Note that the two-dimensional spatial model is fitted
as a random term.

row.corrFitfirst

A logical. If TRUE then, in fitting the model for spatial.model set to corr,

72 chooseSpatialModelOnIC.asrtests

the row correlation or variance function is fitted first, followed by the addition
of the column correlation or variance function. If FALSE, the order of fitting is
reversed.

allow.corrsJointFit

A logical which, if TRUE, will allow the simultaneous fitting of correlation
functions for the two dimensions of the grid when separate fits have failed to fit
any correlation functions. This argument is available for when a joint fit hangs
the system.

nugget.variance

A logical which, if TRUE, will result in an attempt to fit a nugget or unit-specific
variance. Otherwise, a nugget or unit-specific variance will not be fitted.

dropFixed A single character string or a character vector of strings with an element
for each level of sections in the same order as the sections levels. Each
string, which if it is not NA and after the addition of ". ~ . -" and conversion
to a formula that is then expanded, specifies the sum of a set of terms to be
dropped from the fixed formula in fitting splines (TPPS and TPNCSS). The result
is that the fitted model supplied in the asrtests.obj, that includes these terms,
will be compared with the fitted model that has had them removed and a spatial
model added.
An element that is NA indicates that no term pertaining to the corresponding
sections level is to be removed. If sections is not NULL and a single character
string has been supplied, the terms specified by the string are taken to be terms
that are independent of the sections and will be removed when adding the
spatial model for the first sections.
The terms must match those in the wald.tab component of the asrtests.obj.
The fixed terms will be reordered so that single-variable terms come first, fol-
lowed by two-variable terms and so on. Note also that multiple terms specified
using a single asreml::at function can only be dropped as a whole. If the term
was specified using an asreml::at function with a single level, then it can be
removed and either the level itself or its numeric position in the levels returned
by the levels function can be specified.

dropRandom A single character string or a character vector of strings with an element
for each level of sections in the same order as the sections levels. Each
string, which if it is not NA and after the addition of " ~ . -" and conversion to a
formula that is then expanded, specifies the sum of a set of terms to be dropped
from the random formula in fitting splines (TPPS and TPNCSS). The result is that
the fitted model supplied in the asrtests.obj, that includes these terms, will be
compared with the fitted model that has had them removed and a spatial model
added.
An element that is NA indicates that no term pertaining to the corresponding
sections level is to be removed. If sections is not NULL and a single character
string has been supplied, the terms specified by the string are taken to be terms
that are independent of the sections and will be removed when adding the
spatial model for the first sections.
The terms must match those in the vparameters component of the asreml.obj
component in the asrtests.obj. Note also that multiple terms specified using
a single asreml::at function can only be dropped as a whole. If the term
was specified using an asreml::at function with a single level, then it can be
removed and either the level itself or its numeric position in the levels returned
by the levels function can be specified.

nsegs A pair of numeric values giving the number of segments into which the column
and row ranges are to be split, respectively, for fitting a P-spline model (TPPS)

chooseSpatialModelOnIC.asrtests 73

(each value specifies the number of internal knots + 1). If not specified, then
(number of unique values - 1) is used in each dimension; for a grid layout with
equal spacing, this gives a knot at each data value. If sections is not NULL
and the grid differs between the sections, then nsegs will differ between the
sections.

nestorder A numeric of length 2. The order of nesting for column and row dimensions,
respectively, in fitting a P-spline model (TPPS). A value of 1 specifies no nesting,
a value of 2 generates a spline with half the number of segments in that dimen-
sion, etc. The number of segments in each direction must be a multiple of the
order of nesting.

usRandLinCoeffs

A logical which, if TRUE, will attempt to fit an unstructured variance model
to the constant and linear terms in the interactions for constant and linear terms
in one grid dimension interacting with smoooth terms in the second grid dimen-
sion. The unstructured variance model can only be fitted if both the constant and
linear interaction terms have been retained in the fitted model. This argument
can be used to omit the attempt to fit an unstructured variance model when the
attempt results in a stystem error.

rotateX A logical indicating whether to rotate the eigenvectors of the penalty matrix, as
described by Piepho, Boer and Williams (2022), when fitting a P-spline (TPPS).
Setting rotateX to TRUE results in a a search for an optimized rotation under a
model that omits the random spline interaction terms. If ngridangles is set to
NULL, the optimal rotation us found using an optimizer (nloptr::bobyqa). Oth-
erwise, the optimal rotation is found by exploring the fit over a two-dimensional
grid of rotation angle pairs. The optimization seeks to optimize the criterion
nominated in which.rotacriterion. Rotation of the eigenvectors is only rel-
evant for difforder values greater than 1 and has only been implemented for
difforder equal to 2.

ngridangles A numeric of length 2. If NULL (the default), the optimal pair of angles for
rotating the eignevectors of the penalty matrix of a P-spline (TPPS) will be de-
termined using a nonlinear optimizer (nloptr::bobyqa). Otherwise, its two
values specify the numbers of angles between 0 and 90 degrees for each of the
row and column dimensions to be used in determining the optimal pair of angles.
Specifying factors of 90 will result in integer-valued angles. The number of grid
points, and hence re-analyses will be the product of the values of (ngridangles
+ 1).

which.rotacriterion

A single character string nominating which of the criteria, out of the deviance,
the likelihood, the AIC and the BIC, is to be used in determining the optimal
rotation of the eigenvectors of the penalty matrix. The deviance uses the REML
value computed by asreml; the other criteria use the full likelihood, evaluated
using the REML estimates, that is computed by infoCriteria.asreml.

nrotacores A numeric specifying the number of cores to deploy for running the analyses
required to search the two-diemsional grid of rotation angles when rotateX is
TRUE. Parallel processing has been implemented for analyzing, for each column
angle, the set of angles to be investigated for the row dimension. The default
value of one means that parallel processing will not be used. The value chosen
for nrotacores needs to balanced against the other processes that are using
parallel processing at the same time.

asreml.option A single character string specifying whether the grp or mbf methods are to
be used to supply externally formed covariate matrices to asreml when fit-

74 chooseSpatialModelOnIC.asrtests

ting a P-spline (TPPS). Compared to the mbf method, the grp method is some-
what faster, but creates large asrtests.objects for which the time it takes
to save them can exceed any gains in execution speed. The grp method adds
columns to the data.frame containing the data. On the other hand, the mbf
method adds only the fixed covariates to data and stores the random covariates
in the environment of the internal function that calls the spline-fitting function;
there are three smaller data.frames for each section that are not stored in the
asreml.object resulting from the fitted model.

tpps4mbf.obj An object made with makeTPPSplineMats.data.frame that contains the spline
basis information for fitting P-splines. The argument tpps4mbf.obj only needs
to be set when the mbf option of asreml.option is being used and it is de-
sired to use mbf data.frames that have been created and stored prior to calling
chooseSpatialModelOnIC.asrtests. If tpps4mbf.obj is NULL,
makeTPPSplineMats.data.frame will be called internally to produce the re-
quired mbf data.frames.

allow.unconverged

A logical indicating whether to accept a new model even when it does not
converge. If FALSE and the fit of the new model does not converge, the supplied
asrtests.obj is returned. Also, if FALSE and the fit of the new model has
converged, but that of the old model has not, the new model will be accepted.

allow.fixedcorrelation

A logical indicating whether to accept a new model even when it contains
correlations in the model whose values have been designated as fixed, bound
or singular. If FALSE and the new model contains correlations whose values
have not been able to be estimated, the supplied asrtests.obj is returned.
The fit in the asreml.obj component of the supplied asrtests.obj will also
be tested and a warning issued if both fixed correlations are found in it and
allow.fixedcorrelation is FALSE.

checkboundaryonly

If TRUE then boundary and singular terms are not removed by rmboundary.asrtests;
a warning is issued instead. Note that, for correlation models, the fitting of each
dimension and the test for a nugget term are performed with checkboundaryonly
set to TRUE and its supplied setting only honoured using a call to rmboundary.asrtests
immediately prior to returning the final result of the fitting.

update If TRUE, and set.terms is NULL, then newfit.asreml is called to fit the model
to be tested, using the values of the variance parameters stored in the asreml.object,
that is stored in asrtests.obj, as starting values. If FALSE or set.terms is not
NULL, then newfit.asreml will not use the stored variance parameter values as
starting values when fitting the new model, the only modifications being (i) to
fit aptial terms and (ii) those specified via

trace If TRUE then the stages in fitting a correlation model are displayed.

which.IC A character specifying the information criterion to be used in selecting the
best model. Possible values are AIC and BIC. The value of the criterion for
supplied model must exceed that for changed model for the changed model to
be returned. (For choosing the rotation angle of the eigenvectors of the penalty
matrix, see which.rotacriterion.

maxit A numeric specifying the maximum number of iterations that asreml should
perform in fitting a model.

IClikelihood A character specifying whether Restricted Maximum Likelihood (REML) or
the full likelihood, evaluated using REML estimates, (full) are to be used in

chooseSpatialModelOnIC.asrtests 75

calculating the information criteria to be included in the test.summary of an
asrtests.object or to be used in choosing the best model.

return.asrts A character string specifying whether the asrtests.object for the best fit-
ting model (smallest AIC or BIC), including the supplied nonspatial model, is
returned or the asrtests.objects resulting from the attempted fits of all of
the models specified using trySpatial are returned.

... Further arguments passed to changeModelOnIC.asrtests, asreml and tpsmmb.

Details

For each spatial model that is to be fitted, a fitted spatial model is only returned if it improves the
fit over and above that achieved with the model fit supplied in the asrtests.obj, because terms in
the spatial model are not added unless model fit is improved by their addition as measured by an
IC. If return.asrts is all, then this applies to each spatial model specified by trySpatial. To
force a spatial model to be fitted use addSpatialModel.asrtests. The model fit supplied in the
asrtests.obj should not include terms that will be included in any local spatial model. All spatial
model terms are fitted as fixed or random. Consequently, the residual model does not have to be iid.
The improvement in the fit resulting from the addition of a spatial model to the supplied model is
evaluated. Note that the data must be in the order that corresponds to the residual argument with
a variable to the right of another variable changing levels in the data frame faster than those of the
preceding variables e.g. Row:Column implies that all levels for Column are in consecutive rows of
the data.frame that have a single Row level.

For the corr spatial model, the default model is an autocorrelation model of order one (ar1) for each
dimension. However, any of the single dimension correlation/variance models from asreml can be
specified for each dimension, as can no correlation model for a dimension; the models for the two
dimensions can differ. Using a forward selection procedure, a series of models are tried, without
removing boundary or singular terms, beginning with the addition of row correlation and followed
by the addition of column correlation or, if the row.corrFitfirst is set to FALSE, the reverse order.
If the fitting of the first-fitted correlation did not result in a model change because the fitting did
not converge or correlations were fixed, but the fit of the second correlation was successful, then
adding the first correlation will be retried. If one of the metric correlation functions is specified
(e.g. exp), then the row.covar or col.covar will be used in the spatial model. However, because
the correlations are fitted separately for the two dimensions, the row.factor and col.factor are
needed for all models and are used for any dimension that does not involve a correlation/variance
function for the fit being performed. Also, the correlation models are fitted as random terms and
so the correlation model will include a variance parameter for the grid even when ar1 is used to
specify the correlation model, i.e. the model fitted is a variance model and there is no difference
between ar1 and ar1v in fitting the model. The variance parameter for this term represents the
spatial variance and the fit necessarily includes a nugget term, this being the residual variance. If any
correlation is retained in the model, for a section if sections is not NULL, then the need for a nuggest
term is assessed by fixing the corresponding residual variance to one, unless there are multiple
residual variances and these are not related to the sections. Once the fitting of the correlation
model has been completed, the rmboundary function will be executed with the checkboundaryonly
value supplied in the chooseSpatialModelOnIC.asrtests call. Finally, checking for bound and
singular random terms associated with the correlation model and residual terms will be carried out
when there are correlation terms in the model and checkboundaryonly has been set to FALSE; as
many as possible will be removed from the fitted model, in some cases by fixing variance terms to
one.

The tensor-product natural-cubic-smoothing-spline (TPNCSS) spatial model is as described by Ver-
byla et al. (2018), the tensor-product penalized-cubic-spline (TPPSC2) model with second-order
differencing of the penalty is similar to that described by Rodriguez-Alvarez et al. (2018), and the
tensor-product, first-difference-penalty, linear spline (TPPSL1) model is amongst those described

76 chooseSpatialModelOnIC.asrtests

by Piepho, Boer and Williams (2022). The fixed terms for the spline models are row.covar +
col.covar + row.covar:col.covar and the random terms are spl(row.covar) + spl(col.covar)
+ dev(row.covar) + dev(col.covar) + spl(row.covar):col.covar + row.covar:spl(col.covar)
+ spl(row.covar):spl(col.covar), except that spl(row.covar) + spl(col.covar) is replaced
with spl(row.covar):int(col.covar) + int(row.covar):spl(col.covar) in the TPPSC2 model,
where int(.) indicates an intercept or constant value specific to its argument. For TPPSL1 mod-
els, the terms spl(row.covar):col.covar + row.covar:spl(col.covar) are omitted, The sup-
plied model should not include any of these terms. However, any fixed or random main-effect
Row or Column term that has been included as an initial model for comparison with a spatial
model can be removed prior to fitting the spatial model using dropFixed or dropRandom. For
the P-spline models with second-order differencing, the model matrices used to fit the pairs of
random terms (i) spl(row.covar):int(col.covar) and spl(row.covar):col.covar and (ii)
int(row.covar):spl(col.covar) and row.covar:spl(col.covar) are transformed using the
spectral decomposition of their penalty matrices. An unstructured variance model is tried for each
of these pairs and retained if it improves the fit. For TPPSC2, it is also possible to optimize the
rotation of the null-space eigenvectors of the penalty matrix for each of these random-term pairs
(for more information see Piepho, Boer and Williams, 2022). The optimization is achieved either
using an optimizer or takes the form of a search over a grid of rotation angles for a reduced model;
the fit of the full model with rotation using the optimal rotation angles will only be returned if it
improves on the fit of the full, unrotated model.

The TPPSC2 and TPPSL1 models are fitted using functions from the R package TPSbits authored
by Sue Welham (2022). There are two methods for supplying the spline basis information pro-
duced by tpsmmb to asreml. The grp method adds it to the data.frame supplied in the data
argument of the asreml call. The mbf method creates smaller data.frames with the spline ba-
sis information in the same environment as the internal function that calls the spline-fitting func-
tion. If it is desired to use in a later session, an asreml function, or asrtests function that
calls asreml, (e.g. predict.asreml, predictPlus.asreml, or changeTerms.asrtests) on an
asreml.object created using mbf terms, then the mbf data.frames will need to be recreated us-
ing makeTPPSplineMats.data.frame in the new session, supplying, if there has been rotation of
the penalty matrix eigenvectors, the theta values that are returned as the attribute theta.opt of
the asreml.obj.

All models utlize the function changeModelOnIC.asrtests to assess the model fit, the information
criteria used in assessing the fit being calculated using infoCriteria. Arguments from tpsmmb and
changeModelOnIC.asrtests can be supplied in calls to chooseSpatialModelOnIC.asrtests
and will be passed on to the relevant function though the ellipses argument (. . .).

The data for experiment can be divided into sections and an attempt to fit the same spatial model
to each is made. The fit may differ for each of the sections, but the fit over all of the sections is
assessed. For more detail see sections above.

Each combination of a row.coords and a col.coords does not have to specify a single observation;
for example, to fit a local spatial model to the main units of a split-unit design, each combination
would correspond to a main unit and all subunits of the main unit would have the same combination.

Value

A list containing four components: (i) asrts, (ii) spatial.IC, (iii) best.spatial.mod, and (iv)
best.spatial.IC.

The component asrts itself holds a list of one or more asrtests.objects, either the best over-
all out of the supplied model and the spatial models, or, for each spatial model, the best out of
the supplied model and that spatial model. Each asrtests.object contains the components: (i)
asreml.obj, (ii) wald.tab, and (iii) test.summary. If the asrtests.object is the result of fitting
a TPPSC2 model with an exploration of the rotation of the eigenvectors of the penalty matrix for the

chooseSpatialModelOnIC.asrtests 77

linear components, then the asreml.obj will have an attribute theta.opt that contains the optimal
rotation angles of the eigenvectors.

The spatial.IC component holds a data.frame with summary of the values of the information
criteria for the supplied model and those resulting from adding the spatial models to the supplied
model. In the case of a spatial correlation model, the information criteria for the selected spatial
correlation model is returned. If a spatial model could not be fitted, then all returned values will be
NA).

The best.spatial.mod component is a character giving the name of the best spatial model, and
best.spatial.AIC gives the value of its AIC.

Author(s)

Chris Brien

References

Piepho, H.-P., Boer, M. P., & Williams, E. R. (2022). Two-dimensional P-spline smoothing for
spatial analysis of plant breeding trials. Biometrical Journal, 64, 835-857.

Rodriguez-Alvarez, M. X., Boer, M. P., van Eeuwijk, F. A., & Eilers, P. H. C. (2018). Correcting
for spatial heterogeneity in plant breeding experiments with P-splines. Spatial Statistics, 23, 52-71.

Verbyla, A. P., De Faveri, J., Wilkie, J. D., & Lewis, T. (2018). Tensor Cubic Smoothing Splines
in Designed Experiments Requiring Residual Modelling. Journal of Agricultural, Biological and
Environmental Statistics, 23(4), 478-508.

Welham, S. J. (2022) TPSbits: Creates Structures to Enable Fitting and Examination of 2D Tensor-
Product Splines using ASReml-R. Version 1.0.0 https://mmade.org/tpsbits/

See Also

as.asrtests, makeTPPSplineMats.data.frame, addSpatialModelOnIC.asrtests,
addSpatialModel.asrtests, changeModelOnIC.asrtests, changeTerms.asrtests,
rmboundary.asrtests, testranfix.asrtests, testresidual.asrtests, newfit.asreml,
reparamSigDevn.asrtests, changeTerms.asrtests, infoCriteria.asreml

Examples

Not run:

data(Wheat.dat)

#Add row and column covariates
Wheat.dat <- within(Wheat.dat,

{
cColumn <- dae::as.numfac(Column)
cColumn <- cColumn - mean(unique(cColumn))
cRow <- dae::as.numfac(Row)
cRow <- cRow - mean(unique(cRow))

})

#Fit initial model
current.asr <- asreml(yield ~ Rep + WithinColPairs + Variety,

random = ~ Row + Column,
data=Wheat.dat)

https://mmade.org/tpsbits/

78 convAsremlobj.asreml

#Create an asrtests object, removing boundary terms
current.asrt <- as.asrtests(current.asr, NULL, NULL,

label = "Random Row and Column effects")
current.asrt <- rmboundary(current.asrt)

Choose the best of four models for the local spatial variation
current.asrt <- chooseSpatialModelOnIC(current.asrt,

row.covar = "cRow", col.covar = "cColumn",
dropRowterm = "Row", dropColterm = "Column",
asreml.option = "grp")

End(Not run)

convAsremlobj.asreml Recreates an asreml object so that it is compatible with the currently
loaded asreml version.

Description

Recreate an existing asreml object so that it is compatible with the currently loaded asreml version.
It involves refitting the model stored in the asreml object.

Usage

S3 method for class 'asreml'
convAsremlobj(asreml.obj, ...)

Arguments

asreml.obj An asreml object with a component named call (from a previous call to either
asreml or update.asreml).

... Provision for passing arguments to functions called internally - not used at
present.

Value

An asreml object.

Author(s)

Chris Brien

References

Butler, D. G., Cullis, B. R., Gilmour, A. R., Gogel, B. J. and Thompson, R. (2023). ASReml-R
Reference Manual Version 4.2. VSN International Ltd, https://asreml.kb.vsni.co.uk/.

See Also

newfit.asreml, update.asreml

https://asreml.kb.vsni.co.uk/

convEffectNames2DataFrame.asreml 79

Examples

Not run:
m1.asr <- convAsremlobj(m1.asr)

End(Not run)

convEffectNames2DataFrame.asreml

Converts the effects names for a term stored in the component of an
asreml object into a data.frame.

Description

Converts the effects names for a term stored in the component of an asreml object into a data.frame
that has a column for each factor and variable in the term. It facilitates adding the effects to the
data.frame supplied to asreml for an analysis. This function can only be used with asreml v4.2
or later.

Usage

S3 method for class 'asreml'
convEffectNames2DataFrame(asreml.obj, term, use = "design.matrix", sep = ":", ...)

Arguments

asreml.obj An object resulting from the fitting of a model using asreml v4.2.

term A character nominating a single model term. It should be the name of the
term in the component, of the asreml.obj, nominated in the use argument.
The variables/factors in term must match those in this component. Thus, it will
not include asreml variance or correlation functions, but may include functions
such at at. Generally, each element of the term, separated from other elements
by colons, should involve a single factor or variable.

use A character specifying a component in the asreml.obj. The default is the
design.matrix. Other possibilities are the random.coeffs or G.aom. For the
option design.matrix, the design argument of asreml.options must be set
to TRUE, before executing either the asreml or update.asreml call produces
the asreml.obj. The option G.aom specifies the G component of the aom com-
ponent that is included in the asreml.obj if the aom argument is set to TRUE in
either asreml.options before calling asreml or update.asreml, or in a call
to asreml or update.asreml that is involved in producing the asreml.obj.

sep A character specifying the separator of factors/variables in the term.

... Provision for passing arguments to functions called internally - not used at
present.

Value

A data.frame with columns for the factors and variables in term. It includes the attribute effect.names
that contains the extracted effects names for the term

80 estimateV.asreml

Author(s)

Chris Brien

References

Butler, D. G., Cullis, B. R., Gilmour, A. R., Gogel, B. J. and Thompson, R. (2023). ASReml-R
Reference Manual Version 4.2. VSN International Ltd, https://asreml.kb.vsni.co.uk/.

Examples

Not run:
G.dat <- convEffectNames2DataFrame(m1.asr, term = "Row:Column", use = "G.aom")

G.dat <- lapply(c("at(Smarthouse, 'SW'):Lane:Position",
"at(Smarthouse, 'SE'):Lane:Position"),

function(term, asreml.obj)
tmp <- convEffectNames2DataFrame.asreml(asreml.obj, term = term),

asreml.obj = m1.asr)
G.dat <- do.call(rbind, G.dat)

End(Not run)

estimateV.asreml Forms the estimated variance, random or residual matrix for the ob-
servations from the variance parameter estimates.

Description

Forms the estimated variance (V), random (G) or (R) matrix for the observations, a square symmet-
ric matrix of order equal to the number of observations. The estimates of the variance parameters
and the information about the random and residual models for which they were estimated are
obtained from the asreml object. This function is not available in ASReml-R version 3.

Usage

S3 method for class 'asreml'
estimateV(asreml.obj, which.matrix = "V",

extra.matrix = NULL, ignore.terms = NULL, fixed.spline.terms = NULL,
bound.exclusions = c("F","B","S","C"), ...)

Arguments

asreml.obj An asreml object from a call to asreml in which the data argument has been
set.

which.matrix A character giving the matrix that is to be formed. It must be one of "V", to
produce the variance matrix V = G + R, "G" to produce the matrix G, corre-
sponding to the random formula, or "R" to produce the matrix R, corresponding
to the residual formula.

https://asreml.kb.vsni.co.uk/

estimateV.asreml 81

extra.matrix A matrix of order equal to the number of observations that is to be added
to the matrix specified by which.matrix, the latter based on the informa-
tion in asreml.obj. It is assumed that the sigma-parameterized values of the
variance parameter estimates, such as is given in the varcomp component of
summary.asreml, have been used in calculating extra.matrix; the values in
the vparameters component of G.param and R.param may be either gamma-
or sigma-parameterized. The argument extra.matrix can be used in conjunc-
tion with ignore.terms as a workaround to include components of the variance
matrix for variance functions that have not been implemented in estimateV.

ignore.terms A character giving terms from either the random or residual models that are
to be ignored in that their contributions to the variance is not to be included in the
estimated matrix. The term names are those given in the vparameters compo-
nent of the asreml object or the varcomp component produced by summary.asreml,
but only up to the first exclamation mark (!). This can be used in conjunction
with estimateV.asreml as a workaround to include components of the variance
matrix for variance functions that have not been implemented in estimateV.

fixed.spline.terms

A character vector giving one or more spline terms in the random model
that are regarded as fixed and so are to be ignored because they are not re-
garded as contributing to the variance. The term names are those given in the
vparameters component of the asreml object or the varcomp component pro-
duced by summary.asreml, but only up to the first exclamation mark (!).

bound.exclusions

A character specifying one or more bound codes that will result in a variance
parameter in the random model being excluded from contributing to the vari-
ance. If set to NULL then none will be excluded.

... Provision for passing arguments to functions called internally - not used at
present.

Details

The information about the variance parameters in the fitted mixed model are obtained from the
G.param and R.param components of the asreml object. The function can deal with the following
variance functions in either the random or residual models: id, diag, us, ar1, ar2, ar3, sar,sar2,
ma1, ma2, arma, exp, gau, cor, corb and corg. All of these functions, except us, can be combined
with either v or h. It will also cope with the following functions in the random model: at, str, spl,
dev, grp, fa and rr. Additionally, it can deal with the function dsum in the residual model. For
further information see the ASReml-R User Guide Version 4 (Butler et al., 2023).

Value

A matrix containing the estimated variance matrix. It has an attribute missing.termmatrix (use
attr(x, which = "missing.termmatrix") to access the atrribute). It will be NULL, unless the
design matrix could not be obtained for one or more model terms. If is is not NULL, it will be a list
of terms that could not be produced for inclusion in the variance matrix estimate, and NA will be
returned for the estimated variance matrix.

Author(s)

Chris Brien

82 exploreLSDs.alldiffs

References

Butler, D. G., Cullis, B. R., Gilmour, A. R., Gogel, B. J. and Thompson, R. (2023). ASReml-R
Reference Manual Version 4.2. VSN International Ltd, https://asreml.kb.vsni.co.uk/.

See Also

asreml, simulate.asreml, variofaces.asreml.

Examples

Not run:
data(Wheat.dat)
current.asr <- asreml(yield ~ Rep + WithinColPairs + Variety,

random = ~ Row + Column + units,
residual = ~ ar1(Row):ar1(Column),
data=Wheat.dat)

Form variance matrix based on estimated variance parameters
V <- estimateV(current.asr)

End(Not run)

exploreLSDs.alldiffs Explores the computed LSD values for pairwise differences between
predictions.

Description

Given an alldiffs.object with an sed component, the LSDs are calculated for all pairwise com-
parisons of predictions. It then calculates (i) a table of frequencies of the LSD values, (ii) the distinct
values of the LSDs after rounding, (iii) various statistics from the LSD values, (iv) a measure of
the accuracy of each of the LSD statistics, (v) the numbers of false positives and false negatives for
each of the LSD statistics if pairwise comparisons are based on the LSD statistic, (vi) the accuracy
of each statistic in representing the LSD values for each prediction and (vii) a matrix containing
the LSD values for comparing each pair of predictions. Histograms of the frequencies can also be
produced.

Usage

S3 method for class 'alldiffs'
exploreLSDs(alldiffs.obj, LSDtype = "overall", LSDby = NULL,

LSDaccuracy = "maxAbsDeviation", alpha = 0.05, digits = 3,
retain.zeroLSDs = FALSE,
zero.tolerance = .Machine$double.eps ^ 0.5,
plotHistogram = FALSE, ...)

Arguments

alldiffs.obj An alldiffs.object.

https://asreml.kb.vsni.co.uk/

exploreLSDs.alldiffs 83

LSDtype A character string that can be overall or factor.combinations. It de-
termines whether the LSD values that are investigated and stored are (i) the
overall minimum, quantile10, quantile25, mean, median, quantile75, quan-
tile90, and maximum of all pairwise LSDs, or (ii) the minimum, quantile10,
quantile25, mean, median, quantile75, quantile90, and maximum for the pair-
wise LSDs for each factor.combination, unless there is only one prediction
for a factor.combination, when notional LSDs are calculated. The LSDtype
specified here does not have to match that used in the creating the alldiffs.object.
See LSD.frame for further information on how the LSD statistics are calculated.

LSDby A character (vector) of variables names, being the names of the factors
or numerics in the classify; for each combination of the values the of the
factors and numerics, the LSD statistics and accuracy are computed, as well
histograms plotted, when LSDtype is factor.combinatons. The LSDby speci-
fied here does not have to match that used in the creating the alldiffs.object.

LSDaccuracy A character nominating one of maxAbsDeviation, maxDeviation, q90Deviation
or RootMeanSqDeviation as the statistic to be calculated as a measure of the ac-
curacy of an LSD statistic when its values are used as an approximate LSD. The
option q90Deviation produces the sample quantile corresponding to a proba-
bility of 0.90. The deviations are the differences between a set of LSDs and
an LSD statistic calculated from those LSDs; the accuracy is expressed as a
proportion of the value of the LSD statistic.

alpha A numeric specifying the significance level for an LSD to compare a pair of
predictions.

digits A numeric specifying the number of significant digits to retain in rounding the
LSDs before determining the distinct rounded LSDs.

retain.zeroLSDs

A logical indicating whether to retain or omit LSDs that are zero when calcu-
lating the summaries of LSDs.

zero.tolerance A numeric specifying the value such that if an LSD is less than it, the LSD will
be considered to be zero.

plotHistogram A logical indicating whether or not histograms of the LSD values are to be
plotted. The LSDtype argument controls whether one histogram of all LSD
values is plotted or histograms are plotted for each combination of the levels of
the factors specified by the LSDby argument.

... Provision for passing arguments to functions called internally - not used at
present.

Details

The false positives and negatives are computed by comparing, for each pair of predictions within
each levels-combination of the LSDby variables, the significance of the pair difference determined
using (i) the true LSD that is computed from the standard error of differences for the pair and (ii)
the approximate LSD that is a statistic computed from the true LSDs for all pairwise difference
within each levels-combination of the LSDby variables. The number of false positives is the number
of pairwise differences for which a difference is declared significant using the approximate LSD,
but not using the true LSD. The number of false negatives is the number of pairwise differences for
which a difference is declared nonsignificant using the approximate LSD, but significant using the
true LSD.

The LSD accuracy for a set of LSDs is a function of the deviations of those LSDs and an LSD
statistic calculated from them; the accuracy is expressed as a proportion of the value of the LSD
statistic.

84 exploreLSDs.alldiffs

Value

A list with components frequencies, distinct.vals, statistics, accuracy, per.pred.accuracy
and LSD:

1. frequencies is a data.frame with the frequency distribution of the LSD values;

2. distinct.vals is a list, each component of which contains the distinct values of the LSDs
after rounding;

3. statistics is a data.frame with the minimum, quantile10, quantile25, mean, median, quan-
tile75, quantile90, and maximum of the LSD values;

4. accuracy is a data.frame with the accuracies of the minimum, quantile10, quantile25, mean,
median, quantile75, quantile90, and maximum of the LSD values with respect to the values
from which these statistics are calculated;

5. false.pos is a data.frame with the numbers of false positives for the pairwise comparisons
within each levels-combination of the LSDby variables when each of the minimum, quantile10,
quantile25, mean, median, quantile75, quantile90, and maximum of the LSD values is used as
an approximate LSD in determining the significance of the pairwise differences;

6. false.neg is a data.frame with the numbers of false negatives for the pairwise comparisons
within each levels-combination of the LSDby variables when each of the minimum, quantile10,
quantile25, mean, median, quantile75, quantile90, and maximum of the LSD values is used as
an approximate LSD in determining the significance of the pairwise differences;

7. per.pred.accuracy is a data.frame with the accuracies of the minimum, quantile10, quan-
tile25, mean, median, quantile75, quantile90, and maximum of the LSD values for a set of
predictions when these statistics are used to represent the LSDs for the comparisons amongst
the set of predictions;

8. LSD is a square matrix containing the LSD values for all pairwise comparisons of the predic-
tions contained in the supplied alldiffs.obj.

In the statistics, accuracy, false.pos and false.neg data.frames, c is the number of pair-
wise comparisons on which the values in the same row are based. The accuracy measure is specified
by the LSDaccuracy argument.

Author(s)

Chris Brien

See Also

asremlPlus-package, plotLSDs.data.frame, plotLSDs.alldiffs,
plotLSDerrors.alldiffs, plotLSDerrors.data.frame, recalcLSD.alldiffs,
pickLSDstatistics.alldiffs, redoErrorIntervals.alldiffs

Examples

data(WaterRunoff.dat)

##Use asreml to get predictions and associated statistics

Not run:
asreml.options(keep.order = TRUE) #required for asreml-R4 only
current.asr <- asreml(fixed = pH ~ Benches + (Sources * (Type + Species)),

random = ~ Benches:MainPlots,
keep.order=TRUE, data= WaterRunoff.dat)

facCombine.alldiffs 85

current.asrt <- as.asrtests(current.asr, NULL, NULL)
TS.diffs <- predictPlus(classify = "Sources:Type",

asreml.obj = current.asr,
wald.tab = current.asrt$wald.tab,
present = c("Sources", "Type", "Species"))

End(Not run)

Use lmeTest and emmmeans to get predictions and associated statistics

if (requireNamespace("lmerTest", quietly = TRUE) &
requireNamespace("emmeans", quietly = TRUE))

{
m1.lmer <- lmerTest::lmer(pH ~ Benches + (Sources * (Type + Species)) +

(1|Benches:MainPlots),
data=na.omit(WaterRunoff.dat))

TS.emm <- emmeans::emmeans(m1.lmer, specs = ~ Sources:Type)
TS.preds <- summary(TS.emm)
den.df <- min(TS.preds$df, na.rm = TRUE)
Modify TS.preds to be compatible with a predictions.frame
TS.preds <- as.predictions.frame(TS.preds, predictions = "emmean",

se = "SE", interval.type = "CI",
interval.names = c("lower.CL", "upper.CL"))

Form an all.diffs object and check its validity
TS.vcov <- vcov(TS.emm)
TS.diffs <- allDifferences(predictions = TS.preds, classify = "Sources:Type",

vcov = TS.vcov, tdf = den.df)
validAlldiffs(TS.diffs)

}

Plot p-values for predictions obtained using asreml or lmerTest
if (exists("TS.diffs"))
{

##Explore the LSD values for predictions obtained using asreml or lmerTest
LSDstat <- exploreLSDs(TS.diffs, LSDtype = "factor.combinations",

LSDby = "Sources")
}

facCombine.alldiffs Combines several factors into one in the components of an
alldiffs.object

Description

Combines several factors, in the prediction component of object, into one whose levels are
the combinations of the used levels of the individual factors. The matching changes are made
to the other components and the attributes of the alldiffs.object. If any of the factors to be
combined are in LSDby, they are removed from the LSDby, unless the factors to be combined are
exactly those in the LSDby. The levels of the factors are combined using fac.combine from the
dae package.

86 facCombine.alldiffs

Usage

S3 method for class 'alldiffs'
facCombine(object, factors, order="standard",

combine.levels=TRUE, sep="_", level.length = NA, ...)

Arguments

object An alldiffs.object.

factors A character containing the names of factors in the prediction component
of object whose levels are to be combined.

order Either standard or yates. The order in which the levels combinations of
the factors are to be considered as numbered when forming the levels of the
combined factor; standard numbers them as if they are arranged in standard
order, that is with the levels of the first factor moving slowest and those of the
last factor moving fastest; yates numbers them as if they are arranged in Yates
order, that is with the levels of the first factor moving fastest and those of the
last factor moving slowest.

combine.levels A logical specifying whether the levels labels of the new factor are to be
combined from those of the factors being combined. The default is to use the
integers from 1 to the product of the numbers of combinations of used levels
of the individual factors, numbering the levels according to order.

sep A character string to separate the levels when combine.levels = TRUE.

level.length The maximum number of characters from the levels of factors to use in the row
and column labels of the tables of pairwise differences and their p-values and
standard errors.

... Further arguments passed to redoErrorIntervals.alldiffs.

Value

A modified alldiffs.object.

Author(s)

Chris Brien

See Also

as.alldiffs, allDifferences.data.frame, print.alldiffs, sort.alldiffs,
renewClassify.alldiffs; fac.combine in package dae.

Examples

data("Ladybird.dat")

Use asreml to get predictions and associated statistics

Not run:
m1.asr <- asreml(logitP ~ Host*Cadavers*Ladybird,

random = ~ Run,
data = Ladybird.dat)

current.asrt <- as.asrtests(m1.asr)
HCL.pred <- asreml::predict.asreml(m1.asr, classify="Host:Cadavers:Ladybird",

facRecast.alldiffs 87

sed=TRUE)
HCL.preds <- HCL.pred$pvals
HCL.sed <- HCL.pred$sed
HCL.vcov <- NULL
wald.tab <- current.asrt$wald.tab
den.df <- wald.tab[match("Host:Cadavers:Ladybird", rownames(wald.tab)), "denDF"]

End(Not run)

Use lmeTest and emmmeans to get predictions and associated statistics
if (requireNamespace("lmerTest", quietly = TRUE) &

requireNamespace("emmeans", quietly = TRUE))
{

m1.lmer <- lmerTest::lmer(logitP ~ Host*Cadavers*Ladybird + (1|Run),
data=Ladybird.dat)

HCL.emm <- emmeans::emmeans(m1.lmer, specs = ~ Host:Cadavers:Ladybird)
HCL.preds <- summary(HCL.emm)
den.df <- min(HCL.preds$df)
Modify HCL.preds to be compatible with a predictions.frame
HCL.preds <- as.predictions.frame(HCL.preds, predictions = "emmean",

se = "SE", interval.type = "CI",
interval.names = c("lower.CL", "upper.CL"))

HCL.vcov <- vcov(HCL.emm)
HCL.sed <- NULL

}

Use the predictions obtained with either asreml or lmerTest
if (exists("HCL.preds"))
{

Form an all.diffs object
HCL.diffs <- as.alldiffs(predictions = HCL.preds, classify = "Host:Cadavers:Ladybird",

sed = HCL.sed, vcov = HCL.vcov, tdf = den.df)

Check the class and validity of the alldiffs object
is.alldiffs(HCL.diffs)
validAlldiffs(HCL.diffs)

Combine Cadavers and Ladybird
HCL.diffs <- facCombine(HCL.diffs, factors = c("Cadavers","Ladybird"))

Check the validity of HCL.diffs
validAlldiffs(HCL.diffs)

}

facRecast.alldiffs Reorders and/or revises the factor levels using the order of old levels in
levels.order and the new labels for the levels given in newlabels.
The values in levels.order must be unique.

Description

Reorders and revises the levels and labels of a factor, in the prediction component of an alldiffs.object.
The values in the levels.order vector should be the same as the levels in the existing factor, but
the order can be changed. To revise the levels, specify the new levels in the newlabels vector and

88 facRecast.alldiffs

these will replace the corresponding value in the levels.order vector. The matching changes are
made to the other components and attributes of the alldiffs.object.

Usage

S3 method for class 'alldiffs'
facRecast(object, factor, levels.order = NULL, newlabels = NULL, ...)

Arguments

object An alldiffs.object.

factor A character containing the name of a factor in the prediction component
of object whose levels and labels are to be recast.

levels.order A vector of length levels(factor) containing the old levels in the new order
for the factor being created. If levels.order is NULL, then the current levels of
levels(factor) are used.

newlabels A vector of length levels(factor) containing values to use in the revision.

... Further arguments passed to the factor call creating the new factor.

Value

A modified alldiffs.object.

Author(s)

Chris Brien

See Also

as.alldiffs, allDifferences.data.frame, print.alldiffs, sort.alldiffs,
facCombine.alldiffs, facRename.alldiffs, renewClassify.alldiffs; fac.recast in pack-
age dae.

Examples

data("Ladybird.dat")

Use asreml to get predictions and associated statistics

Not run:
m1.asr <- asreml(logitP ~ Host*Cadavers*Ladybird,

random = ~ Run,
data = Ladybird.dat)

current.asrt <- as.asrtests(m1.asr)
HCL.pred <- asreml::predict.asreml(m1.asr, classify="Host:Cadavers:Ladybird",

sed=TRUE)
HCL.preds <- HCL.pred$pvals
HCL.sed <- HCL.pred$sed
HCL.vcov <- NULL
wald.tab <- current.asrt$wald.tab
den.df <- wald.tab[match("Host:Cadavers:Ladybird", rownames(wald.tab)), "denDF"]

End(Not run)

facRename.alldiffs 89

Use lmeTest and emmmeans to get predictions and associated statistics
if (requireNamespace("lmerTest", quietly = TRUE) &

requireNamespace("emmeans", quietly = TRUE))
{

m1.lmer <- lmerTest::lmer(logitP ~ Host*Cadavers*Ladybird + (1|Run),
data=Ladybird.dat)

HCL.emm <- emmeans::emmeans(m1.lmer, specs = ~ Host:Cadavers:Ladybird)
HCL.preds <- summary(HCL.emm)
den.df <- min(HCL.preds$df)
Modify HCL.preds to be compatible with a predictions.frame
HCL.preds <- as.predictions.frame(HCL.preds, predictions = "emmean",

se = "SE", interval.type = "CI",
interval.names = c("lower.CL", "upper.CL"))

HCL.vcov <- vcov(HCL.emm)
HCL.sed <- NULL

}

Use the predictions obtained with either asreml or lmerTest
if (exists("HCL.preds"))
{

Form an all.diffs object
HCL.diffs <- allDifferences(predictions = HCL.preds, classify = "Host:Cadavers:Ladybird",

sed = HCL.sed, vcov = HCL.vcov, tdf = den.df)

Check the class and validity of the alldiffs object
is.alldiffs(HCL.diffs)
validAlldiffs(HCL.diffs)

Recast the Ladybird and Host factors
HCL.diffs <- facRecast(HCL.diffs, factor = "Ladybird",

newlabels = c("none", "present"))
HCL.diffs <- facRecast(HCL.diffs, factor = "Ladybird",

levels.order = c("present", "none"),
newlabels = c("yes","no"))

HCL.diffs <- facRecast.alldiffs(HCL.diffs, factor = "Host",
levels.order = c("trefoil", "bean"))

Check the validity of HCL.diffs
validAlldiffs(HCL.diffs)

}

facRename.alldiffs Renames factors in the prediction component of an
alldiffs.object.

Description

Renames factors in the prediction component of an alldiffs.object. These changes are
propagated to the other components and attributes of the alldiffs.object.

Usage

S3 method for class 'alldiffs'
facRename(object, factor.names, newnames, ...)

90 facRename.alldiffs

Arguments

object An alldiffs.object.

factor.names A character containing the names of the factors in the prediction compo-
nent of object that are to be renamed.

newnames A character containing the new names of the factors in the prediction com-
ponent of object.

... Provision for passing arguments to functions called internally - not used at
present.

Value

A modified alldiffs.object.

Author(s)

Chris Brien

See Also

as.alldiffs, allDifferences.data.frame, print.alldiffs, sort.alldiffs,
facCombine.alldiffs, facRecast.alldiffs, renewClassify.alldiffs; fac.recast in pack-
age dae.

Examples

data("Ladybird.dat")

Use asreml to get predictions and associated statistics

Not run:
m1.asr <- asreml(logitP ~ Host*Cadavers*Ladybird,

random = ~ Run,
data = Ladybird.dat)

current.asrt <- as.asrtests(m1.asr)
HCL.pred <- asreml::predict.asreml(m1.asr, classify="Host:Cadavers:Ladybird",

sed=TRUE)
HCL.preds <- HCL.pred$pvals
HCL.sed <- HCL.pred$sed
HCL.vcov <- NULL
wald.tab <- current.asrt$wald.tab
den.df <- wald.tab[match("Host:Cadavers:Ladybird", rownames(wald.tab)), "denDF"]

End(Not run)

Use lmeTest and emmmeans to get predictions and associated statistics
if (requireNamespace("lmerTest", quietly = TRUE) &

requireNamespace("emmeans", quietly = TRUE))
{

m1.lmer <- lmerTest::lmer(logitP ~ Host*Cadavers*Ladybird + (1|Run),
data=Ladybird.dat)

HCL.emm <- emmeans::emmeans(m1.lmer, specs = ~ Host:Cadavers:Ladybird)
HCL.preds <- summary(HCL.emm)
den.df <- min(HCL.preds$df)
Modify HCL.preds to be compatible with a predictions.frame

findLSDminerrors.alldiffs 91

HCL.preds <- as.predictions.frame(HCL.preds, predictions = "emmean",
se = "SE", interval.type = "CI",
interval.names = c("lower.CL", "upper.CL"))

HCL.vcov <- vcov(HCL.emm)
HCL.sed <- NULL

}

Use the predictions obtained with either asreml or lmerTest
if (exists("HCL.preds"))
{

Form an all.diffs object
HCL.diffs <- allDifferences(predictions = HCL.preds,

classify = "Host:Cadavers:Ladybird",
sed = HCL.sed, vcov = HCL.vcov, tdf = den.df)

Check the class and validity of the alldiffs object
is.alldiffs(HCL.diffs)
validAlldiffs(HCL.diffs)

Rename Cadavers
HCL.diffs <- facRename(HCL.diffs, factor.names = "Cadavers", newnames = "Cadaver.nos")

Check the validity of HCL.diffs
validAlldiffs(HCL.diffs)

}

findLSDminerrors.alldiffs

Find LSD values that minimize the number of errors in pairwise com-
parisons of predictions.

Description

Given an alldiffs.object with an sed component, a search is made of a set of equally spaced val-
ues between the minimum and maximum values of the LSDs, calculated from the sed component
of the alldiffs.object, to identify LSD values that minimize the number of errors made in de-
ciding on the significance of pairs of predicted values stored in the alldiffs.object. If LSDtype
is set to overall, a search is made over the range of LSD values for all pairwise comparisons for a
single LSD value; if LSDtype is set to factor.combinations, a separate search is made over the
LSD values for the set of pairwise comparisons for each factor.combination in order to identify
a single value for each set. The number of values used in the search is controlled by the argument
nvalues. For each value in the search, the numbers of false positives and false negatives resulting
from employing it as the LSD for each set of pairwise comparisons is calculated. A criterion that
combines the false positives and negative is calculated using the false.pos.wt, the criterion be-
ing the number of false postives times the false.pos.wt plus the number of false negatives. The
value chosen for the LSD is the smallest value from amongst those with the minimum value of
the criterion and the least number of false positives. A secondary search with 10 equally spaced
values is made of the interval below the chosen value and the search value immediately below it to
check whether the chosen grid value can be further reduced without changing the value of either its
criterion or the number of false positives.

The primary options for changing the numbers of errors associated with the values resulting from
the searching is to manipulate the LSDby and/or false.pos.wt arguments.

92 findLSDminerrors.alldiffs

Usage

S3 method for class 'alldiffs'
findLSDminerrors(alldiffs.obj,

LSDtype = "overall", LSDby = NULL,
alpha = 0.05,
false.pos.wt = 10, nvalues = 100,
retain.zeroLSDs = FALSE,
zero.tolerance = .Machine$double.eps ^ 0.5,
trace = FALSE, ...)

Arguments

alldiffs.obj An alldiffs.object.

LSDtype A character string that can be overall or factor.combinations. It de-
termines whether the minimum LSD values that are obtained are those for (i)
all pairwise comparisons of the predicted values, or (ii) for each combination
of the values of the factors and numerics named in LSDby, unless there is
only one prediction for a combination, when notional LSDs are calculated. The
LSDtype specified here does not have to match that used in the creating the
alldiffs.object.

LSDby A character (vector) of variables names, being the names of some of the
factors or numerics in the classify; for each combination of the values of
the factors and numerics, the LSD errors are to be computed when LSDtype
is factor.combinatons. The LSDby specified here does not have to match that
used in the creating the alldiffs.object.

alpha A numeric specifying the significance level for an LSD to compare a pair of
predictions.

false.pos.wt A numeric that specifies the weight (e.g. 3 so that a false positive is considered
to be equivalent to three false negatives) to apply to the number of false positives
in calculating the weighted sums of the numbers of false positives and negatives
that is used as the criterion to be minimized in selecting the LSD value that
results in the minimum number of errors. If, for a particular LSD value, the
number of false positives is p, the number of false negatives is n and w the value
of false.pos.wt, then then criterion for that LSD value is (wp) + n.
The default of 10 for false.pos.wt greatly favours false negatives; a value with
one false positive and no false negative will only be chosen over a value with no
false positive when the latter value has more than 10 false negatives.

nvalues A numeric specifying the number of equally spaced LSD values, between the
minimum and maximum LSD values for a set of paired comparisons, to be used
in the search for the LSD value with the minimum number of errors.

retain.zeroLSDs

A logical indicating whether to retain or omit LSDs that are zero when calcu-
lating the numbers of errors.

zero.tolerance A numeric specifying the value such that if an LSD is less than it, the LSD will
be considered to be zero.

trace A logical indicating whether details of the searching are to be output.

... Provision for passing arguments to functions called internally - not used at
present.

findLSDminerrors.alldiffs 93

Value

A data.frame containing the chosen LSD(s), its(their) numbers of false positives and negatives
and the value(s) of the false criterion.

Author(s)

Chris Brien

See Also

asremlPlus-package, exploreLSDs.alldiffs plotLSDs.data.frame, plotLSDs.alldiffs,
plotLSDerrors.alldiffs, plotLSDerrors.data.frame, recalcLSD.alldiffs,
redoErrorIntervals.alldiffs

Examples

data(WaterRunoff.dat)

##Use asreml to get predictions and associated statistics

Not run:
asreml.options(keep.order = TRUE) #required for asreml-R4 only
current.asr <- asreml(fixed = pH ~ Benches + (Sources * (Type + Species)),

random = ~ Benches:MainPlots,
keep.order=TRUE, data= WaterRunoff.dat)

current.asrt <- as.asrtests(current.asr, NULL, NULL)
TS.diffs <- predictPlus(classify = "Sources:Type",

asreml.obj = current.asr,
wald.tab = current.asrt$wald.tab,
present = c("Sources", "Type", "Species"))

End(Not run)

Use lmeTest and emmmeans to get predictions and associated statistics

if (requireNamespace("lmerTest", quietly = TRUE) &
requireNamespace("emmeans", quietly = TRUE))

{
m1.lmer <- lmerTest::lmer(pH ~ Benches + (Sources * (Type + Species)) +

(1|Benches:MainPlots),
data=na.omit(WaterRunoff.dat))

TS.emm <- emmeans::emmeans(m1.lmer, specs = ~ Sources:Type)
TS.preds <- summary(TS.emm)
den.df <- min(TS.preds$df, na.rm = TRUE)
Modify TS.preds to be compatible with a predictions.frame
TS.preds <- as.predictions.frame(TS.preds, predictions = "emmean",

se = "SE", interval.type = "CI",
interval.names = c("lower.CL", "upper.CL"))

Form an all.diffs object and check its validity
TS.vcov <- vcov(TS.emm)
TS.diffs <- allDifferences(predictions = TS.preds, classify = "Sources:Type",

vcov = TS.vcov, tdf = den.df)
validAlldiffs(TS.diffs)

}

94 getASRemlVersionLoaded

Choose LSD values with the minimum mumber of error for pairwise comparisons of
the predictions obtained using asreml or lmerTest
if (exists("TS.diffs"))
{

##Pick the LSD values for predictions obtained using asreml or lmerTest
minLSD <- findLSDminerrors(TS.diffs)
TS.diffs <- redoErrorIntervals(TS.diffs, LSDtype = "supplied", LSDsupplied = minLSD["LSD"])
TS.diffs$LSD
minLSDs <- findLSDminerrors(TS.diffs, LSDtype = "factor.combinations",

LSDby = "Sources")
TS.diffs <- redoErrorIntervals(TS.diffs, LSDtype = "supplied",

LSDby = "Sources", LSDsupplied = minLSDs["LSD"])
TS.diffs$LSD

}

getASRemlVersionLoaded

Finds the version of asreml that is loaded and returns the initial char-
acters in version.

Description

Checks that asreml is loaded and, if it is, returns the first nchar characters of the version that is
loaded.

Usage

getASRemlVersionLoaded(nchar = NULL, notloaded.fault = FALSE)

Arguments

nchar The number of characters in the asreml version to get.
notloaded.fault

A logical indicating whether a fault is to occur if asreml is not loaded.

Value

A character, being the first nchar characters of the version of asreml that is loaded.

Author(s)

Chris Brien

See Also

loadASRemlVersion.

Examples

Not run:
getASRemlVersionLoaded()
End(Not run)

getFormulae.asreml 95

getFormulae.asreml Gets the formulae from an asreml object.

Description

Gets the formulae nominated in the which argument from the call stored in an asreml object.

Usage

S3 method for class 'asreml'
getFormulae(asreml.obj, which = c("fixed", "random", "residual"),

expanded = FALSE, envir = parent.frame(), ...)

Arguments

asreml.obj An object resulting from the fitting of a model using asreml.

which A character listing the formula(e) to be extracted from the call stored in
asreml.obj. it should be some combination of fixed, random, residual,
sparse and all. If all is included then all formula(e) will be returned, those
not having been specified in the call being NULL.

expanded A logical indicating whether terms are to be expanded to the sum of a set of
individual terms.

envir The environment in which the formula(e) are to be evaluated. May also be
NULL, a list, a data.frame, a pairlist or an integer as specified to sys.call.

... Arguments passed on to update.formula and ultimately to terms.formula.

Value

A list containing a component with each of the extracted formula(e), the name of a component
being the formula that it contains.

Author(s)

Chris Brien

See Also

printFormulae.asreml

Examples

Not run:
data(Wheat.dat)
current.asr <- asreml(yield ~ Rep + WithinColPairs + Variety,

random = ~ Row + Column + units,
residual = ~ ar1(Row):ar1(Column),
data=Wheat.dat)

getFormulae(current.asr)

End(Not run)

96 getTestEntry.asrtests

getTestEntry.asrtests Gets the entry for a test recorded in the test.summary data.frame of an
asrtests.object

Description

Matches the label in the term column of the test.summary data.frame in the supplied asrtests.object
and extracts the line for it. It only matches the last occurrence of label.

Usage

S3 method for class 'asrtests'
getTestEntry(asrtests.obj, label, error.absent = TRUE, ...)

Arguments

asrtests.obj An asrtests.object containing the components (i) asreml.obj, (ii) wald.tab,
and (iii) test.summary.

label A character specifying the label of the test for which the entry is required. If
testranfix.asrtests was used for the test of interest, then the label will
be the value of the term argument supplied to testranfix.asrtests. For
changeModelOnIC.asrtests, the label will be the value of the label argu-
ment. Other arguments will be relevant for other test and change functions.

error.absent A logical indicating whether the absence of the supplied label is to result in
an error. If set to FALSE, NULL is returned.

... provision for passing arguments to functions called internally - not used at
present.

Value

A one-line data.frame containing the entry or, error.absent is NULL, NULL.

Author(s)

Chris Brien

See Also

getTestPvalue.asrtests, as.asrtests,
testranfix.asrtests, testswapran.asrtests, testresidual.asrtests,
changeModelOnIC.asrtests, changeTerms.asrtests, chooseModel.asrtests

Examples

Not run:
data(Wheat.dat)
current.asr <- asreml(yield ~ Rep + WithinColPairs + Variety,

random = ~ Row + Column + units,
residual = ~ ar1(Row):ar1(Column),
data=Wheat.dat)

current.asrt <- as.asrtests(current.asr, NULL, NULL)

getTestPvalue.asrtests 97

current.asrt <- rmboundary(current.asrt)
Test nugget term
current.asrt <- testranfix(current.asrt, "units", positive=TRUE)
getTestEntry(current.asrt, label = "units")

End(Not run)

getTestPvalue.asrtests

Gets the p-value for a test recorded in the test.summary data.frame of
an asrtests.object

Description

Matches the label in the term column of the test.summary data.frame in the supplied asrtests.object
and extracts its p-value. It only matches the last occurrence of label.

Usage

S3 method for class 'asrtests'
getTestPvalue(asrtests.obj, label, ...)

Arguments

asrtests.obj An asrtests.object containing the components (i) asreml.obj, (ii) wald.tab,
and (iii) test.summary.

label A character specifying the label of the test for which the p-value is required.
If testranfix.asrtests was used for the test of interest, then the label will
be the value of the term argument supplied to testranfix.asrtests. Other
arguments will be relevant for other test functions.

... provision for passing arguments to functions called internally - not used at
present.

Value

An numeric containing the p-value. It can be NA, for example when a p-value could not be calcu-
lated.

Author(s)

Chris Brien

See Also

getTestEntry.asrtests, as.asrtests,
testranfix.asrtests, testswapran.asrtests, testresidual.asrtests,
changeTerms.asrtests, chooseModel.asrtests

98 infoCriteria

Examples

Not run:
data(Wheat.dat)
current.asr <- asreml(yield ~ Rep + WithinColPairs + Variety,

random = ~ Row + Column + units,
residual = ~ ar1(Row):ar1(Column),
data=Wheat.dat)

current.asrt <- as.asrtests(current.asr, NULL, NULL)
current.asrt <- rmboundary(current.asrt)
Test nugget term
current.asrt <- testranfix(current.asrt, "units", positive=TRUE)
getTestPvalue(current.asrt, label = "units")

End(Not run)

infoCriteria Computes AIC and BIC for models.

Description

Computes Akiake and Bayesian (Schwarz) Information Criteria for models. Either the Restricted
Maximum likelihood (REML) or the full likelihood (full) can be used. The full likelihood, evaluated
using REML estimates is used when it is desired to compare models that differ in their fixed models.

Usage

S3 method for class 'asreml'
infoCriteria(object, DF = NULL,

bound.exclusions = c("F","B","S","C"),
IClikelihood = "REML", fixedDF = NULL, varDF = NULL, ...)

S3 method for class 'list'
infoCriteria(object, bound.exclusions = c("F","B","S","C"),

IClikelihood = "REML", fixedDF = NULL, varDF = NULL, ...)

Arguments

object An asreml object resulting from the fitting of a model using REML or a list
of asreml objects. If the components of the list are named, then those names
will be used as the rownames for the returned data.frame.

DF A numeric giving the number of estimated variance parameters. If NULL then
this is determined from the information in object. This argument has been
replaced by varDF, but is retained for compatibility with legacy code. It is not
available with the list method.

bound.exclusions

A character specifying the bound (constraint) codes that will result in a vari-
ance parameter being excluded from the count of estimated variance parameters.
If set to NULL then none will be excluded.

IClikelihood A character specifying whether Restricted Maximum Likelihood (REML) or the
full likelihood, evaluated using REML estimates, (full) are to be used in calcu-
lating the information criteria for family set to asr_gaussian. For family set
to asr_binomial or asr_poisson and with dispersion set to 1, the deviance

infoCriteria 99

is extracted from object and used to calculate the AIC and BIC (as suggested by
Damian Collins); the setting of IClikelihood is ignored and the log-likelihood
set to NA. The information criteria are not valid for other settings of family and
dispersion.

fixedDF A numeric giving the number of estimated fixed parameters. If NULL then this
is determined from the information in object. For object a list only a single
value that is used for all components of the list has been implemented.

varDF A numeric giving the number of estimated variance parameters. If NULL then
this is determined from the information in object. It replaces the DF argument.
For object a list only a single value that is used for all components of the
list has been implemented.

... Provision for passing arguments to functions called internally - not used at
present.

Details

The variance degrees of freedom (varDF) are the number of number of variance parameters that have
been estimated, excluding those whose estimates have a code for bound specified in bound.exclusions.
If varDF is not NULL, the supplied value is used. Otherwise varDF is determined from the informa-
tion in object, i.e. if object is an asreml object then from it, or if object is a list then from
each asreml object in the list. Similarly, the fixed degrees of freedom (fixedDF) are the number of
number of fixed parameters that have been estimated, any coefficients that have the value NA being
excluded. If fixedDF is not NULL, the supplied value is used. Otherwise fixedDF is determined
from the information in object.

If ASReml-R version 4 is being used then the codes specified in bound.exclusions are not re-
stricted to a subset of the default codes, but a warning is issued if a code other than these is specified.
For ASReml-R version 3, only a subset of the default codes are allowed: F (Fixed), B (Boundary),
C (Constrained) and S (Singular).

The calculation of the information criteria is an adaptation of the code supplied in File S1 of Verbyla
(2019). The log-likelihood is calculated as loglik = log(REML) - log(|C|)/2, where C is the
inverse coefficient matrix; the term involving C is omitted for REML. The AIC is calculated as - 2
* loglik + 2 * (varDF + fixedDF) and the BIC as - 2 * loglik + (fixedDF + varDF) * log(n -
r + fixedDF), where n is the number of observations and r is the rank of the fixed effects design
matrix. For REML, fixedDF = 0.

Value

A data.frame containing the numbers of estimated fixed (fixedDF) and variance (varDF) param-
eters, the number of bound parameters (NBound), AIC, BIC and the value of the log-likelihood
(loglik). All elements of the data.frame will be set to NA for the invalid combinations of family
and dispersion as noted in the IClikelihood argument. If object is a list and its components are
named, then those names will be used to set the rownames of the data.frame.

Author(s)

Chris Brien

References

Verbyla, A. P. (2019). A note on model selection using information criteria for general linear models
estimated using REML. Australian & New Zealand Journal of Statistics, 61, 39–50. doi:10.1111/
anzs.12254.

https://doi.org/10.1111/anzs.12254
https://doi.org/10.1111/anzs.12254

100 is.alldiffs

See Also

REMLRT.asreml, changeTerms.asrtests, changeModelOnIC.asrtests

Examples

Not run:
data(Wheat.dat)
Fit several models to the wheat data and calculate their ICs
Fit initial model
m.max <- asreml(yield ~ Rep + WithinColPairs + Variety,

random = ~ Row + Column + units,
residual = ~ ar1(Row):ar1(Column),
data=Wheat.dat)

infoCriteria(m.max.asr, IClikelihood = "full")

#Drop term for within Column pairs
m1 <- asreml(yield ~ Rep + Variety,

random = ~ Row + Column + units,
residual = ~ ar1(Row):ar1(Column),
data=Wheat.dat)

#Drop nugget term
m2 <- asreml(yield ~ Rep + WithinColPairs + Variety,

random = ~ Row + Column,
residual = ~ ar1(Row):ar1(Column),
data=Wheat.dat)

#Drop Row autocorrelation
m3 <- asreml(yield ~ Rep + WithinColPairs + Variety,

random = ~ Row + Column + units,
residual = ~ Row:ar1(Column),
data=Wheat.dat)

#Drop Col autocorrelation
m4 <- asreml(yield ~ Rep + WithinColPairs + Variety,

random = ~ Row + Column + units,
residual = ~ ar1(Row):Column,
data=Wheat.dat)

mods.asr <- list(m.max, m1, m2, m3, m4)
infoCriteria(mods.asr, IClikelihood = "full")

End(Not run)

is.alldiffs Tests whether an object is of class alldiffs

Description

A single-line function that tests whether an object is of class alldiffs.

Usage

is.alldiffs(object)

is.asrtests 101

Arguments

object An object to be tested.

Value

A logical.

Author(s)

Chris Brien

See Also

asremlPlus-package, alldiffs.object, is.alldiffs, as.alldiffs

Examples

data(Oats.dat)

Use lmerTest and emmmeans to get predictions and associated statistics
if (requireNamespace("lmerTest", quietly = TRUE) &

requireNamespace("emmeans", quietly = TRUE))
{
m1.lmer <- lmerTest::lmer(Yield ~ Nitrogen*Variety + (1|Blocks/Wplots),

data=Oats.dat)
Var.emm <- emmeans::emmeans(m1.lmer, specs = ~ Nitrogen:Variety)
Var.preds <- summary(Var.emm)
den.df <- min(Var.preds$df)
Modify Var.preds to be compatible with a predictions.frame
Var.preds <- as.predictions.frame(Var.preds, predictions = "emmean",

se = "SE", interval.type = "CI",
interval.names = c("lower.CL", "upper.CL"))

Var.vcov <- vcov(Var.emm)
Var.sed <- NULL

Form an all.diffs object
Var.diffs <- as.alldiffs(predictions = Var.preds, classify = "Nitrogen:Variety",

sed = Var.sed, vcov = Var.vcov, tdf = den.df)

check the class of Var.diffs
is.alldiffs(Var.diffs)
}

is.asrtests Tests whether an object is of class asrtests

Description

A single-line function that tests whether an object is of class asrtests.

Usage

is.asrtests(object)

102 is.predictions.frame

Arguments

object An object to be tested.

Value

A logical.

Author(s)

Chris Brien

See Also

asremlPlus-package, asrtests.object, is.asrtests, as.asrtests

Examples

Not run:
library(dae)
library(asreml)
library(asremlPlus)
use ?Wheat.dat for data set details
data(Wheat.dat)

Fit initial model
current.asr <- asreml(yield ~ Rep + WithinColPairs + Variety,

random = ~ Row + Column + units,
residual = ~ ar1(Row):ar1(Column),
data=Wheat.dat)

Load current fit into an asrtests object
current.asrt <- as.asrtests(current.asr, NULL, NULL)

check the class of current.asrt
is.asrtests(current.asrt)

End(Not run)

is.predictions.frame Tests whether an object is of class predictions.frame

Description

A single-line function that tests whether an object is of class predictions.frame.

Usage

is.predictions.frame(object)

Arguments

object An object to be tested.

is.predictions.frame 103

Value

A logical.

Author(s)

Chris Brien

See Also

asremlPlus-package, predictions.frame, validPredictionsFrame, as.predictions.frame

Examples

data(Oats.dat)

Use asreml to get predictions and associated statistics

Not run:
m1.asr <- asreml(Yield ~ Nitrogen*Variety,

random=~Blocks/Wplots,
data=Oats.dat)

current.asrt <- as.asrtests(m1.asr)
Var.pred <- asreml::predict.asreml(m1.asr, classify="Nitrogen:Variety",

sed=TRUE)
if (getASRemlVersionLoaded(nchar = 1) == "3")

Var.pred <- Var.pred$predictions
Var.preds <- as.predictions.frame(Var.pred$pvals, se = "std.error",

est.status = "status")

End(Not run)

Use lmerTest and emmmeans to get predictions and associated statistics
if (requireNamespace("lmerTest", quietly = TRUE) &

requireNamespace("emmeans", quietly = TRUE))
{

m1.lmer <- lmerTest::lmer(Yield ~ Nitrogen*Variety + (1|Blocks/Wplots),
data=Oats.dat)

Var.emm <- emmeans::emmeans(m1.lmer, specs = ~ Nitrogen:Variety)
Var.preds <- summary(Var.emm)
Var.preds <- as.predictions.frame(Var.preds, predictions = "emmean",

se = "SE", interval.type = "CI",
interval.names = c("lower.CL", "upper.CL"))

}

if (exists("Var.preds"))
{

Check the class and validity of the alldiffs object
is.predictions.frame(Var.preds)

}

104 isCompoundSymmetric.matrix

isCompoundSymmetric.matrix

Tests whether an object of class matrix is compound symmetric

Description

Tests whether an object of class matrix is compound symmetric by checking whether all diagonal
elements are equal and all off-diagonal elements are equal.

Usage

S3 method for class 'matrix'
isCompoundSymmetric(object, tol = 100 * .Machine$double.eps, ...)

Arguments

object An object to be tested.

tol a numeric scalar > 0 specifying that values smaller than it are considered to be
zero.

... Provision for passing arguments to functions called internally - not used at
present.

Value

A logical.

Author(s)

Chris Brien

See Also

isSymmetric

Examples

data(Oats.dat)

Not run:
Use asreml to get the variance matrix of a set of predictions

m1.asr <- asreml(Yield ~ Nitrogen*Variety,
random=~Blocks/Wplots,
data=Oats.dat)

current.asrt <- as.asrtests(m1.asr)
Var.pred <- asreml::predict.asreml(m1.asr, classify="Nitrogen:Variety",

vcov = TRUE)
est.status = "status")

isCompoundSymmetrix(Var.pred$vcov)

End(Not run)

iterate.asrtests 105

Use lmerTest and emmmeans to get the variance matrix of a set of predictions
if (requireNamespace("lmerTest", quietly = TRUE) &

requireNamespace("emmeans", quietly = TRUE))
{

m1.lmer <- lmerTest::lmer(Yield ~ Nitrogen*Variety + (1|Blocks/Wplots),
data=Oats.dat)

Var.emm <- emmeans::emmeans(m1.lmer, specs = ~ Nitrogen:Variety)
Var.vcov <- vcov(Var.emm)

}

if (exists("Var.vcov"))
{

Check the variance matrix of the predictions is compound symmetric
isCompoundSymmetric(Var.vcov)

}

iterate.asrtests Subject the fitted asreml.obj stored in an asrtests.object to fur-
ther iterations of the fitting process.

Description

In an effort to improve convergence, subject the fitted asreml.obj stored in an asrtests.object
to further iterations of the fitting process; the model specification is not changed. While no change
is made to the test.summary, the wald.tab is updated.

Usage

S3 method for class 'asrtests'
iterate(asrtests.obj, denDF="numeric", trace = FALSE, ...)

Arguments

asrtests.obj an asrtests.object containing the components (i) asreml.obj, (ii) wald.tab,
and (iii) test.summary.

denDF Specifies the method to use in computing approximate denominator degrees of
freedom when wald.asreml is called. Can be none to suppress the compu-
tations, numeric for numerical methods, algebraic for algebraic methods or
default, the default, to automatically choose numeric or algebraic computa-
tions depending on problem size. The denominator degrees of freedom are cal-
culated according to Kenward and Roger (1997) for fixed terms in the dense part
of the model.

trace If TRUE then partial iteration details are displayed when ASReml-R functions
are invoked; if FALSE then no output is displayed.

... further arguments passed to update.asreml.

Value

An object of S3-class asrtests.

Author(s)

Chris Brien

106 Ladybird.dat

References

Kenward, M. G., & Roger, J. H. (1997). Small sample inference for fixed effects from restricted
maximum likelihood. Biometrics, 53, 983-997.

See Also

as.asrtests, asrtests.object, newfit.asreml

Examples

Not run:
current.asrt <- iterate(current.asrt)

End(Not run)

Ladybird.dat Data for an experiment to investigate whether ladybirds transfer
aphids

Description

Welham et al. (2015, Example 8.2) describe a three-factor factorial experiment to investigate
whether ladybirds transfer fungus to live aphids on plants. The three factors are Host plant (beans,
trefoil), infected Cadavers (5, 10, 20), and Ladybird (-, +). A generalized randomized complete-
block design is used to assign the three factors to 2 Runs, each of which involves 36 containers with
a plant and live aphids. The response to be analyzed is the logit of the proportion of live aphids that
were infected.

The columns in the data frame are: ID, Run, Plant, Host, Ladybird, Cadavers, Live, Infected, logitP,
Prop. The column ID numbers the observations. Live, Infected, logitP, Prop are response variables.

Usage

data(Ladybird.dat)

Format

A data.frame containing 72 observations of 10 variables.

Author(s)

Chris Brien

Source

Welham, S. J., Gezan, S. A., Clark, S. J., & Mead, A. (2015). Statistical Methods in Biology:
Design and Analysis of Experiments and Regression. Boca Raton: Chapman and Hall/CRC..

linTransform.alldiffs 107

linTransform.alldiffs Calculates a linear transformation of the predictions stored in an
alldiffs.object.

Description

Effects the linear transformation of the predictions in the supplied alldiffs.object, the transfor-
mation being specified by a matrix or a formula. The values of the transformed values are stored
in an alldiffs.object. A matrix might be a contrast matrix or a matrix of weights for the
levels of a factor used to obtain the weighted average over the levels of that factor. A formula
gives rise to a projection matrix that linearly transforms the predictions so that they conform to the
model specified by the formula, this model being a submodel of that inherent in the classify.

If pairwise = TRUE, all pairwise differences between the linear transforms of the predictions,
their standard errors, p-values and LSD statistics are computed as using allDifferences.data.frame.
This adds them to the alldiffs.object as additional list components named differences, sed,
p.differences and LSD.

If a transformation has been applied (any one of transform.power is not one, scale is not one and
offset is nonzero), the backtransforms of the transformed values and of the lower and upper limits
of their error.intervals are added to a data.frame that is consistent with a predictions.frame.
If transform.power is other than one, the standard.error column of the data.frame is set to NA.
This data.frame is added to the alldiffs.object as a list component called backtransforms.

The printing of the components produced is controlled by the tables argument. The order of
plotting the levels of one of the factors indexing the predictions can be modified and is achieved
using sort.alldiffs.

Usage

S3 method for class 'alldiffs'
linTransform(alldiffs.obj, classify = NULL, term = NULL,

linear.transformation = NULL, EGLS.linTransform = TRUE,
Vmatrix = FALSE, error.intervals = "Confidence",
avsed.tolerance = 0.25, accuracy.threshold = NA,
LSDtype = "overall", LSDsupplied = NULL,
LSDby = NULL, LSDstatistic = "mean",
LSDaccuracy = "maxAbsDeviation",
zero.tolerance = .Machine$double.eps ^ 0.5,
response = NULL, response.title = NULL,
x.num = NULL, x.fac = NULL,
tables = "all", level.length = NA,
pairwise = TRUE, alpha = 0.05,
inestimable.rm = TRUE, ...)

Arguments

alldiffs.obj An alldiffs.object.

classify A character string giving the variables that define the margins of the multiway
table corresponding to the predictions in alldiffs.obj. Multiway tables are
specified by forming an interaction type term from the classifying variables, that
is, separating the variable names with the : operator.

108 linTransform.alldiffs

term A character string giving the variables that define the term that was fitted using
asreml and that corresponds to classify. It only needs to be specified when
it is different to classify; it is stored as an attribute of the alldiffs.object.
It is likely to be needed when the fitted model includes terms that involve both
a numeric covariate and a factor that parallel each other; the classify would
include the covariate and the term would include the factor.

linear.transformation

A formula or a matrix. If a formula is given then it is taken to be a submodel
of a model term corresponding to the classify. The projection matrix that
transforms the predictions so that they conform to the submodel is obtained;
the submodel does not have to involve variables in the classify, but the vari-
ables must be columns in the predictions component of alldiffs.obj and
the space for the submodel must be a subspace of the space for the term spec-
ified by the classify. For example, for classify set to "A:B", the submodel
~ A + B will result in the predictions for the combinations of A and B being
made additive for the factors A and B. The submodel space corresponding to A
+ B is a subspace of the space A:B. In this case both the submodel and the clas-
sify involve only the factors A and B. To fit an intercept-only submodel, specify
linear.transformation to be the formula ~1.
If a matrix is provided then it will be used to apply the linear transformation to
the predictions. The number of rows in the matrix should equal the number
of linear combinations of the predictions desired and the number of columns
should equal the number of predictions.
In either case, as well as the values of the linear combinations, their standard
errors, pairwise differences and associated statistics are returned.

EGLS.linTransform

A logical indicating whether or not the linear.transformation of the pre-
dictions stored in an alldiffs.object by fitting a submodel supplied in a
formula is to take into account the variance of the predictions using a Estimated
Generalized Least Squares (EGLS) approach. This is likely to be appropriate
when the variance matrix of the predictions is not compound symmetric i.e.
when not all the variances are equal or not all the covariances are equal. If the
variance matrix is compund symmetric, then the setting of EGLS.linTransform
will not affect the transformed predictions.

Vmatrix A logical indicating whether the variance matrix of the predictions will be
stored as a component of the alldiffs.object that is returned. If linear.transformation
is set, it will be stored irrespective of the value of Vmatrix.

error.intervals

A character string indicating the type of error interval, if any, to calculate
in order to indicate uncertainty in the results. Possible values are "none",
"StandardError", "Confidence" and "halfLeastSignificant". The de-
fault is for confidence limits to be used. The "halfLeastSignificant" option
results in half the Least Significant Difference (LSD) being added and subtracted
to the predictions, the LSD being calculated using the square root of the mean
of the variances of all or a subset of pairwise differences between the predic-
tions. If the LSD is zero, as can happen when predictions are constrained to be
equal, then the limits of the error intervals are set to NA. If LSDtype is set to
overall, the avsed.tolerance is not NA and the range of the SEDs divided by
the average of the SEDs exceeds avsed.tolerance then the error.intervals
calculations and the plotting will revert to confidence intervals.

avsed.tolerance

A numeric giving the value of the SED range, the range of the SEDs divided

linTransform.alldiffs 109

by the square root of the mean of the variances of all or a subset of the pairwise
differences, that is considered reasonable in calculating error.intervals. To
have it ignored, set it to NA. It should be a value between 0 and 1. The following
rules apply:

1. If avsed.tolerance is NA then mean LSDs of the type specified by LSDtype
are calculated and used in error.intervals and plots.

2. Irrespective of the setting of LSDtype, if avsed.tolerance is not exceeded
then the mean LSDs are used in error.intervals and plots.

3. If LSDtype is set to overall, avsed.tolerance is not NA, and avsed.tolerance
is exceeded then error.intervals and plotting revert to confidence inter-
vals.

4. If LSDtype is set to factor.combinations and avsed.tolerance is not
exceeded for any factor combination then the half LSDs are used in error.intervals
and plots; otherwise, error.intervals and plotting revert to confidence
intervals.

5. If LSDtype is set to per.prediction and avsed.tolerance is not ex-
ceeded for any prediction then the half LSDs are used in error.intervals
and plots; otherwise, error.intervals and plotting revert to confidence
intervals.

accuracy.threshold

A numeric specifying the value of the LSD accuracy measure, which measure
is specified by LSDaccuracy, as a threshold value in determining whether the
hallfLeastSignificant error.interval for a predicted value is a reason-
able approximation; this will be the case if the LSDs across all pairwise compar-
isons for which the interval’s LSD was computed, as specified by LSDtype and
LSDby, are similar enough to the interval’s LSD, as measured by LSDaccuracy.
If it is NA, it will be ignored. If it is not NA, a column of logicals named
LSDwarning will be added to the predictions component of the alldiffs.object.
The value of LSDwarning for a predicted.value will be TRUE if the value of
the LSDaccuracy measure computed from the LSDs for differences between
this predicted.value and the other predicted.values as compared to its
assignedLSD exceeds the value of accuracy.threshold. Otherwise, the value
of LSDwarning for a predicted.value will be FALSE.

LSDtype A character string that can be overall, factor.combinations, per.prediction
or supplied. It determines whether the values stored in a row of a LSD.frame
are the values calculated (i) overall from the LSD values for all pairwise
comparison2, (ii) the values calculated from the pairwise LSDs for the lev-
els of each factor.combination, unless there is only one prediction for a
level of the factor.combination, when a notional LSD is calculated, (iii)
per.prediction, being based, for each prediction, on all pairwise differences
involving that prediction, or (iv) as supplied values of the LSD, specified
with the LSDsupplied argument; these supplied values are to be placed in the
assignedLSD column of the LSD.frame stored in an alldiffs.object so that
they can be used in LSD calculations.
See LSD.frame for further information on the values in a row of this data.frame
and how they are calculated.

LSDsupplied A data.frame or a named numeric containing a set of LSD values that cor-
respond to the observed combinations of the values of the LSDby variables in
the predictions.frame or a single LSD value that is an overall LSD. If a
data.frame, it may have (i) a column for the LSDby variable and a column of

110 linTransform.alldiffs

LSD values or (ii) a single column of LSD values with rownames being the com-
binations of the observed values of the LSDby variables. Any name can be used
for the column of LSD values; assignedLSD is sensible, but not obligatory. Oth-
erwise, a numeric containing the LSD values, each of which is named for the ob-
served combination of the values of the LSDby variables to which it corresponds.
(Applying the function dae::fac.combine to the predictions component is
one way of forming the required combinations for the (row) names.) The val-
ues supplied will be incorporated into assignedLSD column of the LSD.frame
stored as the LSD component of the alldiffs.object.

LSDby A character (vector) of variables names, being the names of the factors or
numerics in the classify; for each combination of their levels and values,
there will be or is a row in the LSD.frame stored in the LSD component of the
alldiffs.object when LSDtype is factor.combinatons.

LSDstatistic A character nominating one or more of minimum, q10, q25, mean, median,
q75, q90 or maximum as the value(s) to be stored in the assignedLSD column
in an LSD.frame; the values in the assignedLSD column are used in computing
halfLeastSignificant error.intervals. Here q10, q25, q75 and q90 indi-
cate the sample quantiles corresponding to probabilities of 0.1, 0.25, 0.75 and
0.9 for the group of LSDs from which a single LSD value is calculated. The
function quantile is used to obtain them. The mean LSD is calculated as the
square root of the mean of the squares of the LSDs for the group. The median
is calculated using the median function. Multiple values are only produced for
LSDtype set to factor.combination, in which case LSDby must not be NULL
and the number of values must equal the number of observed combinations of
the values of the variables specified by LSDby. If LSDstatistic is NULL, it is
reset to mean.

LSDaccuracy A character nominating one of maxAbsDeviation, maxDeviation, q90Deviation
or RootMeanSqDeviation as the statistic to be calculated as a measure of the ac-
curacy of assignedLSD. The option q90Deviation produces the sample quan-
tile corresponding to a probability of 0.90. The deviations are the differences
between the LSDs used in calculating the LSD statistics and each assigned LSD
and the accuracy is expressed as a proportion of the assigned LSD value. The
calculated values are stored in the column named accuracyLSD in an LSD.frame.

zero.tolerance A numeric specifying the value such that if a predicted.value, its variance-
covariance, or an LSD is less than it, the LSD will be considered to be zero.

response A character specifying the response variable for the predictions. It is stored as
an attribute to the alldiffs.object .

response.title A character specifying the title for the response variable for the predictions. It
is stored as an attribute to the alldiffs.object.

x.num A character string giving the name of the numeric covariate that (i) is poten-
tially included in terms in the fitted model and (ii) is the x-axis variable for plots.
Its values will not be converted to a factor.

x.fac A character string giving the name of the factor that (i) corresponds to x.num
and (ii) is potentially included in terms in the fitted model. It should have the
same number of levels as the number of unique values in x.num. The levels of
x.fac must be in the order in which they are to be plotted - if they are dates, then
they should be in the form yyyymmdd, which can be achieved using as.Date.
However, the levels can be non-numeric in nature, provided that x.num is also
set.

linTransform.alldiffs 111

tables A character vector containing a combination of none, predictions, vcov,
backtransforms, differences, p.differences, sed, LSD and all. These
nominate which components of the alldiffs.object to print.

level.length The maximum number of characters from the levels of factors to use in the row
and column labels of the tables of pairwise differences and their p-values and
standard errors.

pairwise A logical indicating whether all pairwise differences of the predictions and
their standard errors and p-values are to be computed and stored. If tables is
equal to "differences" or "all" or error.intervals is equal to "halfLeastSignificant",
they will be stored irrespective of the value of pairwise.

alpha A numeric giving the significance level for LSDs or one minus the confidence
level for confidence intervals. It is stored as an attribute to the alldiffs.object.

inestimable.rm A logical indicating whether rows for predictions that are not estimable are to
be removed from the components of the alldiffs.object.

... further arguments passed to redoErrorIntervals.alldiffs.

Details

For a matrix L, vector of predictions p and variance matrix of the predictions Vp, the linear trans-
formed predictions are given by Lp with variance matrix LVpL

T. The last matrix is used to com-
pute the variance of pairwise differences between the transformed values.

If linear.transformation is a matrix, M say, then the linear-transformation matrix, L, is just
the supplied matrixM.

If linear.transformation is a formula and EGLS.linTransform is TRUE, then a matrix M
is obtained that is the design matrix for all of the terms in the formula. Using M, the linear-
transformation matrix, L, is formed as M(M⊤V̂−M)−(M⊤V̂−).

On the other hand, for linear.transformation a formula and EGLS.linTransform set to FALSE,
L is formed as the sum of the orthogonal projection matrices obtained using pstructure.formula
from the package dae; grandMean is set to TRUE and orthogonalize to "eigenmethods".

Value

A alldiffs.object with the linear transformation of the predictions and their standard errors and
all pairwise differences between the linear transforms of their predictions, their standard errors and
p-values and LSD statistics.

If the supplied alldiffs.object contained a backtransforms component, then the returned alldiffs.object
will contain a backtransforms component with the backtransformed linear transformation of the
predictions. The backtransformation will, after backtransforming for any power transformation,
subtract the offset and then divide by the scale.

If error.intervals is not "none", then the predictions component and, if present, the backtransforms
component will contain columns for the lower and upper values of the limits for the interval. The
names of these columns will consist of three parts separated by full stops: 1) the first part will be
lower or upper; 2) the second part will be one of Confidence, StandardError or halfLeastSignificant;
3) the third component will be limits.

The name of the response, the response.title, the term, the classify, tdf, alpha, sortFactor
and the sortOrder will be set as attributes to the object. Also, if error.intervals is "halfLeastSignificant",
then those of LSDtype, LSDby and LSDstatistic that are not NULL will be added as attributes of
the object and of the predictions frame; additionally, LSDvalues will be added as attribute of the
predictions frame, LSDvalues being the LSD values used in calculating the error.intervals.

112 linTransform.alldiffs

Author(s)

Chris Brien

See Also

linTransform, predictPlus.asreml, as.alldiffs, print.alldiffs, sort.alldiffs,
subset.alldiffs, allDifferences.data.frame, redoErrorIntervals.alldiffs,
recalcLSD.alldiffs, pickLSDstatistics.alldiffs, predictPresent.asreml,
plotPredictions.data.frame, as.Date, predict.asreml

Examples

data(WaterRunoff.dat)

##Use asreml to get predictions and associated statistics

Not run:
asreml.options(keep.order = TRUE) #required for asreml-R4 only
current.asr <- asreml(fixed = pH ~ Benches + (Sources * (Type + Species)),

random = ~ Benches:MainPlots,
keep.order=TRUE, data= WaterRunoff.dat)

current.asrt <- as.asrtests(current.asr, NULL, NULL)
#Get additive predictions directly using predictPlus
diffs.sub <- predictPlus.asreml(classify = "Sources:Species", Vmatrix = TRUE,

linear.transformation = ~ Sources + Species,
asreml.obj = current.asr, tables = "none",
wald.tab = current.asrt$wald.tab,
present = c("Type","Species","Sources"))

End(Not run)

Use lmeTest and emmmeans to get predictions and associated statistics

if (requireNamespace("lmerTest", quietly = TRUE) &
requireNamespace("emmeans", quietly = TRUE))

{
m1.lmer <- lmerTest::lmer(pH ~ Benches + (Sources * Species) +

(1|Benches:MainPlots),
data=na.omit(WaterRunoff.dat))

SS.emm <- emmeans::emmeans(m1.lmer, specs = ~ Sources:Species)
SS.preds <- summary(SS.emm)
den.df <- min(SS.preds$df, na.rm = TRUE)
Modify SS.preds to be compatible with a predictions.frame
SS.preds <- as.predictions.frame(SS.preds, predictions = "emmean",

se = "SE", interval.type = "CI",
interval.names = c("lower.CL", "upper.CL"))

Form an all.diffs object and check its validity
SS.vcov <- vcov(SS.emm)
SS.diffs <- allDifferences(predictions = SS.preds, classify = "Sources:Species",

vcov = SS.vcov, tdf = den.df)
validAlldiffs(SS.diffs)

#Get additive predictions
diffs.sub <- linTransform(SS.diffs, classify = "Sources:Species",

linear.transformation = ~ Sources + Species,

loadASRemlVersion 113

Vmatrix = TRUE, tables = "none")
}

##Calculate contrasts from prediction obtained using asreml or lmerTest
if (exists("diffs.sub"))
{
#Contrast matrix for differences between each species and non-planted for the last source
L <- cbind(matrix(rep(0,7*32), nrow = 7, ncol = 32),

diag(1, nrow = 7),
matrix(rep(-1, 7), ncol = 1))

rownames(L) <- as.character(diffs.sub$predictions$Species[33:39])
diffs.L <- linTransform(diffs.sub,

classify = "Sources:Species",
linear.transformation = L,
tables = "predictions")

}

loadASRemlVersion Ensures that a specific version of asreml is loaded.

Description

Loads the specified version of asreml, provided that it is not already loaded. If the version of
asreml is not the required version, then the loaded version is unloaded first.

Usage

loadASRemlVersion(version = 4, ...)

Arguments

version The version that is to be loaded, the version consisting of just the initial char-
acters that are significant in the version that should be loaded. For example, the
default value of 4 implies that any version that begins with "4" is acceptable. It
is used to check that the required version is loaded.

... Other library/require arguments that are needed to load the specified version of
asreml.

Value

A character, being all characters in the version of asreml that is loaded on exit from the function.

Author(s)

Chris Brien

See Also

getASRemlVersionLoaded.

114 LSD.frame

Examples

Not run:
loadASRemlVersion(3, lib.loc = "D:\Analyses\R asreml3")
End(Not run)

LSD.frame Description of an LSD frame

Description

A data.frame that stores Least Significant differences (LSDs) for predictions for a fitted model.

Value

A data.frame that can be a component of an alldiffs.object and that contains LSD values and
statistics to be used in determining the significance of the pairwise differences. In particular, they
are used in calculating halfLeastSignificant limits to be included in a predictions.frame.

Exactly what an LSD.frame contains is determined by the following arguments to functions that
return an alldiffs.object: LSDtype, LSDby, LSDstatistic, LSDaccuracy and LSDsupplied.
The rownames of the LSD.frame indicate, for each of its rows, for what group of predictions the
entries in the row were calculated, this being controlled by the LSDtype and LSDby arguments.
The values for all of the LSD arguments are stored as attributes to the alldiffs.object and the
predictions and, if present backtransforms, components of the alldiffs.object.

An LSD.frame always has the eight columns c, minimumLSD, meanLSD, maximumLSD, assignedLSD,
accuracyLSD, falsePos and falseNeg.

1. c: This gives the number of pairwise comparison of predictions for the combinations of the
factor levels given by the row name. If the row name is overall then it is for all predictions.

2. minimumLSD, meanLSD, maximumLSD: These are computed for either overall, factor.combinations,
per.prediction or supplied LSD values, as specified by the LSDtype argument. The
meanLSD is calculated using the square root of the mean of the variances of set of pairwise
differences appropriate to the specific LSDtype argument.
For overall, the mean, minimum and maximum of the LSDs for all pairwise comparisons
are computed.
If factor.combinations was specified for LSDtype when the LSDs were being calculated,
then the LSD.frame contains a row for each combination of the values of the factors and
numerics specified by LSDby. The values in a row are calculated from the LSD values for the
pairwise differences for each combination of the factors and numerics values, unless there
is only one prediction for a combination, when notional LSDs are calculated that are based on
the standard error of the prediction multiplied by the square root of two.
For per.prediction, the minimum, mean and maximum LSD, based, for each prediction, on
the LSD values for all pairwise differences involving that prediction are computed.
For supplied, the LSD.frame is set up based on the setting of LSDby: a single row with name
overall if LSDby is NULL or, if LSDby is a vector of factor and numeric names, rows for each
observed combinations of the values of the named factors and numerics. The LSDsupplied
argument is used to provide the values to be stored in the column assignedLSD.

3. assignedLSD: The assignedLSD column contains the values that are assigned for use in calcu-
lating halfLeastSignificant error.intervals. Its contents are determined by LSDstatistic
and LSDsupplied arguments. The LSDsupplied argument allows the direct specification of
values to be placed in the assignedLSD column of the LSD.frame. The default is to use the
values in the meanLSD column.

LSD.frame 115

4. LSDaccuracy: The LSDaccuracy gives an indication of the proportion that the correct LSD
for a single predicted.value might deviate from its assignedLSD value. The contents of
the accuracyLSD column is controlled by the LSDaccuracy argument.

5. falsePos and falseNeg: These columns contain the number of false positives and negatives if
the assignedLSD value(s) is(are) used to determine the significance of the pairwise predictions
differences. Each LSD value in the assignedLSD column is used to determine the significance
of pairwise differences that involve predictions for the combination of values given by the row
name for the LSD value.

See recalcLSD.alldiffs for more information.

Author(s)

Chris Brien

See Also

recalcLSD.alldiffs, redoErrorIntervals.alldiffs, predictPresent.asreml,
predictPlus.asreml

Examples

data(Oats.dat)

Use asreml to get predictions and associated statistics

Not run:
m1.asr <- asreml(Yield ~ Nitrogen*Variety,

random=~Blocks/Wplots,
data=Oats.dat)

current.asrt <- as.asrtests(m1.asr)
Var.diffs <- predictPlus(m1.asr, classify="Nitrogen:Variety",

wald.tab = current.asrt$wald.tab,
tables = "none")

End(Not run)

Use lmerTest and emmmeans to get predictions and associated statistics
if (requireNamespace("lmerTest", quietly = TRUE) &

requireNamespace("emmeans", quietly = TRUE))
{
m1.lmer <- lmerTest::lmer(Yield ~ Nitrogen*Variety + (1|Blocks/Wplots),

data=Oats.dat)
#Get predictions
Var.emm <- emmeans::emmeans(m1.lmer, specs = ~ Nitrogen:Variety)
Var.preds <- summary(Var.emm)
Modify Var.preds to be compatible with a predictions.frame
Var.preds <- as.predictions.frame(Var.preds, predictions = "emmean",

se = "SE", interval.type = "CI",
interval.names = c("lower.CL", "upper.CL"))

Var.vcov <- vcov(Var.emm)
Var.sed <- NULL

#Set up an alldiffs object, which includes overall LSDs
Var.diffs <- allDifferences(predictions = Var.preds, classify = "Variety:Nitrogen",

sed = Var.sed, vcov = Var.vcov, tdf = 45)

116 makeTPPSplineMats.data.frame

}

if (exists("Var.diffs"))
{

Use recalcLSD to get LSDs for within Variety differences
Var.LSD.diffs <- recalcLSD(Var.diffs,

LSDtype = "factor.combinations", LSDby = "Variety")
print(Var.LSD.diffs$LSD)

}

makeTPPSplineMats.data.frame

Make the spline basis matrices and data needed to fit Tensor Product
P-splines.

Description

Prepares the fixed and random P-spline basis matrices, and associated information, that are needed
for fitting of Tensor Product P-splines (TPPS) as described by Rodriguez-Alvarez et al. (2018). This
function is called internally by addSpatialModelOnIC.asrtests, addSpatialModelOnIC.asrtests
and chooseSpatialModelOnIC.asrtests when fitting TPPS models for local spatial variation.
There are two methods available, controlled by asreml.option for creating and storing the ba-
sis functions. This function is most likely to be called directly when mbf has been used in creating
an asreml.object and it is desired to use the object in a session subsequent to the session in which
the object was created.

Usage

S3 method for class 'data.frame'
makeTPPSplineMats(data, sections = NULL,

row.covar, col.covar,
nsegs = NULL, nestorder = c(1,1),
degree = c(3,3), difforder = c(2,2),
rotateX = FALSE, theta = c(0,0),
asreml.option = "grp", mbf.env = sys.frame(),
...)

Arguments

data An data.frame that holds the spline bases for a section. It is indexed by
columns named col and row.

sections A single character string that species the name of the column in the data.frame
that contains the factor that identifies different sections of the data to which
separate spatial models are to be fitted.

row.covar A single character string nominating a numeric column in the data.frame
that contains the values of a covariate indexing the rows of the grid.

col.covar A single character string nominating a numeric column in the data.frame
that contains the values of a covariate indexing the columns of the grid.

makeTPPSplineMats.data.frame 117

nsegs A pair of numeric values giving the number of segments into which the column
and row ranges are to be split, respectively, for fitting a P-spline model (TPPS)
(each value specifies the number of internal knots + 1). If not specified, then
(number of unique values - 1) is used in each dimension; for a grid layout with
equal spacing, this gives a knot at each data value. If sections is not NULL
and the grid differs between the sections, then nsegs will differ between the
sections.

nestorder A numeric of length 2. The order of nesting for column and row dimensions,
respectively, in fitting a P-spline model (TPPS). A value of 1 specifies no nesting,
a value of 2 generates a spline with half the number of segments in that dimen-
sion, etc. The number of segments in each direction must be a multiple of the
order of nesting.

degree A numeric of length 2. The degree of polynomial spline to be used for column
and row dimensions respectively, in fitting a P-spline (TPPS).

difforder A numeric of length 2. The order of differencing for column and row dimen-
sions, respectively, in fitting a P-spline (TPPS).

rotateX A logical indicating whether to rotate the eigenvectors of the penalty matrix, as
described by Piepho, Boer and Williams (2022), when fitting a P-spline (TPPS).
Setting rotateX to TRUE results in a search for an optimized rotation under a
model that omits the random spline interaction terms. If ngridangles is set to
NULL, the optimal rotation us found using an optimizer (nloptr::bobyqa). Oth-
erwise, the optimal rotation is found by exploring the fit over a two-dimensional
grid of rotation angle pairs. The optimization seeks to optimize the criterion
nominated in which.rotacriterion. Rotation of the eigenvectors is only rel-
evant for difforder values greater than 1 and has only been implemented for
difforder equal to 2.

theta A numeric of length 2. The angle (in degrees) to be used in rotating the eign-
evectors of the penalty matrix of a P-spline (TPPS).

asreml.option A single character string specifying whether the grp or mbf methods are to
be used to supply externally formed covariate matrices to asreml when fit-
ting a P-spline (TPPS). Compared to the mbf method, the grp method is some-
what faster, but creates large asrtests.objects for which the time it takes
to save them can exceed any gains in execution speed. The grp method adds
columns to the data.frame containing the data. On the other hand, the mbf
method adds only the fixed covariates to data and stores the random covariates
in the environment of the internal function that calls the spline-fitting function;
there are three smaller data.frames for each section that are not stored in the
asreml.object resulting from the fitted model.

mbf.env A environment specifying the environment to which the data.frames contain-
ing the spline bases are to be assigned. If mbf.env is NULL, the data.frames will
not be assigned.

... Further arguments passed to tpsmmb from package TPSbits.

Details

The objects are formed using the function tpsmmb from the R package TPSbits authored by Sue
Welham (2022). This function has been extended to allow for sections (see below) and to allow
rotation of the penalty matrix for the linear component of the interaction terms in TPPCS models
(for more information about rotation see Piepho, Boer and Williams, 2022).

Each combination of a row.covar and a col.covar does not have to specify a single observation;
for example, to fit a local spatial variation model to the main units of a split-unit design, each

118 makeTPPSplineMats.data.frame

combination would correspond to a main unit and all subunits of the main unit would have the same
combination.

The data for experiment can be divided sections and the spline bases and associated data will be
produced for each section. If there is more than one sections, then a list is returned that has a
component for each section. The component for a section contains:

Value

A list of length equal to the number of sections is produced. Each of these components is a list
with 8 or 9 components. The component named data.plus, being the input data.frame to which
has been added the columns required to fit the TPPS model (the data.frame stored in the data
component holds only the covariates from data).

List of length 8 or 9 (according to the asreml.option).

1. data = the input data frame augmented with structures required to fit tensor product splines in
asreml-R. This data frame can be used to fit the TPS model.
Added columns:

• TP.col, TP.row = column and row coordinates
• TP.CxR = combined index for use with smooth x smooth term
• TP.C.n for n=1:diff.c = X parts of column spline for use in random model (where diff.c

is the order of column differencing)
• TP.R.n for n=1:diff.r = X parts of row spline for use in random model (where diff.r is the

order of row differencing)
• TP.CR.n for n=1:(diff.c*diff.r) = interaction between the two X parts for use in fixed

model. The first variate is a constant term which should be omitted from the model when
the constant (1) is present. If all elements are included in the model then the constant
term should be omitted,eg. y ~ -1 + TP.CR.1 + TP.CR.2 + TP.CR.3 + TP.CR.4 + other
terms...

• when asreml="grp" or "sepgrp", the spline basis functions are also added into the data
frame. Column numbers for each term are given in the grp list structure.

2. mbflist = list that can be used in call to asreml (so long as Z matrix data frames extracted
with right names, eg BcZ<stub>.df)

3. BcZ.df = mbf data frame mapping onto smooth part of column spline, last column (labelled
TP.col) gives column index

4. BrZ.df = mbf data frame mapping onto smooth part of row spline, last column (labelled
TP.row) gives row index

5. BcrZ.df = mbf data frame mapping onto smooth x smooth term, last column (labelled TP.CxR)
maps onto col x row combined index

6. dim = list structure, holding dimension values relating to the model:

(a) "diff.c" = order of differencing used in column dimension
(b) "nbc" = number of random basis functions in column dimension
(c) "nbcn" = number of nested random basis functions in column dimension used in smooth

x smooth term
(d) "diff.r" = order of differencing used in column dimension
(e) "nbr" = number of random basis functions in column dimension
(f) "nbrn" = number of nested random basis functions in column dimension used in smooth

x smooth term

makeTPPSplineMats.data.frame 119

7. trace = list of trace values for ZGZ’ for the random TPspline terms, where Z is the design
matrix and G is the known diagonal variance matrix derived from eigenvalues. This can be
used to rescale the spline design matrix (or equivalently variance components).

8. grp = list structure, only added for setting asreml="grp". For asreml="grp", provides col-
umn indexes for each of the 5 random components of the 2D splines in data.plus. Dimen-
sions of the components can be derived from the values in the dim item.

9. data.plus = the input data.frame to which has been added the columns required to fit tensor
product splines in asreml-R. This data.frame can be used to fit the TPS model. FOr multiple
sections, this data.frame will occur in the component for each section. If asreml.option
is set to mbf, then this component will have the attribute mbf.env that specifies the envi-
ronment to which the data.frames containing the spline bases have been assigned.

Author(s)

Chris Brien

References

Piepho, H-P, Boer, M. P. & Williams, E. R. (2022) Two-dimensional P-spline smoothing for spatial
analysis of plant breeding trials. Biometrical Journal, 64, 835-857.)

Rodriguez-Alvarez, M. X., Boer, M. P., van Eeuwijk, F. A., & Eilers, P. H. C. (2018). Correcting
for spatial heterogeneity in plant breeding experiments with P-splines. Spatial Statistics, 23, 52-71.

Welham, S. J. (2022) TPSbits: Creates Structures to Enable Fitting and Examination of 2D Tensor-
Product Splines using ASReml-R. Version 1.0.0 https://mmade.org/tpsbits/

See Also

addSpatialModel.asrtests, addSpatialModelOnIC.asrtests,
chooseSpatialModelOnIC.asrtests, tpsmmb from TPSbits

Examples

Not run:

data(Wheat.dat)

#Add row and column covariates
Wheat.dat <- within(Wheat.dat,

{
cColumn <- dae::as.numfac(Column)
cColumn <- cColumn - mean(unique(cColumn))
cRow <- dae::as.numfac(Row)
cRow <- cRow - mean(unique(cRow))

})

#Set up the matrices
tps.XZmat <- makeTPPSplineMats(wheat.dat,

row.covar = "cRow", col.covar = "cColumn")

End(Not run)

https://mmade.org/tpsbits/

120 newfit.asreml

newfit.asreml Refits an asreml model with changed arguments by extracting, modi-
fying and evaluating its call - an alternate to update.asreml.

Description

Extracts the call from the asreml.obj and evaluates that call, replacing supplied asreml arguments
with changed values. If update is TRUE and set.terms is NULL, the call is evaluated using the
variance parameter estimates from the call stored in asreml.obj; if some variance terms in the
newly fitted model are singular (S) or bound (B), a refit of the model will be tried in which the
variance parameter estimates in asreml.obj are not used and will become the fitted model if its
boundary terms are a subset of those in the fitted model stored in asreml.obj. If update is FALSE
or set.terms is not NULL, the previous values of the variance parameters are not used as initial
values for fitting the new model; G.param and R.param are set to NULL or to values as specified for
set.terms. The ... argument can be used to pass G.param and/or R.param, provided update is
FALSE and set.terms is NULL.

Irrespective of whether set.terms is NULL, variance parameter names, bounds and initial.values
stored in the setvparameters data.frame located in the call component of the asreml.obj are
added to any set.terms supplied in the current call. except for those in setvparameters that
are specified in the set.terms argument. In the process of fitting the model, the setvparameters
data.frame stored in the supplied asreml.obj is updated to include the prior and current set.terms.
Then, just before exiting newfit.asreml, a search for changes in the bounds of the stored terms is
made. If any have changed, an attempt is made to force the values back to their values on entry.

Usage

S3 method for class 'asreml'
newfit(asreml.obj, fixed., random., sparse.,

residual., rcov., update = TRUE, trace = FALSE,
allow.unconverged = TRUE, allow.fixedcorrelation = TRUE,
keep.order = TRUE,
set.terms = NULL, ignore.suffices = TRUE,
bounds = "P", initial.values = NA, ...)

Arguments

asreml.obj A valid asreml object with a component named call (from a previous call to
either asreml or update.asreml).

fixed. A character or formula specifying changes to the fixed formula. This is a two-
sided formula where "." is substituted for existing components in the fixed com-
ponent of asreml.obj$call. If changes are specified, the fixed terms will be re-
ordered so that single-variable terms come first, followed by two-variable terms
and so on.

random. A character or formula specifying changes to the random formula. This is a one-
sided formula where "." is substituted for existing components in the random
component of asreml.obj$call.

sparse. A character or formula specifying changes to the sparse formula. This is a one-
sided formula where "." is substituted for existing components in the sparse
component of asreml.obj$call.

newfit.asreml 121

residual. A character or formula specifying changes to the error formula, used when ver-
sion 4 or later of ASReml-R is loaded. This is a one-sided formula where "." is
substituted for existing components in the residual component of asreml.obj$call.

rcov. A character or formula specifying changes to the error formula, used when ver-
sion 3 of ASReml-R is loaded. This is a one-sided formula where "." is substi-
tuted for existing components in the residual component of asreml.obj$call.

update A logical indicating whether to use the variance parameter estimates in fitting a
new model using newfit.asreml. If update is TRUE and set.terms is NULL,
the call stored in the asreml.obj is evaluated using the variance parameter es-
timates stored in R.param and G.param, as well as the changes specified in the
arguments to newfit.asreml. If FALSE or set.terms is not NULL, then the use
of previous values of the variance parameters as initial values is not enforced;
G.param and R.param are set to NULL or to values as specified for set.terms.

trace A logical that control output from ASReml-R. If TRUE then partial iteration
details are displayed when ASReml-R functions are invoked; if FALSE then no
output is displayed.

allow.unconverged

A logical indicating whether to accept a new model even when it does not
converge. If FALSE and the fit does not converge, the supplied asreml.obj is
returned.

allow.fixedcorrelation

A logical indicating whether to accept a new model even when it contains
correlations in the model whose values have been designated as fixed, bound or
singular. If FALSE and the new model contains correlations whose values have
not been able to be estimated, the supplied asreml.obj is returned. The fit in
the supplied the asreml.obj will also be tested and a warning issued if both
fixed correlations are found in it and allow.fixedcorrelation is FALSE.

keep.order A logical value indicating whether the terms should keep their positions. If
FALSE the terms are reordered so that main effects come first, followed by the
interactions, all second-order, all third-order and so on. Effects of a given order
are kept in the order specified.

set.terms A character vector specifying the terms that are to have bounds and/or initial
values set prior to fitting. The names must match those in the vparameters
component of the new asreml.obj.

ignore.suffices

A logical vector specifying whether the suffices of the asreml-assigned names
of the variance terms (i.e. the information to the right of an "!", other than
"R!") is to be ignored in matching elements of terms. If TRUE for an element
of terms, the suffices are stripped from the asreml-assigned names. If FALSE
for an element of terms, the element must exactly match an asreml-assigned
name for a variance term. This vector must be of length one or the same length
as terms. If it is of length one then the same action is applied to the asreml-
assigned suffices for all the terms in terms.

bounds A character vector specifying the bounds to be applied to the terms speci-
fied in set.terms. This vector must be of length one or the same length as
set.terms. If it is of length one then the same constraint is applied to all the
terms in set.terms. If any of the bounds are equal to NA then they are left
unchanged for those terms.

initial.values A character vector specifying the initial values for the terms specified in terms.
This vector must be of length one or the same length as terms. If it is of length

122 num.recode

one then the same initial value is applied to all the terms in terms. If any of the
initial.values are equal to NA then they are left unchanged for those terms.

... additional arguments to the call, or arguments with changed values.

Value

An asreml object.

Author(s)

Chris Brien

References

Butler, D. G., Cullis, B. R., Gilmour, A. R., Gogel, B. J. and Thompson, R. (2023). ASReml-R
Reference Manual Version 4.2. VSN International Ltd, https://asreml.kb.vsni.co.uk/.

See Also

convAsremlobj.asreml, update.asreml, setvarianceterms.call

Examples

Not run:
m2.asreml <- newfit(m1.asreml, random. = "~ . - Blocks:Plots", maxiter=75)

End(Not run)

num.recode Recodes the unique values of a vector using the values in a new vector.

Description

Recodes the unique values of a variate using the value in position i of the new.values vector to
replace the ith sorted unique values of x. The new levels do not have to be unique.

Usage

num.recode(x, new.values)

Arguments

x The vector to be recoded.

new.values A vector of length unique(x) containing values to use in the recoding.

Value

A vector.

Author(s)

Chris Brien

https://asreml.kb.vsni.co.uk/

Oats.dat 123

See Also

dae::fac.recast.

Examples

set up a factor with labels
x <- rep(c(-42, -14, 14, 42), 4)

recode x
b <- num.recode(x, c(0, 28, 56, 84))

Oats.dat Data for an experiment to investigate nitrogen response of 3 oats va-
rieties

Description

Yates (1937) describes a split-plot experiment that investigates the effects of three varieties of oats
and four levels of Nitrogen fertilizer. The varieties are assigned to the main plots using a randomized
complete block design with 6 blocks and the nitrogen levels are randomly assigned to the subplots
in each main plot.

The columns in the data frame are: Blocks, Wplots, Subplots, Variety, Nitrogen, xNitrogen, Yield.
The column xNitrogen is a numeric version of the factor Nitrogen. The response variable is Yield.

Usage

data(Oats.dat)

Format

A data.frame containing 72 observations of 7 variables.

Author(s)

Chris Brien

Source

Yates, F. (1937). The Design and Analysis of Factorial Experiments. Imperial Bureau of Soil
Science, Technical Communication, 35, 1-95.

124 pairdiffsTransform.alldiffs

pairdiffsTransform.alldiffs

Calculates the differences between nominated pairs of predictions
stored in an alldiffs.object.

Description

Predictions of differences and their error intervals are formed for two levels of a factor, the pairs.factor.
For each pair of a level of the pairs.factor in numerator.levels with a level in denominator.levels,
an alldiffs.object is formed that contains the differences between predictions with this pair
of levels for all of the combinations of the levels of the other factors in the classify of the
alldiffs.object. These prediction differences are obtained using linTransform by forming
a suitable contrast matrix to specify the linear.transformation. This function has the advantage
that the factors indexing the differences are included in the components of the alldiffs.objects.

If pairwise = TRUE, all pairwise differences between the linear transforms of the predictions,
their standard errors, p-values and LSD statistics are computed as using allDifferences.data.frame.
This adds them to the alldiffs.object as additional list components named differences, sed,
p.differences and LSD.

The printing of the components produced is controlled by the tables argument. The order of
plotting the levels of one of the factors indexing the predictions can be modified and is achieved
using sort.alldiffs.

Usage

S3 method for class 'alldiffs'
pairdiffsTransform(alldiffs.obj, pairs.factor, first.levels, second.levels,

Vmatrix = FALSE, error.intervals = "Confidence",
avsed.tolerance = 0.25, accuracy.threshold = NA,
LSDtype = "overall", LSDsupplied = NULL, LSDby = NULL,
LSDstatistic = "mean", LSDaccuracy = "maxAbsDeviation",
response = NULL, response.title = NULL, tables = "all",
pairwise = TRUE, alpha = 0.05, ...)

Arguments

alldiffs.obj An alldiffs.object.

pairs.factor A character string giving the name of the factor for whose levels the differ-
ences are to be calculated.

first.levels A character string containing the levels of the pairs.factor whose predic-
tions are those subtracted from.

second.levels A character string containing the levels of the pairs.factor whose predic-
tions are those that are subtracted.

Vmatrix A logical indicating whether the variance matrix of the predictions will be
stored as a component of the alldiffs.object that is returned.

error.intervals

A character string indicating the type of error interval, if any, to calculate
in order to indicate uncertainty in the results. Possible values are "none",
"StandardError", "Confidence" and "halfLeastSignificant". The de-
fault is for confidence limits to be used. The "halfLeastSignificant" option

pairdiffsTransform.alldiffs 125

results in half the Least Significant Difference (LSD) being added and subtracted
to the predictions, the LSD being calculated using the square root of the mean
of the variances of all or a subset of pairwise differences between the predic-
tions. If the LSD is zero, as can happen when predictions are constrained to be
equal, then the limits of the error intervals are set to NA. If LSDtype is set to
overall, the avsed.tolerance is not NA and the range of the SEDs divided by
the average of the SEDs exceeds avsed.tolerance then the error.intervals
calculations and the plotting will revert to confidence intervals.

avsed.tolerance

A numeric giving the value of the SED range, the range of the SEDs divided
by the square root of the mean of the variances of all or a subset of the pairwise
differences, that is considered reasonable in calculating error.intervals. To
have it ignored, set it to NA. It should be a value between 0 and 1. The following
rules apply:

1. If avsed.tolerance is NA then mean LSDs of the type specified by LSDtype
are calculated and used in error.intervals and plots.

2. Irrespective of the setting of LSDtype, if avsed.tolerance is not exceeded
then the mean LSDs are used in error.intervals and plots.

3. If LSDtype is set to overall, avsed.tolerance is not NA, and avsed.tolerance
is exceeded then error.intervals and plotting revert to confidence inter-
vals.

4. If LSDtype is set to factor.combinations and avsed.tolerance is not
exceeded for any factor combination then the half LSDs are used in error.intervals
and plots; otherwise, error.intervals and plotting revert to confidence
intervals.

5. If LSDtype is set to per.prediction and avsed.tolerance is not ex-
ceeded for any prediction then the half LSDs are used in error.intervals
and plots; otherwise, error.intervals and plotting revert to confidence
intervals.

accuracy.threshold

A numeric specifying the value of the LSD accuracy measure, which measure
is specified by LSDaccuracy, as a threshold value in determining whether the
hallfLeastSignificant error.interval for a predicted value is a reason-
able approximation; this will be the case if the LSDs across all pairwise compar-
isons for which the interval’s LSD was computed, as specified by LSDtype and
LSDby, are similar enough to the interval’s LSD, as measured by LSDaccuracy.
If it is NA, it will be ignored. If it is not NA, a column of logicals named
LSDwarning will be added to the predictions component of the alldiffs.object.
The value of LSDwarning for a predicted.value will be TRUE if the value of
the LSDaccuracy measure computed from the LSDs for differences between
this predicted.value and the other predicted.values as compared to its
assignedLSD exceeds the value of accuracy.threshold. Otherwise, the value
of LSDwarning for a predicted.value will be FALSE.

LSDtype A character string that can be overall, factor.combinations, per.prediction
or supplied. It determines whether the values stored in a row of a LSD.frame
are the values calculated (i) overall from the LSD values for all pairwise
comparison2, (ii) the values calculated from the pairwise LSDs for the lev-
els of each factor.combination, unless there is only one prediction for a
level of the factor.combination, when a notional LSD is calculated, (iii)
per.prediction, being based, for each prediction, on all pairwise differences
involving that prediction, or (iv) as supplied values of the LSD, specified

126 pairdiffsTransform.alldiffs

with the LSDsupplied argument; these supplied values are to be placed in the
assignedLSD column of the LSD.frame stored in an alldiffs.object so that
they can be used in LSD calculations.
See LSD.frame for further information on the values in a row of this data.frame
and how they are calculated.

LSDsupplied A data.frame or a named numeric containing a set of LSD values that cor-
respond to the observed combinations of the values of the LSDby variables in
the predictions.frame or a single LSD value that is an overall LSD. If a
data.frame, it may have (i) a column for the LSDby variable and a column of
LSD values or (ii) a single column of LSD values with rownames being the com-
binations of the observed values of the LSDby variables. Any name can be used
for the column of LSD values; assignedLSD is sensible, but not obligatory. Oth-
erwise, a numeric containing the LSD values, each of which is named for the ob-
served combination of the values of the LSDby variables to which it corresponds.
(Applying the function dae::fac.combine to the predictions component is
one way of forming the required combinations for the (row) names.) The val-
ues supplied will be incorporated into assignedLSD column of the LSD.frame
stored as the LSD component of the alldiffs.object.

LSDby A character (vector) of variables names, being the names of the factors or
numerics in the classify; for each combination of their levels and values,
there will be or is a row in the LSD.frame stored in the LSD component of the
alldiffs.object when LSDtype is factor.combinatons.

LSDstatistic A character nominating one or more of minimum, q10, q25, mean, median,
q75, q90 or maximum as the value(s) to be stored in the assignedLSD column
in an LSD.frame; the values in the assignedLSD column are used in computing
halfLeastSignificant error.intervals. Here q10, q25, q75 and q90 indi-
cate the sample quantiles corresponding to probabilities of 0.1, 0.25, 0.75 and
0.9 for the group of LSDs from which a single LSD value is calculated. The
function quantile is used to obtain them. The mean LSD is calculated as the
square root of the mean of the squares of the LSDs for the group. The median
is calculated using the median function. Multiple values are only produced for
LSDtype set to factor.combination, in which case LSDby must not be NULL
and the number of values must equal the number of observed combinations of
the values of the variables specified by LSDby. If LSDstatistic is NULL, it is
reset to mean.

LSDaccuracy A character nominating one of maxAbsDeviation, maxDeviation, q90Deviation
or RootMeanSqDeviation as the statistic to be calculated as a measure of the ac-
curacy of assignedLSD. The option q90Deviation produces the sample quan-
tile corresponding to a probability of 0.90. The deviations are the differences
between the LSDs used in calculating the LSD statistics and each assigned LSD
and the accuracy is expressed as a proportion of the assigned LSD value. The
calculated values are stored in the column named accuracyLSD in an LSD.frame.

response A character specifying the response variable for the predictions. It is stored as
an attribute to the alldiffs.object .

response.title A character specifying the title for the response variable for the predictions. It
is stored as an attribute to the alldiffs.object.

tables A character vector containing a combination of none, predictions, vcov,
backtransforms, differences, p.differences, sed, LSD and all. These
nominate which components of the alldiffs.object to print.

pairwise A logical indicating whether all pairwise differences of the predictions and
their standard errors and p-values are to be computed and stored. If tables is

pairdiffsTransform.alldiffs 127

equal to "differences" or "all" or error.intervals is equal to "halfLeastSignificant",
they will be stored irrespective of the value of pairwise.

alpha A numeric giving the significance level for LSDs or one minus the confidence
level for confidence intervals. It is stored as an attribute to the alldiffs.object.

... further arguments passed to linTransform.alldiffs.

Value

A list of alldiffs.objects with a component for each combination of a first.levels with
a second.levels. The name of a component will be a level from first.levels combined
with a level from second.levels, separated by a comma. If the predictions in the supplied
alldiffs.object are based on a response that was transformed, each alldiffs.object in the
list will include a backtransforms component that contains a column labelled backtransformed.predictions,
along with the backtransforms of the nominated error.intervals. The predictions and backtransforms
components in an alldiffs.object will be indexed by the variables in the classify of alldiffs.obj,
except that the pairs.factor is omitted. If the transformation was the logarithmic transformation,
these backtransformed.predictions are predicted ratios of the untransformed response.

If sortFactor attribute is set and is not the ratio.factor, the predictions and, if present, their
backtransforms will be sorted using the sortOrder attribute of the alldiffs.object, and both
sortFactor and sortOrder will be set as attributes to the object.

Author(s)

Chris Brien

See Also

linTransform, ratioTransform, predictPlus.asreml, as.alldiffs, print.alldiffs,
sort.alldiffs, subset.alldiffs, allDifferences.data.frame,
redoErrorIntervals.alldiffs, recalcLSD.alldiffs, pickLSDstatistics.alldiffs,
predictPresent.asreml, plotPredictions.data.frame,
as.Date, predict.asreml

Examples

Form the differences for log(RGR) for Salinity
load(system.file("extdata", "testDiffs.rda", package = "asremlPlus", mustWork = TRUE))
For the ratios for Cl per WU Temperature - use backtransforms of log-predictions
Preds.ratio.ClUp <- pairdiffsTransform(diffs.ClUp,

pairs.factor = "Temperature",
first.levels = "Hot",
second.levels = "Cool",
error.intervals = "halfLeast",

tables = "backtransforms") #Backtransforms are ratios

Form the differences for Nitrogen compared to no Nitrogen
data("Oats.dat")
Not run:
m1.asr <- asreml(Yield ~ Nitrogen*Variety,

random=~Blocks/Wplots,
data=Oats.dat)

current.asrt <- as.asrtests(m1.asr)
wald.tab <- current.asrt$wald.tab
Var.diffs <- predictPlus(m1.asr, classify="Nitrogen:Variety", pairwise = TRUE,

128 permute.square

Vmatrix = TRUE, error.intervals = "halfLeast",
LSDtype = "factor", LSDby = "Variety",
wald.tab = wald.tab)

End(Not run)

Use lme4 and emmmeans to get predictions and associated statistics
if (requireNamespace("lmerTest", quietly = TRUE) &

requireNamespace("emmeans", quietly = TRUE))
{

m1.lmer <- lmerTest::lmer(Yield ~ Nitrogen*Variety + (1|Blocks/Wplots),
data=Oats.dat)

Set up a wald.tab
int <- as.data.frame(rbind(rep(NA,4)))
rownames(int) <- "(Intercept)"
wald.tab <- anova(m1.lmer, ddf = "Kenward", type = 1)[,3:6]
names(wald.tab) <- names(int) <- c("Df", "denDF", "F.inc", "Pr")
wald.tab <- rbind(int, wald.tab)
#Get predictions
Var.emm <- emmeans::emmeans(m1.lmer, specs = ~ Nitrogen:Variety)
Var.preds <- summary(Var.emm)
Modify Var.preds to be compatible with a predictions.frame
Var.preds <- as.predictions.frame(Var.preds, predictions = "emmean",

se = "SE", interval.type = "CI",
interval.names = c("lower.CL", "upper.CL"))

Var.vcov <- vcov(Var.emm)
Var.sed <- NULL
den.df <- wald.tab[match("Variety", rownames(wald.tab)), "denDF"]

#Create alldiffs object
Var.diffs <- as.alldiffs(predictions = Var.preds,

sed = Var.sed, vcov = Var.vcov,
classify = "Nitrogen:Variety", response = "Yield", tdf = den.df)

}

if (exists("Var.diffs"))
Preds.diffs.OatsN <- pairdiffsTransform(alldiffs.obj = Var.diffs,

pairs.factor = "Nitrogen",
first.levels = c("0.2","0.4","0.6"),

second.levels = "0", error.intervals = "halfLeast",
tables = "none")

permute.square Permutes the rows and columns of a square matrix.

Description

Permutes the rows and columns of a square matrix.

Usage

permute.square(x, permutation)

permute.to.zero.lowertri 129

Arguments

x A square matrix.

permutation A vector specifying the new order of rows and columns.

Value

A square matrix.

Author(s)

Chris Brien

See Also

permute.to.zero.lowertri

Examples

terms.marginality <- matrix(c(1,0,0,0,0, 0,1,0,0,0, 0,1,1,0,0,
1,1,1,1,0, 1,1,1,1,1), nrow=5)

permtn <- c(1,3,2,4,5)
terms.marginality <- permute.square(terms.marginality, permtn)

permute.to.zero.lowertri

Permutes a square matrix until all the lower triangular elements are
zero.

Description

Permutes a square matrix until all the lower triangular elements are zero.

Usage

permute.to.zero.lowertri(x)

Arguments

x A square matrix of order n with at least n*(n-1)/2 zero elements.

Value

A square matrix.

Author(s)

Chris Brien

See Also

permute.square

130 pickLSDstatistics.alldiffs

Examples

terms.marginality <- matrix(c(1,0,0,0,0, 0,1,0,0,0, 0,1,1,0,0,
1,1,1,1,0, 1,1,1,1,1), nrow=5)

terms.marginality <- permute.to.zero.lowertri(terms.marginality)

pickLSDstatistics.alldiffs

Pick LSDstatistics whose values minimize the number of errors in pair-
wise comparisons of predictions.

Description

Given an alldiffs.object with an sed component, exploreLSDs.alldiffs is used to calculate
the LSD values for each set of prediction comparisons specified by LSDtype and LSDby using each
of the statistics minimum, q10, q25, mean, median, q75, q90 and maximum. Then the numbers of false
positives and false negatives resulting from employing each of the calculated LSDs is obtained. For
each set of comparisons, the LSD value(s) with the lowest number of false positives are identified
and, from these, the smallest value with the lowest number of false negatives. That is, a conservative
approach is taken to picking LSD values by putting the priority on avoiding false positives. Before
using the LSDstatistics that this function suggests, the number of false positives and negatives
generated by them should be checked. For example, it may be that there are too many false negatives
and a better balance between the numbers of false positives and negatives can be identified using
exploreLSDs.alldiffs,

Usage

S3 method for class 'alldiffs'
pickLSDstatistics(alldiffs.obj,

LSDtype = "overall", LSDby = NULL,
alpha = 0.05, digits = 3,
false.pos.wt = NULL, retain.zeroLSDs = FALSE,
zero.tolerance = .Machine$double.eps ^ 0.5,
...)

Arguments

alldiffs.obj An alldiffs.object.

LSDtype A character string that can be overall or factor.combinations. It deter-
mines whether the LSD values that are investigated are the overall minimum,
quantile10, quantile25, mean, median, quantile75, quantile90, or maximum of
(i) all pairwise LSDs, or (ii) the pairwise LSDs for each combination of the
values of the factors and numerics named in LSDby, unless there is only
one prediction for a combination, when notional LSDs are calculated. The
LSDtype specified here does not have to match that used in the creating the
alldiffs.object.
See LSD.frame for further information on how the LSD statistics are calculated.

LSDby A character (vector) of variables names, being the names of some of the
factors or numerics in the classify; for each combination of the values of
the factors and numerics, the LSD errors are to be computed when LSDtype
is factor.combinatons. The LSDby specified here does not have to match that
used in the creating the alldiffs.object.

pickLSDstatistics.alldiffs 131

alpha A numeric specifying the significance level for an LSD to compare a pair of
predictions.

digits A numeric specifying the number of significant digits to retain in rounding the
LSDs before determining the distinct rounded LSDs.

false.pos.wt When it is not NULL, it should be a numeric that specifies the weight (e.g. 3 so
that a false positive is considered to be equivalent to three false negatives) to ap-
ply to the number of false positives in calculating the weighted sums of the num-
bers of false positives and negatives to use in comparing different LSD statistics,
one being the weight for the number false negatives. The LSDstatistic that is
chosen for making comparisons will be the one that minimizes the weighted
sum, has the smallest number of false positives and, amongst these, has the
smallest LSD value. If it is NULL, the LSDstatistic that will be chosen is the
one that minimizes the number of false negatives from amongst those that min-
imize the number of false positives.
If, amongst the LSD statistices, the least number of false negatives that occurs
is m, then for a particular statistic with p the number of false positives, n the
number of false negatives and w the value of false.pos.wt, that statistic will
be a candidate LSD value if (wp) + n < m and i.e. if p < (m− n)/w.

retain.zeroLSDs

A logical indicating whether to retain or omit LSDs that are zero when calcu-
lating the summaries of LSDs.

zero.tolerance A numeric specifying the value such that if an LSD is less than it, the LSD will
be considered to be zero.

... Provision for passing arguments to functions called internally - not used at
present.

Value

A character of length one for LSDby set to overall or of length equal to the number of observed
combinations of the values of the factors and numerics in LSDby. Each element of the returned
character is one of minimum, q10, q25, mean, median, q75, q90 or maximum, reflecting the value(s)
of the LSD from amongst those calculated that minimizes the number of false positives; if there is
more than one such value, then the element will be correspond to the value of the LSD from amongst
those with the minimum number of false positives that minimizes the number of false negatives.

Author(s)

Chris Brien

See Also

asremlPlus-package, exploreLSDs.alldiffs plotLSDs.data.frame, plotLSDs.alldiffs,
plotLSDerrors.alldiffs, plotLSDerrors.data.frame, recalcLSD.alldiffs,
redoErrorIntervals.alldiffs

Examples

data(WaterRunoff.dat)

##Use asreml to get predictions and associated statistics

Not run:

132 plotLSDerrors.alldiffs

asreml.options(keep.order = TRUE) #required for asreml-R4 only
current.asr <- asreml(fixed = pH ~ Benches + (Sources * (Type + Species)),

random = ~ Benches:MainPlots,
keep.order=TRUE, data= WaterRunoff.dat)

current.asrt <- as.asrtests(current.asr, NULL, NULL)
TS.diffs <- predictPlus(classify = "Sources:Type",

asreml.obj = current.asr,
wald.tab = current.asrt$wald.tab,
present = c("Sources", "Type", "Species"))

End(Not run)

Use lmeTest and emmmeans to get predictions and associated statistics

if (requireNamespace("lmerTest", quietly = TRUE) &
requireNamespace("emmeans", quietly = TRUE))

{
m1.lmer <- lmerTest::lmer(pH ~ Benches + (Sources * (Type + Species)) +

(1|Benches:MainPlots),
data=na.omit(WaterRunoff.dat))

TS.emm <- emmeans::emmeans(m1.lmer, specs = ~ Sources:Type)
TS.preds <- summary(TS.emm)
den.df <- min(TS.preds$df, na.rm = TRUE)
Modify TS.preds to be compatible with a predictions.frame
TS.preds <- as.predictions.frame(TS.preds, predictions = "emmean",

se = "SE", interval.type = "CI",
interval.names = c("lower.CL", "upper.CL"))

Form an all.diffs object and check its validity
TS.vcov <- vcov(TS.emm)
TS.diffs <- allDifferences(predictions = TS.preds, classify = "Sources:Type",

vcov = TS.vcov, tdf = den.df)
validAlldiffs(TS.diffs)

}

Pick LSD statistics for calculating LSD values for pairwise comparisons of
the predictions obtained using asreml or lmerTest
if (exists("TS.diffs"))
{

##Pick the LSD values for predictions obtained using asreml or lmerTest
LSDstat <- pickLSDstatistics(TS.diffs)
TS.diffs <- redoErrorIntervals(TS.diffs, LSDstatistic = LSDstat)
TS.diffs$LSD
LSDstat <- pickLSDstatistics(TS.diffs, LSDtype = "factor.combinations",

LSDby = "Sources")
TS.diffs <- redoErrorIntervals(TS.diffs, LSDtype = "factor.combinations",

LSDby = "Sources", LSDstatistic = LSDstat)
TS.diffs$LSD

}

plotLSDerrors.alldiffs

Plots a map of the errors that occur in using the computed LSD values
for pairwise differences between predictions.

plotLSDerrors.alldiffs 133

Description

Produces a plot of the errors that occur in using the computed LSD values for pairwise differences
predictions by comparing the result obtained from using the LSDs stored in the assignedLSD col-
umn of the LSD component of the alldiffs.object with those computed from the sed component
using the t-value for the df stored in the tdf attribute of the alldiffs.object. The sed component
is generally a matrix whose rows and columns are labelled by the levels of one or more factors, the
set of labels being the same for rows and columns. The sections argument allows multiple plots
to be produced, one for each combination of the levels of the factors listed in sections. Otherwise,
a single plot is produced for all observed combinations of the levels of the factors in the classify
attribute for the alldiffs.object. The plots are produced using plotLSDerrors.data.frame.
The order of plotting the levels of one of the factors indexing the predictions can be modified using
sort.alldiffs.

Usage

plotLSDerrors(object, ...)
S3 method for class 'alldiffs'
plotLSDerrors(object, alpha = 0.05, useIntervals = FALSE,

sections = NULL, gridspacing = 0, factors.per.grid = 0,
triangles = "both", title = NULL,
axis.labels = TRUE, axis.text.size = 12,
sep=",", colours = c("white","blue","red","grey"),
ggplotFuncs = NULL, printPlot = TRUE,
sortFactor = NULL, sortParallelToCombo = NULL,
sortNestingFactor = NULL, sortOrder = NULL,
decreasing = FALSE, ...)

Arguments

object An alldiffs.object with both LSD and sed components that are not NULL.

alpha A numeric giving the significance level for the LSD.

useIntervals A logical indicating whether to use the interval limits stored in the predictions
component of object, instead of the LSDs stored in the LSD component, for de-
termining whether pairs of predictions are significantly different. It allows a
check of how the error.intervals in the predictions component will per-
form if they are used for all pairwise predictions comparisons, whereas the com-
parisons to which the LSDs apply may be restricted by the setting of the LSDby
attribute of object. There is no restriction on the error.intervals that can
be used. However, the limits for them must be in columns in the predictions
component of object and their names must end with .limits and begin with
lower. and upper.

sections A character listing the names of the factors that are to be used to break the plot
into sections. A separate plot will be produced for each observed combination
of the levels of these factors.

gridspacing A numeric specifying the number(s) of rows and columns that form groups in
the grid of differences. An alternative is to specify the factors.per.grid argu-
ment to have the grid spacings automatically calculated. Grids are most useful
when two or more factors index the rows and columns. If a single, nonzero
number, k say, is given then a grid line is placed after every kth row and column.
If a vector of values is given then the number of grid lines is the length of the
vector and the spacing between each is specified by the elements of the vector.

134 plotLSDerrors.alldiffs

factors.per.grid

A numeric specifying the number of factors to include within each grid of differ-
ences. The gridspacing will then be computed based on the numbers of combi-
nations observed within the levels of the remaining factors in a single plot. The
gridspacing argument to this function will be ignored if factors.per.grid
is greater than zero. Grids are most useful when two or more factors index the
rows and columns of each plot.

triangles A character indicating whether the plot should include the lower, upper or
both triangle(s).

title A character string giving the main title for the plot and to which is appended
the levels combination of the sectioning factors, if any, for each plot.

axis.labels A logical indicating whether a label is to be added to the x- and y-axes. If
TRUE, the label is the comma-separated list of factors whose levels combina-
tions are involved in the prediction differences for which the LSD values are
calculated.

axis.text.size A numeric giving the size of the labels on the axes of the heatmap.
sep A character giving the characters separating the levels of different factors in

the row and column names of the sed component.
colours A vector of colours to be passed to the ggplot function scale_colour_gradientn.
ggplotFuncs A list, each element of which contains the results of evaluating a ggplot2

function. It is created by calling the list function with a ggplot2 function call
for each element. It is passed to ggplot via plotLSDerrors.data.frame to be
applied in creating the ggplot object.

printPlot A logical indicating whether or not the a plot is to be printed. This would be
used when just the returned data.frame is required.

sortFactor A character containing the name of the factor that indexes the set of pre-
dicted values that determines the sorting of the components. If there is only
one variable in the classify term then sortFactor can be NULL and the order
is defined by the complete set of predicted values. If there is more than one
variable in the classify term then sortFactor must be set. In this case the
sortFactor is sorted in the same order within each combination of the values
of the sortParallelToCombo variables: the classify variables, excluding the
sortFactor. There should be only one predicted value for each unique value
of sortFactor within each set defined by a combination of the values of the
classify variables, excluding the sortFactor factor. The order to use is
determined by either sortParallelToCombo or sortOrder.

sortParallelToCombo

A list that specifies a combination of the values of the factors and numerics,
excluding sortFactor, that are in classify. Each of the components of the
supplied list is named for a classify variable and specifies a single value for
it. The combination of this set of values will be used to define a subset of the
predicted values whose order will define the order of sortFactor. Each of the
other combinations of the values of the factors and numerics will be sorted in
parallel. If sortParallelToCombo is NULL then the first value of each classify
variable, except for the sortFactor factor, in the predictions component
is used to define sortParallelToCombo. If there is only one variable in the
classify then sortParallelToCombo is ignored.

sortNestingFactor

A character containing the name of the factor that defines groups of the
sortFactor within which the predicted values are to be ordered. If there is only
one variable in the classify then sortNestingFactor is ignored.

plotLSDerrors.alldiffs 135

sortOrder A character vector whose length is the same as the number of levels for
sortFactor in the predictions component of the alldiffs.object. It speci-
fies the desired order of the levels in the reordered components of the alldiffs.object.
The argument sortParallelToCombo is ignored.
The following creates a sortOrder vector levs for factor f based on the values
in x: levs <- levels(f)[order(x)].

decreasing A logical passed to order that detemines whether the order for sorting the
alldiffs.object components is for increasing or decreasing magnitude of the
predicted values.

... Provision for passsing arguments to functions called internally - not used at
present.

Value

A list with components named LSDresults and plots. The LSDresults component contains
the data.frame with the columns Rows, Columns, LSDresults, sections1 and sections2. This
data.frame is formed using the LSD and sed components of object and is used by plotLSDerrors.data.frame
in producng the plots. The plots component contains a list of ggplot objects, one for each plot
produced. Multiple plots are stored in the plots component if the sections argument is set and
the plots are are named for the levels combinations of the sections.

Author(s)

Chris Brien

See Also

plotLSDerrors.alldiffs, plotLSDerrors.data.frame, plotLSDs.data.frame,
exploreLSDs, sort.alldiffs, subset.alldiffs, ggplot

Examples

##Subset WaterRunoff data to reduce time to execute
data(WaterRunoff.dat)
tmp <- subset(WaterRunoff.dat, Date == "05-18" & Benches != "3")

##Use asreml to get predictions and associated statistics

Not run:
asreml.options(keep.order = TRUE) #required for asreml-R4 only
current.asr <- asreml(fixed = pH ~ Benches + (Sources * (Type + Species)),

random = ~ Benches:MainPlots,
keep.order=TRUE, data= tmp)

current.asrt <- as.asrtests(current.asr, NULL, NULL)
TS.diffs <- predictPlus.asreml(classify = "Sources:Type",

asreml.obj = current.asr, tables = "none",
wald.tab = current.asrt$wald.tab,
present = c("Type","Species","Sources"))

End(Not run)

Use lmeTest and emmmeans to get predictions and associated statistics

if (requireNamespace("lmerTest", quietly = TRUE) &
requireNamespace("emmeans", quietly = TRUE))

136 plotLSDerrors.data.frame

{
m1.lmer <- lmerTest::lmer(pH ~ Benches + (Sources * (Type + Species)) +

(1|Benches:MainPlots),
data=na.omit(WaterRunoff.dat))

TS.emm <- emmeans::emmeans(m1.lmer, specs = ~ Sources:Type)
TS.preds <- summary(TS.emm)
den.df <- min(TS.preds$df, na.rm = TRUE)
Modify TS.preds to be compatible with a predictions.frame
TS.preds <- as.predictions.frame(TS.preds, predictions = "emmean",

se = "SE", interval.type = "CI",
interval.names = c("lower.CL", "upper.CL"))

Form an all.diffs object and check its validity
TS.vcov <- vcov(TS.emm)
TS.diffs <- allDifferences(predictions = TS.preds, classify = "Sources:Type",

vcov = TS.vcov, tdf = den.df)
validAlldiffs(TS.diffs)

}

Plot LSD values for predictions obtained using asreml or lmerTest
if (exists("TS.diffs"))
{

plotLSDerrors(TS.diffs, gridspacing = rep(c(3,4), c(4,2)))

plotLSDerrors(TS.diffs, sections = "Sources", axis.labels = TRUE)

}

plotLSDerrors.data.frame

Plots a map of the supplied errors that occur in using the computed
LSD values for pairwise differences between predictions.

Description

Produces a plot of the errors that have been supplied in a data.frame. The data.frame includes
two factors whose levels specify, for each LSD result, which combinations of factor levels are being
compared. The function plotLSDerrors.alldiffs produces such data.frames.

Usage

S3 method for class 'data.frame'
plotLSDerrors(object, LSDresults = "LSDresults", x, y,

alpha = 0.05, triangles = "both",
gridspacing = 0, title = NULL,
axis.labels = NULL, axis.text.size = 12,
colours = c("white","blue","red","grey"),
ggplotFuncs = NULL, printPlot = TRUE, ...)

Arguments

object A data.frame containing the three columns specified by LSDresults, x and y.

plotLSDerrors.data.frame 137

LSDresults A character giving the name of the column in object that contains the LS-
Dresults values to be plotted. The column should be a character or factor
with values or levels that are a subset of Ok,FN, FP and na.

x A character giving the name of the column in object that contains the factor
whose levels index the LSD values that are to be plotted in the same column.

y A character giving the name of the column in object that contains the labels
of the LSD values that are to be plotted as the rows.

alpha A numeric giving the significance level for the LSD.

triangles A character indicating whether the plot should include the lower, upper or
both triangle(s). Here it is only used to adjust gridlines for the omission of the
diagonal.

gridspacing A numeric specifying the number(s) of rows and columns that form groups in
the grid of differences. This is most useful when two or more factors index the
rows and columns. If a single, nonzero number, k say, is given then a grid line
is placed after every kth row and column. If a vector of values is given then the
number of grid lines is the length of the vector and the spacing between each is
specified by the elements of the vector.

title A character string giving the main title for the plot.

axis.labels A character string giving the label to use for both the x- and y-axis.

axis.text.size A numeric giving the size of the labels on the axes of the heatmap.

colours A vector of colours to be passed to the ggplot function scale_colour_gradientn.

ggplotFuncs A list, each element of which contains the results of evaluating a ggplot2
function. It is created by calling the list function with a ggplot2 function call
for each element. These functions are applied in creating the ggplot object.

printPlot A logical indicating whether or not the a plot is to be printed. This would be
used when just the returned ggplot object is required.

... Provision for passing arguments to functions called internally - not used at
present.

Value

An object of class "ggplot", which can be plotted using print or otherwise manipulated.

Author(s)

Chris Brien

See Also

plotLSDs.data.frame, plotLSDs.alldiffs, exploreLSDs, ggplot

Examples

##Subset WaterRunoff data to reduce time to execute
data(WaterRunoff.dat)
tmp <- subset(WaterRunoff.dat, Date == "05-18")

##Use asreml to get predictions and associated statistics

Not run:

138 plotLSDs.alldiffs

asreml.options(keep.order = TRUE) #required for asreml-R4 only
current.asr <- asreml(fixed = pH ~ Benches + (Sources * (Type + Species)),

random = ~ Benches:MainPlots,
keep.order=TRUE, data= tmp))

current.asrt <- as.asrtests(current.asr, NULL, NULL)
TS.diffs <- predictPlus.asreml(classify = "Sources:Type",

asreml.obj = current.asr, tables = "none",
wald.tab = current.asrt$wald.tab,
present = c("Type","Species","Sources"))

End(Not run)

Use lmeTest and emmmeans to get predictions and associated statistics

if (requireNamespace("lmerTest", quietly = TRUE) &
requireNamespace("emmeans", quietly = TRUE))

{
m1.lmer <- lmerTest::lmer(pH ~ Benches + (Sources * (Type + Species)) +

(1|Benches:MainPlots),
data=na.omit(WaterRunoff.dat))

TS.emm <- emmeans::emmeans(m1.lmer, specs = ~ Sources:Type)
TS.preds <- summary(TS.emm)
den.df <- min(TS.preds$df, na.rm = TRUE)
Modify TS.preds to be compatible with a predictions.frame
TS.preds <- as.predictions.frame(TS.preds, predictions = "emmean",

se = "SE", interval.type = "CI",
interval.names = c("lower.CL", "upper.CL"))

Form an all.diffs object and check its validity
TS.vcov <- vcov(TS.emm)
TS.diffs <- allDifferences(predictions = TS.preds, classify = "Sources:Type",

vcov = TS.vcov, tdf = den.df)
validAlldiffs(TS.diffs)

}

Plot LSD values for predictions obtained using asreml or lmerTest
if (exists("TS.diffs"))
{

LSDresults <- within(reshape2::melt(TS.diffs$p.differences),
{
Var1 <- factor(Var1, levels=dimnames(TS.diffs$p.differences)[[1]])
Var2 <- factor(Var2, levels=levels(Var1))

})
names(LSDresults) <- c("Rows","Columns","LSDresults")
plotLSDerrors(LSDresults, x = "Rows", y = "Columns", gridspacing = rep(c(3,4), c(4,2)))

}

plotLSDs.alldiffs Plots a heat map of computed LSD values for pairwise differences
between predictions.

Description

Produces a heat-map plot of the computed LSD values for pairwise differences between predic-
tions by multiplying the values stored in the sed component of an alldiffs object by the t-value

plotLSDs.alldiffs 139

for the df stored in the tdf attribute of the object. This component is generally a matrix whose
rows and columns are labelled by the levels of one or more factors, the set of labels being the
same for rows and columns. The sections argument allows multiple plots to be produced, one
for each combination of the levels of the factors listed in sections. Otherwise, a single plot is
produced for all observed combinations of the levels of the factors in the classify attribute for the
alldiffs.object. The plots are produced using plotLSDs.data.frame. The order of plotting the
levels of one of the factors indexing the predictions can be modified using sort.alldiffs.

Usage

plotLSDs(object, ...)
S3 method for class 'alldiffs'
plotLSDs(object, alpha = 0.05,

sections = NULL, gridspacing = 0, factors.per.grid = 0,
triangles = "both",
title = NULL, axis.labels = TRUE, axis.text.size = 12,
sep=",", colours = RColorBrewer::brewer.pal(3, "Set2"),
ggplotFuncs = NULL, printPlot = TRUE,
sortFactor = NULL, sortParallelToCombo = NULL,
sortNestingFactor = NULL, sortOrder = NULL,
decreasing = FALSE, ...)

Arguments

object An alldiffs.object with an sed component that is not NULL.

alpha A numeric giving the significance level for the LSD.

sections A character listing the names of the factors that are to be used to break the plot
into sections. A separate plot will be produced for each observed combination
of the levels of these factors.

gridspacing A numeric specifying the number(s) of rows and columns that form groups in
the grid of differences. An alternative is to specify the factors.per.grid argu-
ment to have the grid spacings automatically calculated. Grids are most useful
when two or more factors index the rows and columns. If a single, nonzero
number, k say, is given then a grid line is placed after every kth row and column.
If a vector of values is given then the number of grid lines is the length of the
vector and the spacing between each is specified by the elements of the vector.

factors.per.grid

A numeric specifying the number of factors to include within each grid of differ-
ences. The gridspacing will then be computed based on the numbers of combi-
nations observed within the levels of the remaining factors in a single plot. The
gridspacing argument to this function will be ignored if factors.per.grid
is greater than zero. Grids are most useful when two or more factors index the
rows and columns of each plot.

triangles A character indicating whether the plot should include the lower, upper or
both triangle(s).

title A character string giving the main title for the plot and to which is appended
the levels combination of the sectioning factors, if any, for each plot.

axis.labels A logical indicating whether a label is to be added to the x- and y-axes. If
TRUE, the label is the comma-separated list of factors whose levels combina-
tions are involved in the prediction differences for which the LSD values are
calculated.

140 plotLSDs.alldiffs

axis.text.size A numeric giving the size of the labels on the axes of the heatmap.

sep A character giving the characters separating the levels of different factors in
the row and column names of the sed component.

colours A vector of colours to be passed to the ggplot function scale_colour_gradientn.

ggplotFuncs A list, each element of which contains the results of evaluating a ggplot2
function. It is created by calling the list function with a ggplot2 function
call for each element. It is passed to ggplot via plotLSDs.data.frame to be
applied in creating the ggplot object.

printPlot A logical indicating whether or not the a plot is to be printed. This would be
used when just the returned data.frame is required.

sortFactor A character containing the name of the factor that indexes the set of pre-
dicted values that determines the sorting of the components. If there is only
one variable in the classify term then sortFactor can be NULL and the order
is defined by the complete set of predicted values. If there is more than one
variable in the classify term then sortFactor must be set. In this case the
sortFactor is sorted in the same order within each combination of the values
of the sortParallelToCombo variables: the classify variables, excluding the
sortFactor. There should be only one predicted value for each unique value
of sortFactor within each set defined by a combination of the values of the
classify variables, excluding the sortFactor factor. The order to use is
determined by either sortParallelToCombo or sortOrder.

sortParallelToCombo

A list that specifies a combination of the values of the factors and numerics,
excluding sortFactor, that are in classify. Each of the components of the
supplied list is named for a classify variable and specifies a single value for
it. The combination of this set of values will be used to define a subset of the
predicted values whose order will define the order of sortFactor. Each of the
other combinations of the values of the factors and numerics will be sorted in
parallel. If sortParallelToCombo is NULL then the first value of each classify
variable, except for the sortFactor factor, in the predictions component
is used to define sortParallelToCombo. If there is only one variable in the
classify then sortParallelToCombo is ignored.

sortNestingFactor

A character containing the name of the factor that defines groups of the
sortFactor within which the predicted values are to be ordered. If there is only
one variable in the classify then sortNestingFactor is ignored.

sortOrder A character vector whose length is the same as the number of levels for
sortFactor in the predictions component of the alldiffs.object. It speci-
fies the desired order of the levels in the reordered components of the alldiffs.object.
The argument sortParallelToCombo is ignored.

The following creates a sortOrder vector levs for factor f based on the values
in x: levs <- levels(f)[order(x)].

decreasing A logical passed to order that detemines whether the order for sorting the
alldiffs.object components is for increasing or decreasing magnitude of the
predicted values.

... Provision for passsing arguments to functions called internally - not used at
present.

plotLSDs.alldiffs 141

Value

A list with components named LSDs and plots. The LSDs component contains the data.frame
with the columns Rows, Columns, LSDs, sections1 and sections2. This data.frame is formed
using the sed component of object and is used by plotLSDs.data.frame in producng the plot.
The plots component contains a list of ggplot objects, one for each plot produced. Multiple plots
are stored in the plots component if the sections argument is set and the plots are are named for
the levels combinations of the sections.

Author(s)

Chris Brien

See Also

plotLSDs.data.frame, exploreLSDs, sort.alldiffs, subset.alldiffs, ggplot

Examples

##Subset WaterRunoff data to reduce time to execute
data(WaterRunoff.dat)
tmp <- subset(WaterRunoff.dat, Date == "05-18" & Benches != "3")

##Use asreml to get predictions and associated statistics

Not run:
asreml.options(keep.order = TRUE) #required for asreml-R4 only
current.asr <- asreml(fixed = pH ~ Benches + (Sources * (Type + Species)),

random = ~ Benches:MainPlots,
keep.order=TRUE, data= tmp)

current.asrt <- as.asrtests(current.asr, NULL, NULL)
TS.diffs <- predictPlus.asreml(classify = "Sources:Type",

asreml.obj = current.asr, tables = "none",
wald.tab = current.asrt$wald.tab,
present = c("Type","Species","Sources"))

End(Not run)

Use lmeTest and emmmeans to get predictions and associated statistics

if (requireNamespace("lmerTest", quietly = TRUE) &
requireNamespace("emmeans", quietly = TRUE))

{
m1.lmer <- lmerTest::lmer(pH ~ Benches + (Sources * (Type + Species)) +

(1|Benches:MainPlots),
data=na.omit(WaterRunoff.dat))

TS.emm <- emmeans::emmeans(m1.lmer, specs = ~ Sources:Type)
TS.preds <- summary(TS.emm)
den.df <- min(TS.preds$df, na.rm = TRUE)
Modify TS.preds to be compatible with a predictions.frame
TS.preds <- as.predictions.frame(TS.preds, predictions = "emmean",

se = "SE", interval.type = "CI",
interval.names = c("lower.CL", "upper.CL"))

Form an all.diffs object and check its validity
TS.vcov <- vcov(TS.emm)
TS.diffs <- allDifferences(predictions = TS.preds, classify = "Sources:Type",

142 plotLSDs.data.frame

vcov = TS.vcov, tdf = den.df)
validAlldiffs(TS.diffs)

}

Plot LSD values for predictions obtained using asreml or lmerTest
if (exists("TS.diffs"))
{

plotLSDs(TS.diffs, gridspacing = rep(c(3,4), c(4,2)))

plotLSDs(TS.diffs, sections = "Sources", axis.labels = TRUE)

}

plotLSDs.data.frame Plots a heat map of computed LSD-values for pairwise differences be-
tween predictions.

Description

Produces a heat-map plot of the computed LSD values for pairwise differences between predictions
that are stored in a data.frame. The data.frame includes two factors whose levels specify, for
each LSD value, which combinations of factor levels are being compared.

Usage

S3 method for class 'data.frame'
plotLSDs(object, LSD = "LSDs", x, y, alpha = 0.05,

triangles = "both", gridspacing = 0,
title = NULL, axis.labels = NULL, axis.text.size = 12,
colours = RColorBrewer::brewer.pal(3, "Set2"),
ggplotFuncs = NULL, printPlot = TRUE, ...)

Arguments

object A data.frame containing the three columns specified by LSD, x and y.

LSD A character giving the name of the column in object that contains the LSD
values to be plotted.

x A character giving the name of the column in object that contains the factor
whose levels index the LSD values that are to be plotted in the same column.

y A character giving the name of the column in object that contains the labels
of the LSD values that are to be plotted as the rows.

alpha A numeric giving the significance level for the LSD.

triangles A character indicating whether the plot should include the lower, upper or
both triangle(s). Here it is only used to adjust gridlines for the omission of the
diagonal.

gridspacing A numeric specifying the number(s) of rows and columns that form groups in
the grid of differences. This is most useful when two or more factors index the
rows and columns. If a single, nonzero number, k say, is given then a grid line
is placed after every kth row and column. If a vector of values is given then the
number of grid lines is the length of the vector and the spacing between each is
specified by the elements of the vector.

plotLSDs.data.frame 143

title A character string giving the main title for the plot.

axis.labels A character string giving the label to use for both the x- and y-axis.

axis.text.size A numeric giving the size of the labels on the axes of the heatmap.

colours A vector of colours to be passed to the ggplot function scale_colour_gradientn.

ggplotFuncs A list, each element of which contains the results of evaluating a ggplot2
function. It is created by calling the list function with a ggplot2 function call
for each element. These functions are applied in creating the ggplot object.

printPlot A logical indicating whether or not the a plot is to be printed. This would be
used when just the returned ggplot object is required.

... Provision for passing arguments to functions called internally - not used at
present.

Value

An object of class "ggplot", which can be plotted using print or otherwise manipulated.

Author(s)

Chris Brien

See Also

plotLSDs.alldiffs, plotLSDerrors.alldiffs, plotLSDerrors.data.frame,
exploreLSDs, ggplot

Examples

##Subset WaterRunoff data to reduce time to execute
data(WaterRunoff.dat)
tmp <- subset(WaterRunoff.dat, Date == "05-18")

##Use asreml to get predictions and associated statistics

Not run:
asreml.options(keep.order = TRUE) #required for asreml-R4 only
current.asr <- asreml(fixed = pH ~ Benches + (Sources * (Type + Species)),

random = ~ Benches:MainPlots,
keep.order=TRUE, data= tmp))

current.asrt <- as.asrtests(current.asr, NULL, NULL)
TS.diffs <- predictPlus.asreml(classify = "Sources:Type",

asreml.obj = current.asr, tables = "none",
wald.tab = current.asrt$wald.tab,
present = c("Type","Species","Sources"))

End(Not run)

Use lmeTest and emmmeans to get predictions and associated statistics

if (requireNamespace("lmerTest", quietly = TRUE) &
requireNamespace("emmeans", quietly = TRUE))

{
m1.lmer <- lmerTest::lmer(pH ~ Benches + (Sources * (Type + Species)) +

(1|Benches:MainPlots),
data=na.omit(WaterRunoff.dat))

144 plotPredictions.data.frame

TS.emm <- emmeans::emmeans(m1.lmer, specs = ~ Sources:Type)
TS.preds <- summary(TS.emm)
den.df <- min(TS.preds$df, na.rm = TRUE)
Modify TS.preds to be compatible with a predictions.frame
TS.preds <- as.predictions.frame(TS.preds, predictions = "emmean",

se = "SE", interval.type = "CI",
interval.names = c("lower.CL", "upper.CL"))

Form an all.diffs object and check its validity
TS.vcov <- vcov(TS.emm)
TS.diffs <- allDifferences(predictions = TS.preds, classify = "Sources:Type",

vcov = TS.vcov, tdf = den.df)
validAlldiffs(TS.diffs)

}

Plot LSD values for predictions obtained using asreml or lmerTest
if (exists("TS.diffs"))
{

LSD <- within(reshape2::melt(TS.diffs$p.differences),
{

Var1 <- factor(Var1, levels=dimnames(TS.diffs$p.differences)[[1]])
Var2 <- factor(Var2, levels=levels(Var1))

})
names(LSD) <- c("Rows","Columns","LSDs")
plotLSDs(LSD, x = "Rows", y = "Columns", gridspacing = rep(c(3,4), c(4,2)))

}

plotPredictions.data.frame

Plots the predictions for a term, possibly with error bars.

Description

This function plots the predictions y that are based on classify and stored in the data.frame
data. The package ggplot2 is used to produce the plots. Line plots are produced when variables
involving x.num or x.fac are involved in classify for the predictions; otherwise, bar charts are
produced. Further, for line charts, the argument panels determines whether a single plot or multiple
plots in a single window are produced; for bar charts, the argument panels is ignored.

Usage

S3 method for class 'data.frame'
plotPredictions(data, classify, y,

x.num = NULL, x.fac = NULL, nonx.fac.order = NULL,
colour.scheme = "colour", panels = "multiple",
graphics.device = NULL,
error.intervals = "Confidence", interval.annotate = TRUE,
titles = NULL, y.title = NULL,
filestem = NULL, printPlot = TRUE, ggplotFuncs = NULL, ...)

plotPredictions.data.frame 145

Arguments

data A predictions.frame, or data.frame, containing the values of the variables
to be plotted. Generally, it should contain the variables classifying the predic-
tions and include a column with the name specified in the y argument, usu-
ally predicted.value or backtransformed.predictions; each row contains
a single predicted value. It should also include columns for the standard.error
and est.status. The number of rows should equal the number of unique com-
binations of the classifying variables. While such a data.frame can be con-
structed from the beginning, the pvals component of the value produced by
predict.asreml is a suitable value to supply for this argument. Note that the
names standard.error and est.status have been changed to std.error and
status in the pvals component produced by asreml-R4; if the new names are
in the data.frame supplied to predictions, they will be returned to the previ-
ous names.
If error.intervals is not "none", then the predictions component and,
if present, the backtransforms component should contain columns for the
lower and upper values of the limits for the interval with names that begin with
lower and upper, respectively. The second part of the name must be one of
Confidence, StandardError or halfLeastSignificant. The last part needs
to be consistent between the lower and upper limits.

classify A character string giving the combinations of the independent variables on which
the predictions are based. It is an interaction type term formed from the inde-
pendent variables, that is, separating the variable names with the : operator. To
predict the overall mean, set the classify to "(Intercept)".

y A character string giving the name of the variable that is to be plotted on the Y
axis.

x.num A character string giving the name of the numeric covariate that (i) is poten-
tially included in terms in the fitted model and (ii) is the x-axis variable for plots.
Its values will not be converted to a factor.

x.fac A character string giving the name of the factor that corresponds to x.num, is
potentially included in terms in the fitted model and which corresponds to the x-
axis variable. It should have the same number of levels as the number of unique
values in x.num. The levels of x.fac must be in the order in which they are to be
plotted - if they are dates, then they should be in the form yyyymmdd, which can
be achieved using as.Date. However, the levels can be non-numeric in nature,
provided that x.num is also set.

nonx.fac.order A character vector giving the order in which factors other than x.fac are to be
plotted in faceted plots (i.e. where the number of non x factors is greater than 1).
The first factor in the vector will be plotted on the X axis (if there is no x.num or
x.fac. Otherwise, the order of plotting the factors is in columns (X facets) and
then rows (Y facets). By default the order is in decreasing order for the numbers
of levels of the non x factors.

colour.scheme A character string specifying the colour scheme for the plots. The default is
"colour" which produces coloured lines and bars, a grey background and white
gridlines. A value of "black" results in black lines, grey bars and gridlines and
a white background.

panels Possible values are "single" and "multiple". When line plots are to be pro-
duced, because variables involving x.num or x.fac are involved in classify
for the predictions, panels determines whether or not a single panel or multiple

146 plotPredictions.data.frame

panels in a single window are produced. The panels argument is ignored for
bar charts.

graphics.device

A character specifying a graphics device for plotting. The default is
graphics.device = NULL, which will result in plots being produced on the cur-
rent graphics device. Setting it to "windows", for example, will result in a win-
dows graphics device being opened.

error.intervals

A character string indicating the type of error interval, if any, to plot in order to
indicate uncertainty in the results. Possible values are "none", "StandardError",
"Confidence" and "halfLeastSignificant". Here, any option other than
"none" will result in the interval limits contained in data being plotted.

interval.annotate

A logical indicating whether the plot annotation indicating the type of error.interval
is to be included in the plot.

titles A list, each component of which is named for a column in the data.frame
for the asreml.obj used in making the predictions and contains a character
string giving a title to use in output (e.g. tables and graphs). Here they will be
used for axis labels for nonresponse variables. For response variable labels see
y.title.

y.title The title to be displayed on the y axis of any plot.

filestem A character sting giving the beginning of the name of the file in which to save
the plot. If filestem = NULL, the plot is not saved. The remainder of the file
name will be generated automatically and consists of the following elements
separated by full stops: the classify term, Bar or Line and, if error.intervals
is not "none", one of SE, CI or LSI. The file will be saved as a ‘png’ file in the
current work directory.

printPlot A logical indicating whether or not the a plot is to be printed. This would be
used when just the returned ggplot object is required.

ggplotFuncs A list, each element of which contains the results of evaluating a ggplot2
function. It is created by calling the list function with a ggplot2 function call
for each element. These functions are applied in creating the ggplot object for
plotting.

... further arguments passed to ggplot.

Value

An object of class ggplot, which can be plotted using print or otherwise manipulated.

Author(s)

Chris Brien

See Also

allDifferences.data.frame, predictPresent.asreml, redoErrorIntervals.alldiffs,
recalcLSD.alldiffs, ggplot, Devices

plotPredictions.data.frame 147

Examples

Not run:
data(WaterRunoff.dat)
asreml.options(keep.order = TRUE) #required for asreml-R4 only
current.asr <- asreml(fixed = log.Turbidity ~ Benches + Sources + Type + Species +

Sources:Type + Sources:Species +
Sources:xDay + Species:xDay + Species:Date,

data = WaterRunoff.dat, keep.order = TRUE)
current.asrt <- as.asrtests(current.asr, NULL, NULL)

Get the observed combinations of the factors and variables in classify
class.facs <- c("Species","Date","xDay")
levs <- as.data.frame(table(WaterRunoff.dat[class.facs]))
levs <- as.list(levs[levs$Freq != 0, class.facs])
levs$xDay <- as.numfac(levs$xDay)

predictions <- predict(current.asr, classify="Species:Date:xDay",
parallel = TRUE, levels = levs,
present = c("Type","Species","Sources"))

for asreml-R3
predictions <- predictions$predictions$pvals
predictions <- predictions[predictions$est.status == "Estimable",]
for asreml-R4
predictions <- predictions$pvals
predictions <- predictions[predictions$status == "Estimable",]
end
plotPredictions(classify="Species:Date:xDay", y = "predicted.value",

data = predictions,
x.num = "xDay", x.fac = "Date",
x.title = "Days since first observation",
y.title = "Predicted log(Turbidity)",
present = c("Type","Species","Sources"),
error.intervals = "none",
ggplotFuncs = list(ggtitle("Transformed turbidity over time")))

diffs <- predictPlus(classify="Species:Date:xDay",
present=c("Type","Species","Sources"),
asreml.obj = current.asr, tables = "none",
x.num = "xDay", x.fac = "Date",
parallel = TRUE, levels = levs,
x.plot.values=c(0,28,56,84),
wald.tab = current.asrt$wald.tab)

x.title <- "Days since first observation"
names(x.title) <- "xDay"
plotPredictions(classify="Species:Date:xDay", y = "predicted.value",

data = diffs$predictions,
x.num = "xDay", x.fac = "Date",
titles = x.title,
y.title = "Predicted log(Turbidity)")

End(Not run)

Use lmerTest and emmmeans to get predictions and associated statistics
if (requireNamespace("lmerTest", quietly = TRUE) &

requireNamespace("emmeans", quietly = TRUE))
{

148 plotPvalues.alldiffs

data(Ladybird.dat)
m1.lmer <- lmerTest::lmer(logitP ~ Host*Cadavers*Ladybird + (1|Run),

data=Ladybird.dat)
HCL.emm <- emmeans::emmeans(m1.lmer, specs = ~ Host:Cadavers:Ladybird)
HCL.preds <- summary(HCL.emm)
den.df <- min(HCL.preds$df)
Modify HCL.preds to be compatible with a predictions.frame
HCL.preds <- as.predictions.frame(HCL.preds, predictions = "emmean",

se = "SE", interval.type = "CI",
interval.names = c("lower.CL", "upper.CL"))

Plot the predictions
plotPredictions(HCL.preds, y = "predicted.value", "Host:Cadavers:Ladybird")

}

plotPvalues.alldiffs Plots a heat map of p-values for pairwise differences between predic-
tions.

Description

Produces a heat-map plot of the p-values for pairwise differences between predictions that is stored
in the p.differences component of an all.diffs object. This is generally a matrix whose rows
and columns are labelled by the levels of one or more factors, the set of labels being the same for
rows and columns. The sections argument allows multiple plots to be produced, one for each
combination of the levels of the factors listed in sections. Otherwise, a single plot is produced for
all observed combinations of the levels of the factors in the classify for the alldiffs.object.
The plots are produced using plotPvalues.data.frame. The order of plotting the levels of one of
the factors indexing the predictions can be modified using sort.alldiffs.

Usage

plotPvalues(object, ...)
S3 method for class 'alldiffs'
plotPvalues(object, sections = NULL,

gridspacing = 0, factors.per.grid = 0,
show.sig = FALSE, alpha = 0.10,
sig.size = 3, sig.colour = "black",
sig.face = "plain", sig.family = "",
triangles = "both",
title = NULL, axis.labels = TRUE, axis.text.size = 12,
sep=",", colours = RColorBrewer::brewer.pal(3, "Set2"),
ggplotFuncs = NULL, printPlot = TRUE,
sortFactor = NULL, sortParallelToCombo = NULL,
sortNestingFactor = NULL, sortOrder = NULL,
decreasing = FALSE, ...)

Arguments

object An alldiffs.object with a p.differences component that is not NULL.

sections A character listing the names of the factors that are to be used to break the plot
into sections. A separate plot will be produced for each observed combination
of the levels of these factors.

plotPvalues.alldiffs 149

gridspacing A numeric specifying the number(s) of rows and columns that form groups in
the grid of differences. An alternative is to specify the factors.per.grid argu-
ment to have the grid spacings automatically calculated. Grids are most useful
when two or more factors index the rows and columns. If a single, nonzero
number, k say, is given then a grid line is placed after every kth row and column.
If a vector of values is given then the number of grid lines is the length of the
vector and the spacing between each is specified by the elements of the vector.

factors.per.grid

A numeric specifying the number of factors to include within each grid of differ-
ences. The gridspacing will then be computed based on the numbers of combi-
nations observed within the levels of the remaining factors in a single plot. The
gridspacing argument to this function will be ignored if factors.per.grid
is greater than zero. Grids are most useful when two or more factors index the
rows and columns of each plot.

show.sig A logical that specifies whether asterisks indicating the level of significance
are to be added to the plot. If they are then ‘***’ indicates that p ≤ 0.001, ‘**’
that 0.001 < p ≤ 0.01, ‘*’ that 0.01 < p ≤ 0.05 ‘.’ that 0.05 < p ≤ 0.10. The
last is only included for alpha = 0.10.

alpha A numeric giving the significance level for testing pairwise differences; must
be 0.05 or 0.10.

sig.size A numeric specifying the size, in pts, of the significance asterisks.

sig.colour A character specifying the colour to use for the significance asterisks.

sig.face A character specifying the font face for the significance asterisks ("plain",
"italic", "bold", "bold.italic").

sig.family A character specifying the font family for the significance asterisks. The font
families that are available depends on the system. For font families other than
the basic Postscript fonts, see the extrafont package.

triangles A character indicating whether the plot should include the lower, upper or
both traingle(s).

title A character string giving the main title for the plot and to which is appended
the levels combination of the sectioning factors, if any, for each plot.

axis.labels A logical indicating whether a label is to be added to the x- and y-axes. If
TRUE, the label is the comma-separated list of factors whose levels combina-
tions are involved in the prediction differences for which the p-values are calcu-
lated.

axis.text.size A numeric giving the size of the labels on the axes of the heatmap.

sep A character giving the characters separating the levels of different factors in
the row and column names of the p.differences component.

colours A vector of of colours to be passed to the ggplot function scale_colour_gradientn.

ggplotFuncs A list, each element of which contains the results of evaluating a ggplot2
function. It is created by calling the list function with a ggplot2 function call
for each element. It is passed to ggplot via plotPvalues.data.frame to be
applied in creating the ggplot object.

printPlot A logical indicating whether or not the a plot is to be printed. This would be
used when just the returned data.frame is required.

sortFactor A character containing the name of the factor that indexes the set of pre-
dicted values that determines the sorting of the components. If there is only
one variable in the classify term then sortFactor can be NULL and the order

150 plotPvalues.alldiffs

is defined by the complete set of predicted values. If there is more than one
variable in the classify term then sortFactor must be set. In this case the
sortFactor is sorted in the same order within each combination of the values
of the sortParallelToCombo variables: the classify variables, excluding the
sortFactor. There should be only one predicted value for each unique value
of sortFactor within each set defined by a combination of the values of the
classify variables, excluding the sortFactor factor. The order to use is
determined by either sortParallelToCombo or sortOrder.

sortParallelToCombo

A list that specifies a combination of the values of the factors and numerics,
excluding sortFactor, that are in classify. Each of the components of the
supplied list is named for a classify variable and specifies a single value for
it. The combination of this set of values will be used to define a subset of the
predicted values whose order will define the order of sortFactor. Each of the
other combinations of the values of the factors and numerics will be sorted in
parallel. If sortParallelToCombo is NULL then the first value of each classify
variable, except for the sortFactor factor, in the predictions component
is used to define sortParallelToCombo. If there is only one variable in the
classify then sortParallelToCombo is ignored.

sortNestingFactor

A character containing the name of the factor that defines groups of the
sortFactor within which the predicted values are to be ordered. If there is only
one variable in the classify then sortNestingFactor is ignored.

sortOrder A character vector whose length is the same as the number of levels for
sortFactor in the predictions component of the alldiffs.object. It speci-
fies the desired order of the levels in the reordered components of the alldiffs.object.
The argument sortParallelToCombo is ignored.
The following creates a sortOrder vector levs for factor f based on the values
in x: levs <- levels(f)[order(x)].

decreasing A logical passed to order that detemines whether the order for sorting the
alldiffs.object components is for increasing or decreasing magnitude of the
predicted values.

... Provision for passsing arguments to functions called internally - not used at
present.

Value

A list with components named pvalues and plots. The pvalues component contains the data.frame
with the columns Rows, Columns, p, sections1 and sections2. This data.frame is formed using
the sed component of object and is used by plotPvalues.data.frame in producng the plot. The
plots component contains a list of ggplot objects, one for each plot produced. Multiple plots are
stored in the plots component if the sections argument is set and the plots are are named for the
levels combinations of the sections.

Author(s)

Chris Brien

See Also

plotPvalues.data.frame, allDifferences.data.frame, sort.alldiffs, subset.alldiffs,
ggplot

plotPvalues.data.frame 151

Examples

##Subset WaterRunoff data to reduce time to execute
data(WaterRunoff.dat)
tmp <- subset(WaterRunoff.dat, Date == "05-18" & Benches != "3")

##Use asreml to get predictions and associated statistics

Not run:
asreml.options(keep.order = TRUE) #required for asreml-R4 only
current.asr <- asreml(fixed = pH ~ Benches + (Sources * (Type + Species)),

random = ~ Benches:MainPlots,
keep.order=TRUE, data= tmp)

current.asrt <- as.asrtests(current.asr, NULL, NULL)
TS.diffs <- predictPlus.asreml(classify = "Sources:Type",

asreml.obj = current.asr, tables = "none",
wald.tab = current.asrt$wald.tab,
present = c("Type","Species","Sources"))

End(Not run)

Use lmeTest and emmmeans to get predictions and associated statistics

if (requireNamespace("lmerTest", quietly = TRUE) &
requireNamespace("emmeans", quietly = TRUE))

{
m1.lmer <- lmerTest::lmer(pH ~ Benches + (Sources * (Type + Species)) +

(1|Benches:MainPlots),
data=na.omit(WaterRunoff.dat))

TS.emm <- emmeans::emmeans(m1.lmer, specs = ~ Sources:Type)
TS.preds <- summary(TS.emm)
den.df <- min(TS.preds$df, na.rm = TRUE)
Modify TS.preds to be compatible with a predictions.frame
TS.preds <- as.predictions.frame(TS.preds, predictions = "emmean",

se = "SE", interval.type = "CI",
interval.names = c("lower.CL", "upper.CL"))

Form an all.diffs object and check its validity
TS.vcov <- vcov(TS.emm)
TS.diffs <- allDifferences(predictions = TS.preds, classify = "Sources:Type",

vcov = TS.vcov, tdf = den.df)
validAlldiffs(TS.diffs)

}

Plot p-values for predictions obtained using asreml or lmerTest
if (exists("TS.diffs"))
{

plotPvalues(TS.diffs, gridspacing = rep(c(3,4), c(4,2)), show.sig = TRUE)

plotPvalues(TS.diffs, sections = "Sources", show.sig = TRUE, axis.labels = TRUE)

}

152 plotPvalues.data.frame

plotPvalues.data.frame

Plots a heat map of p-values for pairwise differences between predic-
tions.

Description

Produces a heat-map plot of the p-values for pairwise differences between predictions that is in a
data.frame. The data.frame includes two factors whose levels specify, for each p-value, which
factor levels are being compared.

Usage

S3 method for class 'data.frame'
plotPvalues(object, p = "p", x, y,

gridspacing = 0, show.sig = FALSE, alpha = 0.10,
sig.size = 3, sig.colour = "black",
sig.face = "plain", sig.family = "",
triangles = "both",
title = NULL, axis.labels = NULL, axis.text.size = 12,
colours = RColorBrewer::brewer.pal(3, "Set2"),
ggplotFuncs = NULL, printPlot = TRUE, ...)

Arguments

object A data.frame containing the three columns specified by p, x and y.

p A character giving the name of the column in object that contains the p-
values to be plotted.

x A character giving the name of the column in object that contains the factor
whose levels index the p-values that are to be plotted in the same column.

y A character giving the name of the column in object that contains the labels
of the p-values that are to be plotted as the rows.

gridspacing A numeric specifying the number(s) of rows and columns that form groups in
the grid of differences. This is most useful when two or more factors index the
rows and columns. If a single, nonzero number, k say, is given then a grid line
is placed after every kth row and column. If a vector of values is given then the
number of grid lines is the length of the vector and the spacing between each is
specified by the elements of the vector.

show.sig A logical that specifies whether asterisks indicating the level of significance
are to be added to the plot. If they are then ‘***’ indicates that p ≤ 0.001, ‘**’
that 0.001 < p ≤ 0.01, ‘*’ that 0.01 < p ≤ 0.05 ‘.’ that 0.05 < p ≤ 0.10. The
last is only included for alpha = 0.10.

alpha A numeric giving the significance level for testing pairwise differences; must
be 0.05 or 0.10.

sig.size A numeric specifying the size, in pts, of the significance asterisks.

sig.colour A character specifying the colour to use for the significance asterisks.

sig.face A character specifying the font face for the significance asterisks ("plain",
"italic", "bold", "bold.italic").

plotPvalues.data.frame 153

sig.family A character specifying the font family for the significance asterisks. The font
families that are available depends on the system. For font families other than
the basic Postscript fonts, see the extrafont package.

triangles A character indicating whether the plot should include the lower, upper or
both traingle(s). Here it is only used to adjust gridlines for the omission of the
diagonal.

title A character string giving the main title for the plot.

axis.labels A character string giving the label to use for both the x- and y-axis.

axis.text.size A numeric giving the size of the labels on the axes of the heatmap.

colours A vector of of colours to be passed to the ggplot function scale_colour_gradientn.

ggplotFuncs A list, each element of which contains the results of evaluating a ggplot2
function. It is created by calling the list function with a ggplot2 function call
for each element. These functions are applied in creating the ggplot object.

printPlot A logical indicating whether or not the a plot is to be printed. This would be
used when just the returned ggplot object is required.

... Provision for passsing arguments to functions called internally - not used at
present.

Value

An object of class "ggplot", which can be plotted using print or otherwise manipulated.

Author(s)

Chris Brien

See Also

plotPvalues.alldiffs, allDifferences.data.frame, ggplot

Examples

##Subset WaterRunoff data to reduce time to execute
data(WaterRunoff.dat)
tmp <- subset(WaterRunoff.dat, Date == "05-18")

##Use asreml to get predictions and associated statistics

Not run:
asreml.options(keep.order = TRUE) #required for asreml-R4 only
current.asr <- asreml(fixed = pH ~ Benches + (Sources * (Type + Species)),

random = ~ Benches:MainPlots,
keep.order=TRUE, data= tmp))

current.asrt <- as.asrtests(current.asr, NULL, NULL)
SS.diffs <- predictPlus.asreml(classify = "Sources:Type",

asreml.obj = current.asr, tables = "none",
wald.tab = current.asrt$wald.tab,
present = c("Type","Species","Sources"))

End(Not run)

Use lmeTest and emmmeans to get predictions and associated statistics

154 plotVariofaces.data.frame

if (requireNamespace("lmerTest", quietly = TRUE) &
requireNamespace("emmeans", quietly = TRUE))

{
m1.lmer <- lmerTest::lmer(pH ~ Benches + (Sources * (Type + Species)) +

(1|Benches:MainPlots),
data=na.omit(WaterRunoff.dat))

TS.emm <- emmeans::emmeans(m1.lmer, specs = ~ Sources:Type)
TS.preds <- summary(TS.emm)
den.df <- min(TS.preds$df, na.rm = TRUE)
Modify TS.preds to be compatible with a predictions.frame
TS.preds <- as.predictions.frame(TS.preds, predictions = "emmean",

se = "SE", interval.type = "CI",
interval.names = c("lower.CL", "upper.CL"))

Form an all.diffs object and check its validity
TS.vcov <- vcov(TS.emm)
TS.diffs <- allDifferences(predictions = TS.preds, classify = "Sources:Type",

vcov = TS.vcov, tdf = den.df)
validAlldiffs(TS.diffs)

}

Plot p-values for predictions obtained using asreml or lmerTest
if (exists("TS.diffs"))
{

p <- within(reshape2::melt(TS.diffs$p.differences),
{

Var1 <- factor(Var1, levels=dimnames(TS.diffs$p.differences)[[1]])
Var2 <- factor(Var2, levels=levels(Var1))

})
names(p) <- c("Rows","Columns","p")
plotPvalues(p, x = "Rows", y = "Columns",

gridspacing = rep(c(3,4), c(4,2)), show.sig = TRUE)
}

plotVariofaces.data.frame

Plots empirical variogram faces, including envelopes, from supplied
residuals as described by Stefanova, Smith & Cullis (2009).

Description

Produces a plot for each face of an empirical 2D variogram based on supplied residuals from
both an observed data set and simulated data sets. Those from simulated data sets are used to
produce confidence envelopes If the data consists of sections, such as separate experiments, the
two variogram faces are produced for each section. This function is less efficient in storage terms
than variofaces.asreml, because here the residuals from all simulated data sets must be saved,
in addition to the values for the variogram faces; in variofaces.asreml, the residuals for each
simulated data set are discarded after the variogram has been calculated. On the other hand, the
present function is more flexible, because there is no restriction on how the residuals are obtained.

Usage

S3 method for class 'data.frame'
plotVariofaces(data, residuals, restype="Residuals", ...)

plotVariofaces.data.frame 155

Arguments

data A data.frame with either 3 or 4 columns. Only if there are 4 columns, the
first should be a factor indexing sections for which separate variogram plots are
to be produced. In either case, the other 3 columns should be, in order, (i) a
factor indexing the x-direction, (ii) a factor indexing the y-direction, and (iii)
the residuals for the observed response.

residuals A data.frame, with either 2 or 3 initial columns followed by columns, each of
which are the residuals from a simulated data set.

restype A character describing the type of residuals that have been supplied. It will be
used in the plot titles.

... Other arguments that are passed down to the function asreml.variogram.

Details

For each set of residuals, asreml.variogram is used to obtain the empirical variogram, from which
the values for its faces are obtained. Plots are produced for each face and include the observed
residuals and the 2.5%, 50% & 97.5% quantiles.

Value

A list with the following components:

1. face1: a data.frame containing the variogram values on which the plot for the first dimension
is based.

2. face2: a data.frame containing the variogram values on which the plot for the second di-
mension is based.

Author(s)

Chris Brien

References

Stefanova, K. T., Smith, A. B. & Cullis, B. R. (2009) Enhanced diagnostics for the spatial analysis
of field trials. Journal of Agricultural, Biological, and Environmental Statistics, 14, 392–410.

See Also

asremlPlus-package, asreml, asreml.variogram, variofaces.asreml, simulate.asreml.

Examples

Not run:
data(Wheat.dat)
current.asr <- asreml(yield ~ Rep + WithinColPairs + Variety,

random = ~ Row + Column + units,
residual = ~ ar1(Row):ar1(Column),
data=Wheat.dat)

current.asrt <- as.asrtests(current.asr, NULL, NULL)
current.asrt <- rmboundary.asrtests(current.asrt)
Form variance matrix based on estimated variance parameters
s2 <- current.asr$sigma2
gamma.Row <- current.asr$gammas[1]

156 powerTransform

gamma.unit <- current.asr$gammas[2]
rho.r <- current.asr$gammas[4]
rho.c <- current.asr$gammas[5]
row.ar1 <- mat.ar1(order=10, rho=rho.r)
col.ar1 <- mat.ar1(order=15, rho=rho.c)
V <- gamma.Row * fac.sumop(Wheat.dat$Row) +

gamma.unit * diag(1, nrow=150, ncol=150) +
mat.dirprod(col.ar1, row.ar1)

V <- s2*V

#Produce variogram faces plot (Stefanaova et al, 2009)
resid <- simulate(current.asr, V=V, which="residuals")
resid$residuals <- cbind(resid$observed[c("Row","Column")],

resid$residuals)
plotVariofaces(data=resid$observed[c("Row","Column","residuals")],

residuals=resid$residuals,
restype="Standardized conditional residuals")

End(Not run)

powerTransform Performs a combination of a linear and a power transformation on a
variable. The transformed variable is stored in the data.frame data.

Description

Perform a combination of a linear and a power transformation on a variable whose name is given
as a character string in var.name. The transformed variable is stored in the data.frame data. The
name of the transformed variable is made by prepending to the original var.name a combination
of (i) .offset, if offset is nonzero, (ii) neg., if scale is -1, or scaled., if abs(scale) is other
than one, and (iii) either log., sqrt., recip. or power., if power is other than one. No action is
taken if there is no transformation (i.e. offset = 0, scale = 1 and power = 1). Also, the titles
list is extended to include a component with a generated title for the transformed variable with text
indicating the transformation prepended to the title for the var.name obtained from the titles
list. For nonzero offset, ‘Offset ’ is prepended, For scaled not equal to one, the possible
prepends are ‘Negative of ’ and ‘Scaled ’. The possible prepended texts for power not equal to one
are ‘Logarithm of’, ‘Square root of ’, ‘Reciprocal of ’ and ‘Power nnnn of ’, where nnn is the power
used.

Usage

powerTransform(var.name, power = 1, offset = 0, scale = 1, titles = NULL, data)

Arguments

var.name A character string specifying the name of the variable in the data.frame
data that is to be transformed.

power A number specifying the power to be used in the transformation. If equal to 1,
the default, no power transformation is applied. Otherwise, the variable is raised
to the specified power, after scaling and applying any nonzero offset. If power
= 0, the natural logarithm is used to transform the response; however, if the
smallest value to be log-transformed is less than 1e-04, an error is generated. A

powerTransform 157

log-transformation in this situation may be possible if a nonzero offset and/or
a scale not equal to one is used.

offset A number to be added to each value of the variable, after any scaling and before
applying any power transformation.

scale A number to multiply each value of the variable, before adding any offset and
applying any power transformation.

titles A character vector, each element of which is named for a variable in data
and is a character string giving a title to use in output (e.g. tables and graphs)
involving the variable. If titles are not supplied, the column name of the variable
in data is used.

data A data.frame containing the variable to be transformed and to which the trans-
formed variable is to be appended.

Value

A list with a component named data that is the data.frame containing the transformed variable,
a component named tvar.name that is a character string that is the name of the transformed
variable in data, and a component named titles that extends the list supplied in the titles
argument to include a generated title for the transformed title, the name of the new component
being tvar.name.

Author(s)

Chris Brien

See Also

angular, angular.mod.

Examples

set up a factor with labels
x.dat <- data.frame(y = c(14, 42, 120, 150))

transform y to logarithms
trans <- powerTransform("y", power = 0, titles=list(y = "Length (cm)"), data = x.dat)
x.dat <- trans$data
tvar.name <- trans$tvar.name

transform y to logarithms after multiplying by -1 and adding 1.
z.dat <- data.frame(y = c(-5.25, -4.29, -1.22, 0.05))
trans <- powerTransform("y", power = 0, scale = -1, offset = 1 ,

titles=list(y = "Potential"), data = z.dat)
z.dat <- trans$data
tvar.name <- trans$tvar.name

158 predictions.frame

predictions.frame Description of a predictions object

Description

A data.frame of S3-class predictions.frame that stores the predictions for a fitted model.

as.predictions.frame is function that converts a data.frame to an object of this class.

is.predictions.frame is the membership function for this class; it tests that an object has class
predictions.frame.

validPredictionsFrame can be used to test the validity of a predictions.frame.

Value

A data.frame that begins with the variables classifying the predictions, in the same order as in
the classify, followed by a column of predictions that is named either predicted.value or
backtransformed.predictions; it also contains columns named standard.error and est.status.
The number of rows should equal the number of unique combinations of the classifying variables.
While such a data.frame can be constructed from the beginning, the pvals component of the value
produced by predict.asreml is a suitable value to supply for this argument. Note that the names
standard.error and est.status have been changed to std.error and status in the pvals com-
ponent produced by asreml-R4; if the new names are in the data.frame supplied to predictions,
they will be returned to the previous names.

The data.frame may also include columns for the lower and upper values of error intervals, either
standard error, confidence or half-LSD intervals. The names of these columns will consist of three
parts separated by full stops: 1) the first part will be lower or upper; 2) the second part will be
one of Confidence, StandardError or halfLeastSignificant; 3) the third component will be
limits.

IF accuracy.threshold is set to a numeric value at the time the prediction.frame is formed, it
will also include a column logical values named LSDwarning.

When halfLeastSignificant limits have been included in a predictions.frame, its attributes
will include those that are not NULL of LSDtype, LSDby, LSDstatistic, LSDaccuracy and LSDvalues.
LSDvalues are the LSD values used to calculate the halfLeastSignificant error.intervals
and are an expanded version of the values stored in the assignedLSD column of the LSD.frame.

See predictPlus.asreml for more information.

Author(s)

Chris Brien

See Also

predictPlus.asreml, is.predictions.frame, as.predictions.frame, validPredictionsFrame

Examples

data(Oats.dat)

Use asreml to get predictions and associated statistics

predictPlus.asreml 159

Not run:
m1.asr <- asreml(Yield ~ Nitrogen*Variety,

random=~Blocks/Wplots,
data=Oats.dat)

current.asrt <- as.asrtests(m1.asr)
Var.pred <- asreml::predict.asreml(m1.asr, classify="Nitrogen:Variety",

sed=TRUE)
if (getASRemlVersionLoaded(nchar = 1) == "3")

Var.pred <- Var.pred$predictions
Var.preds <- as.predictions.frame(Var.pred$pvals, se = "std.error",

est.status = "status")

End(Not run)

Use lmerTest and emmmeans to get predictions and associated statistics
if (requireNamespace("lmerTest", quietly = TRUE) &

requireNamespace("emmeans", quietly = TRUE))
{

m1.lmer <- lmerTest::lmer(Yield ~ Nitrogen*Variety + (1|Blocks/Wplots),
data=Oats.dat)

Var.emm <- emmeans::emmeans(m1.lmer, specs = ~ Nitrogen:Variety)
Var.preds <- summary(Var.emm)
Var.preds <- as.predictions.frame(Var.preds, predictions = "emmean",

se = "SE", interval.type = "CI",
interval.names = c("lower.CL", "upper.CL"))

}

if (exists("Var.preds"))
{

Check the class and validity of the alldiffs object
is.predictions.frame(Var.preds)
validPredictionsFrame(Var.preds)

}

predictPlus.asreml Forms the predictions for a term, their pairwise differences and as-
sociated statistics. A factor having parallel values may occur in the
model and a linear transformation of the predictions can be specified.
It results in an object of class alldifffs.

Description

This function forms the predictions for term using classify and the supplied asreml object and
stores them in an alldiffs.object. If x.num is supplied, the predictions will be obtained for
the values supplied in x.pred.values and, if supplied, x.plot.values will replace them in the
alldiffs.object that is returned. If x.fac, but not x.num, is specified, predictions will involve
it and, if supplied, x.plot.values will replace the levels of x.fac in the alldiffs.object that
is returned. In order to get the correct predictions you may need to supply additional arguments to
predict.asreml through ... e.g. present, parallel, levels. Any aliased predictions will be
removed, as will any standard error of pairwise differences involving them.

Also calculated are the approximate degrees of freedom of the standard errors of the predictions. If
the denominator degrees of freedom for term are available in wald.tab, they are used. Otherwise
the residual degrees of freedom or the maximum of the denominator degrees in wald.tab, excluding

160 predictPlus.asreml

the Intercept, are used. Which is used depends on the setting of dDF.na. These degrees of freedom
are used for the t-distribution on which p-values and confidence intervals are based. It is stored
as an attribute to the alldiffs.object. The degrees of freedom are also used in calculating the
minimum, mean and maximum LSD for comparing pairs of predictions, which are also stored in
the alldiffs.object.

If pairwise = TRUE, all pairwise differences between the predictions, their standard errors, p-
values and LSD statistics are computed using allDifferences.data.frame. This adds them to
the alldiffs.object as additional list components named differences, sed, p.differences
and LSD.

If a linear transformation of the predictions is specified then the values of this linear transformation
are returned, instead of the original predictions, along with their standard errors and the pairwise
differences and associated statistics.

If a transformation has been applied in the analysis (any one of transform.power is not one,
scale is not one and offset is nonzero), the backtransforms of the transformed values and their
lower and upper error intervals are added to a data.frame that is consistent with the predictions
data.frame. If transform.power is other than one, the standard.error column of the data.frame
is set to NA. This data.frame is added to the alldiffs.object as a list component called
backtransforms.

The printing of the components produced is controlled by the tables argument. The order of
plotting the levels of one of the factors indexing the predictions can be modified and is achieved
using sort.alldiffs.

Usage

S3 method for class 'asreml'
predictPlus(asreml.obj, classify, term = NULL,

inestimable.rm = TRUE,
linear.transformation = NULL, EGLS.linTransform = TRUE,
error.intervals = "Confidence", alpha = 0.05,
wald.tab = NULL, dDF.na = "residual", dDF.values = NULL,
pairwise = TRUE, Vmatrix = FALSE,
avsed.tolerance = 0.25, accuracy.threshold = NA,
LSDtype = "overall", LSDsupplied = NULL, LSDby = NULL,
LSDstatistic = "mean", LSDaccuracy = "maxAbsDeviation",
x.num = NULL, x.fac = NULL,
x.pred.values = NULL, x.plot.values = NULL,
titles = NULL, tables = "all" , level.length = NA,
transform.power = 1, offset = 0, scale = 1,
transform.function = "identity",
sortFactor = NULL, sortParallelToCombo = NULL,
sortNestingFactor = NULL, sortOrder = NULL,
decreasing = FALSE, trace = FALSE, ...)

Arguments

asreml.obj asreml object for a fitted model.

classify A character string giving the variables that define the margins of the multi-
way table to be predicted. Multiway tables are specified by forming an inter-
action type term from the classifying variables, that is, separating the variable
names with the : operator. To predict the overall mean, set the classify to
"(Intercept)".

predictPlus.asreml 161

term A character string giving the variables that define the term that was fitted using
asreml and that corresponds to classify. It only needs to be specified when
it is different to classify; it is stored as an attribute of the alldiffs.object.
It is likely to be needed when the fitted model includes terms that involve both
a numeric covariate and a factor that parallel each other; the classify would
include the covariate and the term would include the factor.

inestimable.rm A logical indicating whether rows for predictions that are not estimable are to
be removed from the components of the alldiffs.object.

linear.transformation

A formula or a matrix. If a formula is given then it is taken to be a submodel
of a model term corresponding to the classify. The projection matrix that
transforms the predictions so that they conform to the submodel is obtained;
the submodel does not have to involve variables in the classify, but the vari-
ables must be columns in the predictions component of alldiffs.obj and
the space for the submodel must be a subspace of the space for the term spec-
ified by the classify. For example, for classify set to "A:B", the submodel
~ A + B will result in the predictions for the combinations of A and B being
made additive for the factors A and B. The submodel space corresponding to A
+ B is a subspace of the space A:B. In this case both the submodel and the clas-
sify involve only the factors A and B. To fit an intercept-only submodel, specify
linear.transformation to be the formula ~1.
If a matrix is provided then it will be used to apply the linear transformation
to the predictions. It might be a contrast matrix or a matrix of weights
for a factor used to obtain the weighted average over that factor. The number
of rows in the matrix should equal the number of linear combinations of the
predictions desired and the number of columns should equal the number of
predictions.
In either case, as well as the values of the linear combinations, their standard
errors, pairwise differences and associated statistics are returned.

EGLS.linTransform

A logical indicating whether or not the linear.transformation of the pre-
dictions stored in an alldiffs.object by fitting a submodel supplied in a
formula is to take into account the variance of the predictions using a Estimated
Generalized Least Squares (EGLS) approach. This is likely to be appropriate
when the variance matrix of the predictions is not compound symmetric i.e.
when not all the variances are equal or not all the covariances are equal. If the
variance matrix is compund symmetric, then the setting of EGLS.linTransform
will not affect the transformed predictions.

error.intervals

A character string indicating the type of error interval, if any, to calculate
in order to indicate uncertainty in the results. Possible values are "none",
"StandardError", "Confidence" and "halfLeastSignificant". The de-
fault is for confidence limits to be used. The "halfLeastSignificant" option
results in half the Least Significant Difference (LSD) being added and subtracted
to the predictions, the LSD being calculated using the square root of the mean
of the variances of all or a subset of pairwise differences between the predic-
tions. If the LSD is zero, as can happen when predictions are constrained to be
equal, then the limits of the error intervals are set to NA. If LSDtype is set to
overall, the avsed.tolerance is not NA and the range of the SEDs divided by
the average of the SEDs exceeds avsed.tolerance then the error.intervals
calculations and the plotting will revert to confidence intervals.

162 predictPlus.asreml

alpha A numeric giving the significance level for LSDs or one minus the confidence
level for confidence intervals. It is stored as an attribute to the alldiffs.object.

wald.tab A data.frame containing the pseudo-anova table for the fixed terms produced
by a call to wald.asreml. The main use of it here is in determining the degrees
of freedom for calculating confidence or half-LSD error.intervals and p-
values, the latter to be stored in the p.differences component of the alldiffs.object
that is created.

dDF.na A character specifying the method to use to obtain approximate denominator
degrees of freedom. when the numeric or algebraic methods produce an NA.
Consistent with when no denDF are available, the default is "residual" and so
the residual degrees of freedom from asreml.obj$nedf are used. If dDF.na =
"none", no substitute denominator degrees of freedom are employed; if dDF.na
= "maximum", the maximum of those denDF that are available, excluding that for
the Intercept, is used; if all denDF are NA, asreml.obj$nedf is used. If dDF.na
= "supplied", a vector of values for the denominator degrees of freedom is to
be supplied in dDF.values. Any other setting is ignored and a warning message
produced. Generally, substituting these degrees of freedom is anticonservative
in that it is likely that the degrees of freedom used will be too large.

dDF.values A vector of values to be used when dDF.na = "supplied". Its values will be
used when denDF in a test for a fixed effect is NA. This vector must be the same
length as the number of fixed terms, including (Intercept) whose value could be
NA.

pairwise A logical indicating whether all pairwise differences of the predictions and
their standard errors and p-values are to be computed and stored. If tables is
equal to "differences" or "all" or error.intervals is equal to "halfLeastSignificant",
they will be stored irrespective of the value of pairwise.

Vmatrix A logical indicating whether the variance matrix of the predictions will be
stored as a component of the alldiffs.object that is returned. If linear.transformation
is set, it will be stored irrespective of the value of Vmatrix.

avsed.tolerance

A numeric giving the value of the SED range, the range of the SEDs divided
by the square root of the mean of the variances of all or a subset of the pairwise
differences, that is considered reasonable in calculating error.intervals. To
have it ignored, set it to NA. It should be a value between 0 and 1. The following
rules apply:

1. If avsed.tolerance is NA then mean LSDs of the type specified by LSDtype
are calculated and used in error.intervals and plots.

2. Irrespective of the setting of LSDtype, if avsed.tolerance is not exceeded
then the mean LSDs are used in error.intervals and plots.

3. If LSDtype is set to overall, avsed.tolerance is not NA, and avsed.tolerance
is exceeded then error.intervals and plotting revert to confidence inter-
vals.

4. If LSDtype is set to factor.combinations and avsed.tolerance is not
exceeded for any factor combination then the half LSDs are used in error.intervals
and plots; otherwise, error.intervals and plotting revert to confidence
intervals.

5. If LSDtype is set to per.prediction and avsed.tolerance is not ex-
ceeded for any prediction then the half LSDs are used in error.intervals
and plots; otherwise, error.intervals and plotting revert to confidence
intervals.

predictPlus.asreml 163

accuracy.threshold

A numeric specifying the value of the LSD accuracy measure, which measure
is specified by LSDaccuracy, as a threshold value in determining whether the
hallfLeastSignificant error.interval for a predicted value is a reason-
able approximation; this will be the case if the LSDs across all pairwise compar-
isons for which the interval’s LSD was computed, as specified by LSDtype and
LSDby, are similar enough to the interval’s LSD, as measured by LSDaccuracy.
If it is NA, it will be ignored. If it is not NA, a column of logicals named
LSDwarning will be added to the predictions component of the alldiffs.object.
The value of LSDwarning for a predicted.value will be TRUE if the value of
the LSDaccuracy measure computed from the LSDs for differences between
this predicted.value and the other predicted.values as compared to its
assignedLSD exceeds the value of accuracy.threshold. Otherwise, the value
of LSDwarning for a predicted.value will be FALSE.

LSDtype A character string that can be overall, factor.combinations, per.prediction
or supplied. It determines whether the values stored in a row of a LSD.frame
are the values calculated (i) overall from the LSD values for all pairwise
comparison2, (ii) the values calculated from the pairwise LSDs for the lev-
els of each factor.combination, unless there is only one prediction for a
level of the factor.combination, when a notional LSD is calculated, (iii)
per.prediction, being based, for each prediction, on all pairwise differences
involving that prediction, or (iv) as supplied values of the LSD, specified
with the LSDsupplied argument; these supplied values are to be placed in the
assignedLSD column of the LSD.frame stored in an alldiffs.object so that
they can be used in LSD calculations.
See LSD.frame for further information on the values in a row of this data.frame
and how they are calculated.

LSDsupplied A data.frame or a named numeric containing a set of LSD values that cor-
respond to the observed combinations of the values of the LSDby variables in
the predictions.frame or a single LSD value that is an overall LSD. If a
data.frame, it may have (i) a column for the LSDby variable and a column of
LSD values or (ii) a single column of LSD values with rownames being the com-
binations of the observed values of the LSDby variables. Any name can be used
for the column of LSD values; assignedLSD is sensible, but not obligatory. Oth-
erwise, a numeric containing the LSD values, each of which is named for the ob-
served combination of the values of the LSDby variables to which it corresponds.
(Applying the function dae::fac.combine to the predictions component is
one way of forming the required combinations for the (row) names.) The val-
ues supplied will be incorporated into assignedLSD column of the LSD.frame
stored as the LSD component of the alldiffs.object.

LSDby A character (vector) of variables names, being the names of the factors or
numerics in the classify; for each combination of their levels and values,
there will be or is a row in the LSD.frame stored in the LSD component of the
alldiffs.object when LSDtype is factor.combinatons.

LSDstatistic A character nominating one or more of minimum, q10, q25, mean, median,
q75, q90 or maximum as the value(s) to be stored in the assignedLSD column
in an LSD.frame; the values in the assignedLSD column are used in computing
halfLeastSignificant error.intervals. Here q10, q25, q75 and q90 indi-
cate the sample quantiles corresponding to probabilities of 0.1, 0.25, 0.75 and
0.9 for the group of LSDs from which a single LSD value is calculated. The
function quantile is used to obtain them. The mean LSD is calculated as the
square root of the mean of the squares of the LSDs for the group. The median

164 predictPlus.asreml

is calculated using the median function. Multiple values are only produced for
LSDtype set to factor.combination, in which case LSDby must not be NULL
and the number of values must equal the number of observed combinations of
the values of the variables specified by LSDby. If LSDstatistic is NULL, it is
reset to mean.

LSDaccuracy A character nominating one of maxAbsDeviation, maxDeviation, q90Deviation
or RootMeanSqDeviation as the statistic to be calculated as a measure of the ac-
curacy of assignedLSD. The option q90Deviation produces the sample quan-
tile corresponding to a probability of 0.90. The deviations are the differences
between the LSDs used in calculating the LSD statistics and each assigned LSD
and the accuracy is expressed as a proportion of the assigned LSD value. The
calculated values are stored in the column named accuracyLSD in an LSD.frame.

titles A list, each component of which is named for a column in the data.frame
for asreml.obj and contains a character string giving a title to use in output
(e.g. tables and graphs). Here they will be used for table headings.

tables A character vector containing a combination of none, predictions, vcov,
backtransforms, differences, p.differences, sed, LSD and all. These
nominate which components of the alldiffs.object to print.

x.num A character string giving the name of the numeric covariate that (i) is poten-
tially included in terms in the fitted model and (ii) is the x-axis variable for plots.
Its values will not be converted to a factor.

x.fac A character string giving the name of the factor that (i) corresponds to x.num
and (ii) is potentially included in terms in the fitted model. It should have the
same number of levels as the number of unique values in x.num. The levels of
x.fac must be in the order in which they are to be plotted - if they are dates, then
they should be in the form yyyymmdd, which can be achieved using as.Date.
However, the levels can be non-numeric in nature, provided that x.num is also
set.

x.pred.values The values of x.num for which predicted values are required. If levels is set
for passing to predict.asreml, x.pred.values is ignored. Note that while
levels is an alternative to x.pred.values, x.pred.values allows more gen-
eral setting of the levels to be predicted.

x.plot.values The actual values to be plotted on the x axis. They are needed when values
different to those in x.num are to be plotted or x.fac is to be plotted because
there is no x.num term corresponding to the same term with x.fac.

level.length The maximum number of characters from the levels of factors to use in the row
and column labels of the tables of pairwise differences and their p-values and
standard errors.

transform.power

A numeric specifying the power of a transformation, if one has been applied
to the response variable. Unless it is equal to 1, the default, back-transforms of
the predictions will be obtained and stored in the backtransforms component
of the alldiffs.object. The back-transformation raises the predictions to the
power equal to the reciprocal of transform.power, unless it equals 0 in which
case the exponential of the predictions is taken.

offset A numeric that has been added to each value of the response after any scaling
and before applying any power transformation.

scale A numeric by which each value of the response has been multiplied before
adding any offset and applying any power transformation.

predictPlus.asreml 165

transform.function

A character giving the name of a function that specifies the scale on which
the predicted values are defined. This may be the result of a transformation
of the data using the function or the use of the function as a link function
in the fitting of a generalized linear (mixed) model (GL(M)M). The possible
transform.functions are identity, log, inverse, sqrt, logit, probit, and
cloglog. The predicted.values and error.intervals, if not StandardError
intervals, will be back-transformed using the inverse function of the transform.function.
The standard.error column will be set to NA, unless (i) asreml returns columns
named transformed.value and approx.se, as well as those called predicted.values
and standard.error (such as when a GLM is fitted) and (ii) the values in
transformed.value are equal to those obtained by backtransforming the predicted.values
using the inverse function of the transform.function. Then, the approx.se
values will be saved in the standard.error column of the backtransforms
component of the returned alldiffs.obj. Also, the transformed.value and
approx.se columns are removed from both the predictions and backtransforms
components of the alldiffs.obj. Note that the values that end up in the
standard errors column are approximate for the backtransformed values and
are not used in calculating error.intervals.

sortFactor A character containing the name of the factor that indexes the set of pre-
dicted values that determines the sorting of the components. If there is only
one variable in the classify term then sortFactor can be NULL and the order
is defined by the complete set of predicted values. If there is more than one
variable in the classify term then sortFactor must be set. In this case the
sortFactor is sorted in the same order within each combination of the values
of the sortParallelToCombo variables: the classify variables, excluding the
sortFactor. There should be only one predicted value for each unique value
of sortFactor within each set defined by a combination of the values of the
classify variables, excluding the sortFactor factor. The order to use is
determined by either sortParallelToCombo or sortOrder.

sortParallelToCombo

A list that specifies a combination of the values of the factors and numerics,
excluding sortFactor, that are in classify. Each of the components of the
supplied list is named for a classify variable and specifies a single value for
it. The combination of this set of values will be used to define a subset of the
predicted values whose order will define the order of sortFactor. Each of the
other combinations of the values of the factors and numerics will be sorted in
parallel. If sortParallelToCombo is NULL then the first value of each classify
variable, except for the sortFactor factor, in the predictions component
is used to define sortParallelToCombo. If there is only one variable in the
classify then sortParallelToCombo is ignored.

sortNestingFactor

A character containing the name of the factor that defines groups of the
sortFactor within which the predicted values are to be ordered. If there is only
one variable in the classify then sortNestingFactor is ignored.

sortOrder A character vector whose length is the same as the number of levels for
sortFactor in the predictions component of the alldiffs.object. It speci-
fies the desired order of the levels in the reordered components of the alldiffs.object.
The argument sortParallelToCombo is ignored.
The following creates a sortOrder vector levs for factor f based on the values
in x: levs <- levels(f)[order(x)].

166 predictPlus.asreml

decreasing A logical passed to order that detemines whether the order for sorting the
components of the alldiffs.object is for increasing or decreasing magnitude
of the predicted values.

trace A logical that control output from ASReml-R. If TRUE then partial iteration
details are displayed when ASReml-R functions are invoked; if FALSE then no
output is displayed.

... further arguments passed to predict.asreml.

Value

For linear.transformations set to NULL, an S3-class alldiffs.object with predictions and
their standard errors and, depending on the settings of the arguments, all pairwise differences be-
tween predictions, their standard errors and p-values and LSD statistics. Also, unless the sortFactor
or sortOrder arguments are invoked, the rows of predictions component are ordered so that they
are in standard order for the variables in the classify. That is, the values of the last variable change
with every row, those of the second-last variable only change after all the values of the last variable
have been traversed; in general, the values of a variable are the same for all the combinations of
the values to the variables to its right in the classify. In addition, if necessary, the order of the
columns of the variables in the predictions component are changed to match their order in the
classify.

If transform.power or scale is not one or offset is not zero, it will contain a data.frame with
the backtransformed linear transformation of the predictions. The backtransformation will, after
backtransforming for any power transformation, subtract the offset and then divide by the scale.

If error.intervals is not "none", then the predictions component and, if present, the backtransforms
component will contain columns for the lower and upper values of the limits for the interval.

The name of the response, the response.title, the term, the classify, tdf, sortFactor and
the sortOrder will be set as attributes to the object. Also, if error.intervals is "halfLeastSignificant",
then those of LSDtype, LSDby and LSDstatistic that are not NULL will be added as attributes of
the object and of the predictions frame; additionally, LSDvalues will be added as attribute of the
predictions frame, LSDvalues being the LSD values used in calculating the error.intervals.
Note that the classify in an alldiffs.object is based on the variables indexing the predictions,
which may differ from the classify used to obtain the original predictions (for example, when the
alldiffs.objects stores a linear transformation of predictions.

For linear.transformations set to other than NULL, an alldiffs.object with the linear.transformation
applied to the predictions and their standard errors and, depending on the settings of the argu-
ments, all pairwise differences between the linearly transformed predictions, their standard errors
and p-values and LSD statistics. (See also linTransform.alldiffs.)

Author(s)

Chris Brien

See Also

alldiffs.object, as.alldiffs, print.alldiffs, linTransform.alldiffs, sort.alldiffs,
subset.alldiffs, allDifferences.data.frame, redoErrorIntervals.alldiffs,
recalcLSD.alldiffs, exploreLSDs.alldiffs, pickLSDstatistics.alldiffs,
predictPresent.asreml, plotPredictions.data.frame, as.Date, predict.asreml

predictPresent.asreml 167

Examples

Not run:
data(WaterRunoff.dat)
asreml.options(keep.order = TRUE) #required for asreml-R4 only
current.asr <- asreml(fixed = pH ~ Benches + (Sources * (Type + Species)),

random = ~ Benches:MainPlots,
keep.order=TRUE, data= WaterRunoff.dat)

current.asrt <- as.asrtests(current.asr, NULL, NULL)
diffs <- predictPlus(classify = "Sources:Type",

asreml.obj = current.asr,
wald.tab = current.asrt$wald.tab,
present = c("Sources", "Type", "Species"))

End(Not run)

predictPresent.asreml Forms the predictions for each of one or more terms and presents them
in tables and/or graphs.

Description

This function forms the predictions for each term in terms using a supplied asreml object and
predictPlus.asreml. Tables are produced using predictPlus.asreml, in conjunction with
allDifferences.data.frame, with the argument tables specifying which tables are printed. The
argument plots, along with transform.power, controls which plots are produced. The plots are
produced using plotPredictions.data.frame, with line plots produced when variables involving
x.num or x.fac are involved in classify for the predictions and bar charts otherwise. In order
to get the correct predictions you may need to supply additional arguments to predict.asreml
through ... e.g. present, parallel, levels.

The order of plotting the levels of one of the factors indexing the predictions can be modified and
is achieved using sort.alldiffs.

Usage

S3 method for class 'asreml'
predictPresent(asreml.obj, terms, inestimable.rm = TRUE,

linear.transformation = NULL, EGLS.linTransform,
error.intervals = "Confidence", alpha = 0.05,
wald.tab = NULL, dDF.na = "residual", dDF.values = NULL,
pairwise = TRUE, Vmatrix = FALSE,
avsed.tolerance = 0.25, accuracy.threshold = NA,
LSDtype = "overall", LSDsupplied = NULL, LSDby = NULL,
LSDstatistic = "mean", LSDaccuracy = "maxAbsDeviation",
x.num = NULL, x.fac = NULL, nonx.fac.order = NULL,
x.pred.values = NULL, x.plot.values = NULL,
plots = "predictions", panels = "multiple",
graphics.device = NULL, interval.annotate = TRUE,
titles = NULL, colour.scheme = "colour", save.plots = FALSE,
transform.power = 1, offset = 0, scale = 1,
transform.function = "identity",
tables = "all", level.length = NA,

168 predictPresent.asreml

sortFactor = NULL, sortParallelToCombo = NULL,
sortNestingFactor = NULL, sortOrder = NULL,
decreasing = FALSE,
trace = FALSE, ggplotFuncs = NULL, ...)

Arguments

asreml.obj asreml object for a fitted model.

terms A character vector giving the terms for which predictions are required.

inestimable.rm A logical indicating whether rows for predictions that are not estimable are to
be removed from the components of the alldiffs.object.

linear.transformation

A formula or a matrix. If a formula is given then it is taken to be a submodel
of a model term corresponding to the classify. The projection matrix that
transforms the predictions so that they conform to the submodel is obtained;
the submodel does not have to involve variables in the classify, but the vari-
ables must be columns in the predictions component of alldiffs.obj and
the space for the submodel must be a subspace of the space for the term spec-
ified by the classify. For example, for classify set to "A:B", the submodel
~ A + B will result in the predictions for the combinations of A and B being
made additive for the factors A and B. The submodel space corresponding to A
+ B is a subspace of the space A:B. In this case both the submodel and the clas-
sify involve only the factors A and B. To fit an intercept-only submodel, specify
linear.transformation to be the formula ~1.
If a matrix is provided then it will be used to apply the linear transformation
to the predictions. It might be a contrast matrix or a matrix of weights
for a factor used to obtain the weighted average over that factor. The number
of rows in the matrix should equal the number of linear combinations of the
predictions desired and the number of columns should equal the number of
predictions.
In either case, as well as the values of the linear combinations, their standard er-
rors, pairwise differences and associated statistics are returned in the alldiffs.object.

EGLS.linTransform

A logical indicating whether or not the linear.transformation of the pre-
dictions stored in an alldiffs.object by fitting a submodel supplied in a
formula is to take into account the variance of the predictions using a Estimated
Generalized Least Squares (EGLS) approach. This is likely to be appropriate
when the variance matrix of the predictions is not compound symmetric i.e.
when not all the variances are equal or not all the covariances are equal. If the
variance matrix is compund symmetric, then the setting of EGLS.linTransform
will not affect the transformed predictions.

error.intervals

A character string indicating the type of error interval, if any, to calculate
in order to indicate uncertainty in the results. Possible values are "none",
"StandardError", "Confidence" and "halfLeastSignificant". The de-
fault is for confidence limits to be used. The "halfLeastSignificant" option
results in half the Least Significant Difference (LSD) being added and subtracted
to the predictions, the LSD being calculated using the square root of the mean
of the variances of all or a subset of pairwise differences between the predic-
tions. If the LSD is zero, as can happen when predictions are constrained to be
equal, then the limits of the error intervals are set to NA. If LSDtype is set to

predictPresent.asreml 169

overall, the avsed.tolerance is not NA and the range of the SEDs divided by
the average of the SEDs exceeds avsed.tolerance then the error.intervals
calculations and the plotting will revert to confidence intervals.

alpha A numeric giving the significance level for LSDs or one minus the confidence
level for confidence intervals. It is stored as an attribute to the alldiffs.object.

wald.tab A data.frame containing the pseudo-anova table for the fixed terms produced
by a call to wald.asreml. The main use of it here is in determining the degrees
of freedom for calculating confidence or half-LSD error.intervals and p-
values, the latter to be stored in the p.differences component of the alldiffs.object
that is created.

dDF.na The method to use to obtain approximate denominator degrees of freedom.
when the numeric or algebraic methods produce an NA. Consistent with when
no denDF are available, the default is "residual" and so the residual degrees
of freedom from asreml.obj$nedf are used. If dDF.na = "none", no substi-
tute denominator degrees of freedom are employed; if dDF.na = "maximum", the
maximum of those denDF that are available, excluding that for the Intercept, is
used; if all denDF are NA, asreml.obj$nedf is used. If dDF.na = "supplied",
a vector of values for the denominator degrees of freedom is to be supplied
in dDF.values. Any other setting is ignored and a warning message produced.
Generally, substituting these degrees of freedom is anticonservative in that it is
likely that the degrees of freedom used will be too large.

dDF.values A vector of values to be used when dDF.na = "supplied". Its values will be
used when denDF in a test for a fixed effect is NA. This vector must be the same
length as the number of fixed terms, including (Intercept) whose value could be
NA.

pairwise A logical indicating whether all pairwise differences of the predictions and
their standard errors and p-values are to be computed and stored. If tables is
equal to "differences" or "all" or error.intervals is equal to "halfLeastSignificant",
they will be stored irrespective of the value of pairwise.

Vmatrix A logical indicating whether the variance matrix of the predictions will be
stored as a component of the alldiffs.object that is returned. If linear.transformation
is set, it will be stored irrespective of the value of Vmatrix.

avsed.tolerance

A numeric giving the value of the SED range, the range of the SEDs divided
by the square root of the mean of the variances of all or a subset of the pairwise
differences, that is considered reasonable in calculating error.intervals. It
should be a value between 0 and 1. The following rules apply:

1. If avsed.tolerance is NA then mean LSDs of the type specified by LSDtype
are calculated and used in error.intervals and plots.

2. Irrespective of the setting of LSDtype, if avsed.tolerance is not exceeded
then the mean LSDs are used in error.intervals and plots.

3. If LSDtype is set to overall, avsed.tolerance is not NA, and avsed.tolerance
is exceeded then error.intervals and plotting revert to confidence inter-
vals.

4. If LSDtype is set to factor.combinations and avsed.tolerance is not
exceeded for any factor combination then the half LSDs are used in error.intervals
and plots; otherwise, error.intervals and plotting revert to confidence
intervals.

5. If LSDtype is set to per.prediction and avsed.tolerance is not ex-
ceeded for any prediction then the half LSDs are used in error.intervals

170 predictPresent.asreml

and plots; otherwise, error.intervals and plotting revert to confidence
intervals.

accuracy.threshold

A numeric specifying the value of the LSD accuracy measure, which measure
is specified by LSDaccuracy, as a threshold value in determining whether the
hallfLeastSignificant error.interval for a predicted value is a reason-
able approximation; this will be the case if the LSDs across all pairwise compar-
isons for which the interval’s LSD was computed, as specified by LSDtype and
LSDby, are similar enough to the interval’s LSD, as measured by LSDaccuracy.
If it is NA, it will be ignored. If it is not NA, a column of logicals named
LSDwarning will be added to the predictions component of the alldiffs.object.
The value of LSDwarning for a predicted.value will be TRUE if the value of
the LSDaccuracy measure computed from the LSDs for differences between
this predicted.value and the other predicted.values as compared to its
assignedLSD exceeds the value of accuracy.threshold. Otherwise, the value
of LSDwarning for a predicted.value will be FALSE.

LSDtype A character string that can be overall, factor.combinations, per.prediction
or supplied. It determines whether the values stored in a row of a LSD.frame
are the values calculated (i) overall from the LSD values for all pairwise
comparison2, (ii) the values calculated from the pairwise LSDs for the lev-
els of each factor.combination, unless there is only one prediction for a
level of the factor.combination, when a notional LSD is calculated, (iii)
per.prediction, being based, for each prediction, on all pairwise differences
involving that prediction, or (iv) as supplied values of the LSD, specified
with the LSDsupplied argument; these supplied values are to be placed in the
assignedLSD column of the LSD.frame stored in an alldiffs.object so that
they can be used in LSD calculations.
See LSD.frame for further information on the values in a row of this data.frame
and how they are calculated.

LSDsupplied A data.frame or a named numeric containing a set of LSD values that cor-
respond to the observed combinations of the values of the LSDby variables in
the predictions.frame or a single LSD value that is an overall LSD. If a
data.frame, it may have (i) a column for the LSDby variable and a column of
LSD values or (ii) a single column of LSD values with rownames being the com-
binations of the observed values of the LSDby variables. Any name can be used
for the column of LSD values; assignedLSD is sensible, but not obligatory. Oth-
erwise, a numeric containing the LSD values, each of which is named for the ob-
served combination of the values of the LSDby variables to which it corresponds.
(Applying the function dae::fac.combine to the predictions component is
one way of forming the required combinations for the (row) names.) The val-
ues supplied will be incorporated into assignedLSD column of the LSD.frame
stored as the LSD component of the alldiffs.object.

LSDby A character (vector) of variables names, being the names of the factors or
numerics in the classify; for each combination of their levels and values,
there will be or is a row in the LSD.frame stored in the LSD component of the
alldiffs.object when LSDtype is factor.combinatons.

LSDstatistic A character nominating one or more of minimum, q10, q25, mean, median,
q75, q90 or maximum as the value(s) to be stored in the assignedLSD column
in an LSD.frame; the values in the assignedLSD column are used in computing
halfLeastSignificant error.intervals. Here q10, q25, q75 and q90 indi-
cate the sample quantiles corresponding to probabilities of 0.1, 0.25, 0.75 and

predictPresent.asreml 171

0.9 for the group of LSDs from which a single LSD value is calculated. The
function quantile is used to obtain them. The mean LSD is calculated as the
square root of the mean of the squares of the LSDs for the group. The median
is calculated using the median function. Multiple values are only produced for
LSDtype set to factor.combination, in which case LSDby must not be NULL
and the number of values must equal the number of observed combinations of
the values of the variables specified by LSDby. If LSDstatistic is NULL, it is
reset to mean.

LSDaccuracy A character nominating one of maxAbsDeviation, maxDeviation, q90Deviation
or RootMeanSqDeviation as the statistic to be calculated as a measure of the ac-
curacy of assignedLSD. The option q90Deviation produces the sample quan-
tile corresponding to a probability of 0.90. The deviations are the differences
between the LSDs used in calculating the LSD statistics and each assigned LSD
and the accuracy is expressed as a proportion of the assigned LSD value. The
calculated values are stored in the column named accuracyLSD in an LSD.frame.

x.num A character string giving the name of the numeric covariate that (i) is poten-
tially included in terms in the fitted model and (ii) is the x-axis variable for plots.
Its values will not be converted to a factor.

x.fac A character string giving the name of the factor that (i) corresponds to x.num
and (ii) is potentially included in terms in the fitted model. It should have the
same number of levels as the number of unique values in x.num. The levels of
x.fac must be in the order in which they are to be plotted - if they are dates, then
they should be in the form yyyymmdd, which can be achieved using as.Date.
However, the levels can be non-numeric in nature, provided that x.num is also
set.

nonx.fac.order A character vector giving the order in which factors other than x.fac are to
be plotted in plots with multiple panels (i.e. where the number of non-x factors is
greater than 1). The first factor in the vector will be plotted on the X axis (if there
is no x.num or x.fac. Otherwise, the order of plotting the factors is in columns
(X facets) and then rows (Y facets). By default the order is in decreasing order
for the numbers of levels of the non x factors.

x.pred.values The values of x.num for which predicted values are required.
x.plot.values The actual values to be plotted on the x axis or in the labels of tables. They are

needed when values different to those in x.num are to be plotted or x.fac is to
be plotted because there is no x.num term corresponding to the same term with
x.fac.

plots Possible values are "none", "predictions", "backtransforms" and "both".
Plots are not produced if the value is "none". If data are not transformed for
analysis (transform.power = 1), a plot of the predictions is produced provided
plots is not "none". If the data are transformed, the value of plots determines
what is produced.

panels Possible values are "single" and "multiple". When line plots are to be pro-
duced, because variables involving x.num or x.fac are involved in classify
for the predictions, panels determines whether or not a single panel or multiple
panels in a single window are produced. The panels argument is ignored for
bar charts.

graphics.device

A character specifying a graphics device for plotting. The default is
graphics.device = NULL, which will result in plots being produced on the cur-
rent graphics device. Setting it to "windows", for example, will result in a win-
dows graphics device being opened.

172 predictPresent.asreml

interval.annotate

A logical indicating whether the plot annotation indicating the type of error.interval
is to be included in the plot.

titles A list, each component of which is named for a column in the data.frame
for asreml.obj and contains a character string giving a title to use in output
(e.g. tables and graphs). Here they will be used for axis labels.

colour.scheme A character string specifying the colour scheme for the plots. The default is
"colour" which produces coloured lines and bars, a grey background and white
gridlines. A value of "black" results in black lines, grey bars and gridlines and
a white background.

save.plots A logical that determines whether any plots will be saved. If they are to be
saved, a file name will be generated that consists of the following elements sep-
arated by full stops: the response variable name with .back if backtransformed
values are being plotted, the classify term, Bar or Line and, if error.intervals
is not "none", one of SE, CI or LSI. The file will be saved as a ‘png’ file in the
current work directory.

transform.power

A numeric specifying the power of a transformation, if one has been applied to
the response variable. Unless it is equal to 1, the default, back-transforms of the
predictions will be obtained and stored in the backtransforms component of
the alldiffs.object. The plots and tables arguments control the plotting
and output of the predictions and backtransforms. The back-transformation
raises the predictions to the power equal to the reciprocal of transform.power,
unless it equals 0 in which case the exponential of the predictions is taken.

offset A number that has been added to each value of the response after any scal-
ing and before applying any power transformation. Unless it is equal to 0, the
default, back-transforms of the predictions will be obtained and stored in the
backtransforms component of the alldiffs.object. The plots and tables
arguments control the plotting and output of the predictions and backtransforms.
The backtransformation will, after backtransforming for any power transforma-
tion, subtract the offset.

scale A number by which each value of the response has been multiply before adding
any offset and applying any power transformation. Unless it is equal to 1, the
default, back-transforms of the predictions will be obtained and stored in the
backtransforms component of the alldiffs.object. The plots and tables
arguments control the plotting and output of the predictions and backtransforms.
The backtransformation will, after backtransforming for any power transforma-
tion and then subtracting the offset, divide by the scale.

transform.function

A character giving the name of a function that specifies the scale on which
the predicted values are defined. This may be the result of a transformation
of the data using the function or the use of the function as a link function
in the fitting of a generalized linear (mixed) model (GL(M)M). The possible
transform.functions are identity, log, inverse, sqrt, logit, probit, and
cloglog. The predicted.values and error.intervals, if not StandardError
intervals, will be back-transformed using the inverse function of the transform.function.
The standard.error column will be set to NA, unless (i) asreml returns columns
named transformed.value and approx.se, as well as those called predicted.values
and standard.error (such as when a GLM is fitted) and (ii) the values in
transformed.value are equal to those obtained by backtransforming the predicted.values
using the inverse function of the transform.function. Then, the approx.se

predictPresent.asreml 173

values will be saved in the standard.error column of the backtransforms
component of the returned alldiffs.obj. Also, the transformed.value and
approx.se columns are removed from both the predictions and backtransforms
components of the alldiffs.obj. Note that the values that end up in the
standard errors column are approximate for the backtransformed values and
are not used in calculating error.intervals.

tables A character vector containing a combination of predictions, vcov, backtransforms,
differences, p.differences, sed, LSD and all. These nominate which com-
ponents of the alldiffs.object to print.

level.length The maximum number of characters from the levels of factors to use in the row
and column labels of the tables produced by allDifferences.data.frame.

sortFactor A character containing the name of the factor that indexes the set of pre-
dicted values that determines the sorting of the components. If there is only
one variable in the classify term then sortFactor can be NULL and the order
is defined by the complete set of predicted values. If there is more than one
variable in the classify term then sortFactor must be set. In this case the
sortFactor is sorted in the same order within each combination of the values
of the sortParallelToCombo variables: the classify variables, excluding the
sortFactor. There should be only one predicted value for each unique value
of sortFactor within each set defined by a combination of the values of the
classify variables, excluding the sortFactor factor. The order to use is
determined by either sortParallelToCombo or sortOrder.

sortParallelToCombo

A list that specifies a combination of the values of the factors and numerics,
excluding sortFactor, that are in classify. Each of the components of the
supplied list is named for a classify variable and specifies a single value for
it. The combination of this set of values will be used to define a subset of the
predicted values whose order will define the order of sortFactor. Each of the
other combinations of the values of the factors and numerics will be sorted in
parallel. If sortParallelToCombo is NULL then the first value of each classify
variable, except for the sortFactor factor, in the predictions component
is used to define sortParallelToCombo. If there is only one variable in the
classify then sortParallelToCombo is ignored.

sortNestingFactor

A character containing the name of the factor that defines groups of the
sortFactor within which the predicted values are to be ordered. If there is only
one variable in the classify then sortNestingFactor is ignored.

sortOrder A character vector whose length is the same as the number of levels for
sortFactor in the predictions component of the alldiffs.object. It speci-
fies the desired order of the levels in the reordered components of the alldiffs.object.
The argument sortParallelToCombo is ignored.
The following creates a sortOrder vector levs for factor f based on the values
in x: levs <- levels(f)[order(x)].

decreasing A logical passed to order that detemines whether the order for sorting the
components of the alldiffs.object is for increasing or decreasing magnitude
of the predicted values.

trace If TRUE then partial iteration details are displayed when ASReml-R functions
are invoked; if FALSE then no output is displayed.

ggplotFuncs A list, each element of which contains the results of evaluating a ggplot2
function. It is created by calling the list function with a ggplot2 function call
for each element. It is passed to plotPredictions.data.frame.

174 predictPresent.asreml

... further arguments passed to predict.asreml via predictPlus.asreml and to
ggplot via plotPredictions.data.frame.

Value

A list containing an alldiffs.object for each term for which tables are produced. The names
of the components of this list are the terms with full-stops (.) replacing colons (:). Plots are also
preduced depending on the setting of the plot argument.

Author(s)

Chris Brien

See Also

predictPlus.asreml, allDifferences.data.frame, sort.alldiffs, subset.alldiffs,
redoErrorIntervals.alldiffs, recalcLSD.alldiffs, pickLSDstatistics.alldiffs,
plotPredictions.data.frame, print.alldiffs, as.Date, Devices

Examples

Not run:
data(WaterRunoff.dat)
titles <- list("Days since first observation", "Days since first observation",

"pH", "Turbidity (NTU)")
names(titles) <- names(WaterRunoff.dat)[c(5,7,11:12)]
asreml.options(keep.order = TRUE) #required for asreml-R4 only
current.asr <- asreml(fixed = log.Turbidity ~ Benches + Sources + Type + Species +

Sources:Type + Sources:Species + Sources:Species:xDay +
Sources:Species:Date,

data = WaterRunoff.dat, keep.order = TRUE)
current.asrt <- as.asrtests(current.asr, NULL, NULL)

Get the observed combinations of the factors and variables in classify
class.facs <- c("Sources","Species","Date","xDay")
levs <- as.data.frame(table(WaterRunoff.dat[class.facs]))
levs <- levs[do.call(order, levs),]
levs <- as.list(levs[levs$Freq != 0, class.facs])
levs$xDay <- as.numfac(levs$xDay)

parallel and levels are arguments from predict.asreml
diff.list <- predictPresent.asreml(asreml.obj = current.asrt$asreml.obj,

terms = "Date:Sources:Species:xDay",
x.num = "xDay", x.fac = "Date",
parallel = TRUE, levels = levs,
wald.tab = current.asrt$wald.tab,
plots = "predictions",
error.intervals = "StandardError",
titles = titles,
transform.power = 0,
present = c("Type","Species","Sources"),
tables = "none",
level.length = 6)

End(Not run)

print.alldiffs 175

print.alldiffs Prints the values in an alldiffs.object in a nice format.

Description

Prints the predictions and standard errors from a fitted model, including the attributes of the predictions.frame.
Also prints out all pairwise differences between the predictions to 2 significant figures, along with
their p-values and standard errors to 4 decimal places. If LSDs are requested the mean, minimum
and maximum LSDs will be printed.

Usage

S3 method for class 'alldiffs'
print(x, which = "all", colourise = FALSE, ...)

Arguments

x An alldiffs.object.

which A character vector containing a combination of predictions, vcov, backtransforms,
differences, p.differences, sed, LSD and all. These nominate which com-
ponents of the alldiffs.object to print.

colourise A logical which, if TRUE, results in the header text produced by predict.asreml
being displayed in a different colour, if supported by the output terminal device.
It overrides the TRUE setting of the colourise argument of asreml::asreml.options.

... further arguments passed to print.predictions.frame.

Value

No value is returned, but the components of x are printed.

Author(s)

Chris Brien

See Also

print.predictions.frame, as.alldiffs, allDifferences.data.frame

Examples

Not run:
print.alldiffs(diffs, which = "predictions")

End(Not run)

176 print.asrtests

print.asrtests Prints the values in an asrtests.object

Description

Prints a summary of the asreml object, the pseudoanova and the test.summary data.frame that are
stored in the asrtests.object.

Usage

S3 method for class 'asrtests'
print(x, which = "key", colourise = FALSE, ...)

Arguments

x An asrtests.object.

which Which elements of the asrtests.object to print. Possible values are some
combination of asremlsummary, vparametersummary, pseudoanova, wald.tab,
testsummary and key or all. The option wald.tab is a synonym for pseudoanova.
The options key and all are mutually exclusive; key includes vparametersummary,
but not the rest of asremlsummary, while all includes the full asremlsummary
that includes the vparametersummary.

colourise A logical which, if TRUE, results in the header text produced by wald.asreml
being displayed in a different colour, if supported by the output terminal device.
It overrides the TRUE setting of the colourise argument of asreml::asreml.options.

... further arguments passed to print and print.wald.tab.

Value

No value is returned, but the elements of the list in x are printed.

Author(s)

Chris Brien

See Also

print.wald.tab, as.asrtests, asremlPlus-package

Examples

Not run:
data(Wheat.dat)
current.asr <- asreml(yield ~ Rep + WithinColPairs + Variety,

random = ~ Row + Column + units,
residual = ~ ar1(Row):ar1(Column),
data=Wheat.dat)

current.asrt <- as.asrtests(current.asr, NULL, NULL)
current.asrt <- rmboundary.asrtests(current.asrt)
Test Row autocorrelation
current.asrt <- testresidual(current.asrt, , "~ Row:ar1(Column)",

label="Row autocorrelation", simpler=TRUE)

print.LSDdata 177

print(current.asrt)

End(Not run)

print.LSDdata Prints the components of a list containing data on the LSDs for all
pairwise differences of predictions.

Description

Prints the components of an LSDdata list created by exploreLSDs, that contains data on the LSDs
for all pairwise differences of predictions stored in an alldiffs.object.

Usage

S3 method for class 'LSDdata'
print(x, which.print = c("statistics", "false.pos", "false.neg"), ...)

Arguments

x An object that, ideally, is of class LSDdata.

which.print Which components of the LSDdata list to print. Possible values are any combi-
nation of frequencies, distinct.vals, statistics, accuracy, false.pos,
false.neg, per.pred.accuracy, LSD, summary and all, except that summary
and all cannot occur together. For a description of the components, see alldiffs.object.
The default is to print statistics, false.pos, false.neg. The option summary
results in the printing of distinct.vals, statistics, false.pos, false.neg.

... further arguments passed to print.

Value

No value is returned, but components of x are printed as specified in which.print.

Author(s)

Chris Brien

See Also

exploreLSDs.alldiffs, alldiffs.object

Examples

Not run:
data(WaterRunoff.dat)
asreml.options(keep.order = TRUE) #required for asreml-R4 only
current.asr <- asreml(fixed = pH ~ Benches + (Sources * (Type + Species)),

random = ~ Benches:MainPlots,
keep.order=TRUE, data= WaterRunoff.dat)

current.asrt <- as.asrtests(current.asr, NULL, NULL)
diffs <- predictPlus(classify = "Sources:Type",

asreml.obj = current.asr,

178 print.predictions.frame

wald.tab = current.asrt$wald.tab,
present = c("Sources", "Type", "Species"))

LSDdata <- exploreLSDs(diffs, LSDtype = "factor.combinations", LSDby = "Sources")
print(LSDdata)

End(Not run)

print.predictions.frame

Prints the values in a predictions.frame, with or without title and
heading.

Description

Prints the predictions from a fitted model, along with their standard errors and, if present, their error
intervals, with or without title and headings.

Usage

S3 method for class 'predictions.frame'
print(x, title = NULL,

which.predictions = c("title", "heading", "table"),
colourise = FALSE, ...)

Arguments

x An object that, ideally, is of class predictions.frame.

title A character giving a title to be printed out before the heading and table for
the predictions.frame,

which.predictions

what Which elements of the predictions.frame to print. Possible values are
some combination of title, heading, table and all. The heading is an at-
tribute of x.

colourise A logical which, if TRUE, results in the header text produced by predict.asreml
being displayed in a different colour, if supported by the output terminal device.
It overrides the TRUE setting of the colourise argument of asreml::asreml.options,
but is only operational when the table is also printed.

... further arguments passed to print.predictions.frame.

Value

No value is returned, but the components of x are printed.

Author(s)

Chris Brien

See Also

print.alldiffs, as.alldiffs, allDifferences.data.frame

print.test.summary 179

Examples

Not run:
print.predictions.frame(diffs$predictions, which = "all")

End(Not run)

print.test.summary Prints a data.frame containing a test.summary.

Description

Prints a test.summary (also a choose.summary) with or without a title and with p-values limited
to 4-digits.

Usage

S3 method for class 'test.summary'
print(x, which.print = c("title", "table"),

omit.columns = NULL, response = NULL, ...)

Arguments

x A object that, ideally, is of class test.summary.

which.print A character specifying the aspects of the test.summary to print. Possible
values are some combination of title, table and all.

omit.columns A character specifying the columns of the test.summary table to be omitted
from the print. If NULL, none are omitted.

response A character specifying the name of the response that the test.summary table
is based on and is to be printed in the heading for the table. If NULL, no response
name is printed.

... further arguments passed to print, but is only operational when the table is
also printed.

Value

No value is returned, but x is printed, possibly with a title.

Author(s)

Chris Brien

See Also

print.wald.tab, print.asrtests, as.asrtests, asremlPlus-package

180 print.wald.tab

Examples

Not run:
data(Wheat.dat)
current.asr <- asreml(yield ~ Rep + WithinColPairs + Variety,

random = ~ Row + Column + units,
residual = ~ ar1(Row):ar1(Column),
data=Wheat.dat)

current.asrt <- as.asrtests(current.asr, NULL, NULL)
current.asrt <- rmboundary.asrtests(current.asrt)
Test Row autocorrelation
current.asrt <- testresidual(current.asrt, "~ Row:ar1(Column)",

label="Row autocorrelation", simpler=TRUE)
print(current.asrt$test.summary)

End(Not run)

print.wald.tab Prints a data.frame containing a Wald or pseudoanova table.

Description

Prints a wald.tab with or without title and/or heading. The printing of the p-values is limited to 4
digits.

Usage

S3 method for class 'wald.tab'
print(x, which.wald = c("title", "heading", "table"),

colourise = FALSE, ...)

Arguments

x An object that, ideally, is of class wald.tab.

which.wald Which elements of the wald.tab to print. Possible values are some combination
of title, heading, table and all. The heading is an attribute of x.

colourise A logical which, if TRUE, results in the header text produced by wald.asreml
being displayed in a different colour, if supported by the output terminal device.
It overrides the TRUE setting of the colourise argument of asreml::asreml.options.

... further arguments passed to print and print.wald.tab, but is only operational
when the table is also printed.

Value

No value is returned, but x is printed as specified in which.wald.

Author(s)

Chris Brien

See Also

print.test.summary, print.asrtests, as.asrtests, asremlPlus-package

printFormulae.asreml 181

Examples

Not run:
data(Wheat.dat)
current.asr <- asreml(yield ~ Rep + WithinColPairs + Variety,

random = ~ Row + Column + units,
residual = ~ ar1(Row):ar1(Column),
data=Wheat.dat)

current.asrt <- as.asrtests(current.asr, NULL, NULL)
current.asrt <- rmboundary.asrtests(current.asrt)
Test Row autocorrelation
current.asrt <- testresidual(current.asrt, "~ Row:ar1(Column)",

label="Row autocorrelation", simpler=TRUE)
print(current.asrt$wald.tab)

End(Not run)

printFormulae.asreml Prints the formulae from an asreml object.

Description

Prints the formulae nominated in the which argument from the call stored in an asreml object.

Usage

S3 method for class 'asreml'
printFormulae(asreml.obj, which = c("fixed", "random", "residual"),

expanded = FALSE, envir = parent.frame(), ...)

Arguments

asreml.obj An asreml object resulting from the fitting of a model using REML.

which A character listing the formula(e) to be printed from the call stored in asreml.obj.
It should be some combination of fixed, random, residual, sparse and all.
If all is included then all formula(e) will be printed.

expanded A logical indicating whether terms are to be expanded to the sum of a set of
individual terms.

envir The environment in which the formula(e) are to be evaluated. May also be
NULL, a list, a data.frame, a pairlist or an integer as specified to sys.call.

... Arguments passed on to getFormulae.asreml and ultimately to update.formula
and terms.formula.

Value

Invisibly returns a character, each element of which contains one of the extracted formulae.

Author(s)

Chris Brien

182 R2adj.asreml

See Also

printFormulae.asreml

Examples

Not run:
data(Wheat.dat)
current.asr <- asreml(yield ~ Rep + WithinColPairs + Variety,

random = ~ Row + Column + units,
residual = ~ ar1(Row):ar1(Column),
data=Wheat.dat)

printFormulae(current.asr)

End(Not run)

R2adj.asreml Calculates the adjusted coefficient of determination for a specified
combination of fixed and random terms.

Description

Calculates the adjusted coefficient of determination (R2) that measures the contributions to the total
variance exhibited by the observations of a specified combination of fixed and random terms in a
fitted linear mixed model.

Note that the adjusted R2 can be negative, which indicates that the contribution of the terms to the
total variance is very small relative to the sum of the degrees of freedom of the terms.

Piepho’s (2023) method for GLMMs has not been implemented. This function is not available for
ASReml-R version 3.

Usage

S3 method for class 'asreml'
R2adj(asreml.obj,

include.which.fixed = ~ ., orthogonalize = "hybrid",
include.which.random = NULL,
bound.exclusions = c("F","B","S","C"), ...)

Arguments

asreml.obj An asreml object returned from a call to asreml.
include.which.fixed

A formula specifying the fixed terms whose joint contribution to the total vari-
ance is to be measured. If it is NULL, no fixed term is to be included in the terms
whose joint contribution is to be assessed. The formula ~ . indicates that the
joint contribution of all fixed terms are to be measured. Otherwise, the joint
contribution of the set of terms specified by the formula will be assessed. The
formula can include a ".", which means all fixed terms currently fitted, and
is most likely followed by a "-" with a bracketed set of terms to be removed
that can be specified using formula operators. The names of the resulting terms
must be the same as those in either the terms attribute of the fixed component

R2adj.asreml 183

of the coefficient component of the supplied asreml.obj, or the Wald table
produced by wald.asreml.
Note that the contribution of a subset of the fixed terms is only unique if the ef-
fects for the fixed terms are orthogonal; if the effects are not orthogonal then the
contributions will depend on the order of the terms in the formula. Also, deter-
mining the joint contribution of a subset of the fixed terms in the model may be
computationally demanding because the projection matrices have to be formed
for all fixed terms and these projections matrices have to be orthogonalized. A
heavy computational burden is most likely when the effects for the fixed terms
are not orthogonal, for example, when numeric covariates are included amongst
the terms.

orthogonalize A character vector indicating the method for orthogonalizing a projector to
those for terms that occurred previously in the formula for include.which.fixed.
Orthogonalizing the projectors of fixed terms is not performed for the default
setting of . ~. WHen required, two options are available for orthogonaliz-
ing: hybrid and eigenmethods. The hybrid option is the most general and
uses the relationships between the projection operators for the terms in the
formula to decide which projectors to subtract and which to orthogonalize
using eigenmethods. The eigenmethods option recursively orthogonalizes the
projectors using an eigenanalysis of each projector with previously orthog-
onalized projectors. See the documentation for porthogonalize.list from
the R package dae for more information.

include.which.random

A formula specifying the random terms whose joint contribution to the total
variance is to be measured. If it is NULL, no random term is to be included in
the terms whose joint contribution is to be assessed. The formula ~ . indicates
that the joint contribution of all random terms is to be measured. Otherwise, the
joint contribution of the set of terms specified by the formula will be assessed.
The formula can include a ".", which means all random terms currently fit-
ted, and is most likely followed by a "-" with a bracketed set of terms to be
removed that can be specified using formula operators. The resulting terms
must be one of those occurring in either the vparameters component of the
supplied asreml.obj, or in the terms attribute of the random component of the
coefficient component of the supplied asreml.obj.

bound.exclusions

A character specifying one or more bound codes that will result in a variance
parameter in the random model being excluded from contributing to the vari-
ance. If set to NULL then none will be excluded.

... Provision for passing arguments to functions called internally - not used at
present.

Details

The method used to compute the adjusted R2 under a linear mixes model (LMM) is that described
by Piepho (2023). Here, the method has been extended to allow computation of the adjusted R2
for a subset of the fixed terms. A set of orthogonalized projectors for all of the fixed terms in
the model (a set of Qis) is obtained and the combined contribution of the fixed terms nominated
in include.which.fixed is obtained by computing the average semisquared bias, ASSB, for the
nominated fixed terms as:

Σi{(QiXβ)TQiXβ + trace(XTQiXvar(β))}/(n− 1)

184 R2adj.asreml

Of the two methods, eigenmethods is least likely to fail, but it does not establish the marginality
between the terms. It is often needed when there is nonorthogonality between terms, such as when
there are several linear covariates. It can also be more efficient in these circumstances.

The process can be computationally expensive, particularly for a large data set (500 or more obser-
vations) and/or when many terms are to be orthogonalized, particularly if they are not orthogonal.

If the error "Matrix is not idempotent" should occur then, especially if there are many terms,
one might try using set.daeTolerance from the dae package to reduce the tolerance used in
determining if values are either the same or are zero; it may be necessary to lower the tolerance to
as low as 0.001. Also, setting orthogonalize to eigenmethods is worth a try.

In doing the computations, no changes are made to the fitted model, nor is the formula stored
in asreml.obj referred to. Instead, the names of the terms referred to are those stored in the
coefficients component of the asreml.obj. Use attr(asreml.obj$coefficients$fixed,
which = "terms") to access the attribute for fixed terms; substitute random for fixed to see the
names of the random terms. For fixed terms. the term names are the same as those in the Wald
table produced by wald.asreml, and, for random terms, the same as those in the vparameters
component of the asreml.obj. Two asreml formula functions whose terms can differ from their
formulation in a model formula are at and str.)

The function estimateV.asreml is used to calculate the variance matrices required in calculating
the adjusted R2.

Value

A numeric that is the adjusted R2, expressed as a percentage. It has attributes include.which.fixed,
include.which.random and missing.termmatrix (use attr(x, which = "name") to access the
attribute name). The missing.termmatrix attribute will be NULL, unless the design matrix could
not be obtained for one or more model terms. If is is not NULL, it will be a list of terms whose design
matices could not be produced and so are not included in the variance matrix estimate. An NA will
be returned for the adjusted R2 if missing.termmatrix is not NULL or a generalized inverse could
not be computed for the variance matrix estimate.

Author(s)

Chris Brien

References

Piepho, H.-P. (2023). An adjusted coefficient of determination (R2) for generalized linear mixed
models in one go. Biometrical Journal, 65(7), 2200290. doi:10.1002/bimj.202200290.

See Also

asreml, estimateV.asreml.

Examples

Not run:
data(Oats.dat)

current.asr <- asreml(Yield ~ Nitrogen*Variety,
random=~Blocks/Wplots,
data=Oats.dat)

R2.adj.fix <- R2adj.asreml(current.asr)
R2.adj.ran <- R2adj.asreml(current.asr,

https://doi.org/10.1002/bimj.202200290

ratioTransform.alldiffs 185

include.which.fixed = NULL, include.which.random = ~ .)
R2.adj.tot <- R2adj.asreml(current.asr, include.which.random = ~ .)
R2.adj.tot <- R2adj.asreml(current.asr, include.which.random = ~ Blocks)
R2.adj.add <- R2adj.asreml(current.asr, include.which.fixed = ~ Nitrogen + Variety)
R2.adj.int <- R2adj.asreml(current.asr,

include.which.fixed = ~ . - (Nitrogen + Variety))
R2.adj.int <- R2adj.asreml(current.asr, include.which.fixed = ~ Nitrogen:Variety)

End(Not run)

ratioTransform.alldiffs

Calculates the ratios of nominated pairs of predictions stored in an
alldiffs.object.

Description

Ratio predictions and error intervals are formed for two levels of a factor, the ratio.factor. For
each pair of a level of the ratio.factor in numerator.levels with a level in denominator.levels,
the ratio predictions are formed from all combinations of the other factors as the ratio of the two
predictions for each combination, along with confidence intervals for the ratio predictions computed
using the Fieller (1954) method.

The printing of the components produced is controlled by the tables argument.

Usage

S3 method for class 'alldiffs'
ratioTransform(alldiffs.obj, ratio.factor,

numerator.levels, denominator.levels,
method = "Fieller", alpha = 0.05,
response = NULL, response.title = NULL,
tables = "predictions", ...)

Arguments

alldiffs.obj An alldiffs.object.

ratio.factor A character string giving the name of the factor for whose levels the ratios are
to be calculated.

numerator.levels

A character string containing the levels of ratio.factor to be used as nu-
merators of the ratio.

denominator.levels

A character string containing the levels of ratio.factor to be used as de-
nominators of the ratio.

method A character string specifying the method to use in calculating the ratios and
their error.intervals. At present only Fieller is available. For the Fieller
method, ratios of predictions are formed and confidence intervals formed for
them using Fieller’s (1954) theorem.

alpha A numeric giving the significance level for LSDs or one minus the confidence
level for confidence intervals.

186 ratioTransform.alldiffs

response A character specifying the response variable for the predictions. It is stored as
an attribute to the alldiffs.object .

response.title A character specifying the title for the response variable for the predictions. It
is stored as an attribute to the alldiffs.object.

tables A character vector containing either none or predictions

... further arguments passed to linTransform.alldiffs.

Value

A list of predictions.frames, each containing the ratio predictions and their confidence limits
for a combination of the numerator.levels with the denominator.levels. It will also contain
the values of the variables in the classify of alldiffs.obj that index the ratio predictions, except
that the ratio.factor is omitted.

If sortFactor attribute of the alldiffs.object is set and is not the ratio.factor, the predictions
and their backtransforms will be sorted using the sortOrder attribute of the alldiffs.object.

Author(s)

Chris Brien

References

Fieller, E. C. (1954). Some Problems in Interval Estimation. Journal of the Royal Statistical Soci-
ety.Series B (Methodological), 16, 175-185.

See Also

pairdiffsTransform, linTransform, predictPlus.asreml, as.alldiffs,
print.alldiffs, sort.alldiffs, subset.alldiffs, allDifferences.data.frame,
redoErrorIntervals.alldiffs, recalcLSD.alldiffs, predictPresent.asreml,
plotPredictions.data.frame,
as.Date, predict.asreml

Examples

Form the ratios and Fieller CIs for RGR Salinity
load(system.file("extdata", "testDiffs.rda", package = "asremlPlus", mustWork = TRUE))
Preds.ratio.RGR <- ratioTransform(diffs.RGR,

ratio.factor = "Salinity",
numerator.levels = "Salt",
denominator.levels = "Control")

Form the ratios and Fieller CIs for Nitrogen compared to no Nitrogen
data("Oats.dat")
Not run:
m1.asr <- asreml(Yield ~ Nitrogen*Variety,

random=~Blocks/Wplots,
data=Oats.dat)

current.asrt <- as.asrtests(m1.asr)
wald.tab <- current.asrt$wald.tab
Var.diffs <- predictPlus(m1.asr, classify="Nitrogen:Variety", pairwise = TRUE,

Vmatrix = TRUE, error.intervals = "halfLeast",
LSDtype = "factor", LSDby = "Variety",
wald.tab = wald.tab)

recalcLSD.alldiffs 187

End(Not run)

Use lme4 and emmmeans to get predictions and associated statistics
if (requireNamespace("lmerTest", quietly = TRUE) &

requireNamespace("emmeans", quietly = TRUE))
{

m1.lmer <- lmerTest::lmer(Yield ~ Nitrogen*Variety + (1|Blocks/Wplots),
data=Oats.dat)

Set up a wald.tab
int <- as.data.frame(rbind(rep(NA,4)))
rownames(int) <- "(Intercept)"
wald.tab <- anova(m1.lmer, ddf = "Kenward", type = 1)[,3:6]
names(wald.tab) <- names(int) <- c("Df", "denDF", "F.inc", "Pr")
wald.tab <- rbind(int, wald.tab)
#Get predictions
Var.emm <- emmeans::emmeans(m1.lmer, specs = ~ Nitrogen:Variety)
Var.preds <- summary(Var.emm)
Modify Var.preds to be compatible with a predictions.frame
Var.preds <- as.predictions.frame(Var.preds, predictions = "emmean",

se = "SE", interval.type = "CI",
interval.names = c("lower.CL", "upper.CL"))

Var.vcov <- vcov(Var.emm)
Var.sed <- NULL
den.df <- wald.tab[match("Variety", rownames(wald.tab)), "denDF"]

#Create alldiffs object
Var.diffs <- as.alldiffs(predictions = Var.preds,

sed = Var.sed, vcov = Var.vcov,
classify = "Nitrogen:Variety", response = "Yield", tdf = den.df)

}

if (exists("Var.diffs"))
Preds.ratio.OatsN <- ratioTransform(alldiffs.obj = Var.diffs,

ratio.factor = "Nitrogen",
numerator.levels = c("0.2","0.4","0.6"),
denominator.levels = "0.2")

recalcLSD.alldiffs Adds or recalculates the LSD.frame that is a component of an
alldiffs.object.

Description

Given an alldiffs.object, adds or recalculate its LSD.frame. N.B. No changes are made to the
error.intervals — use redoErrorIntervals.alldiffs to modify both the error.intervals and
the LSD.frame.

Usage

S3 method for class 'alldiffs'
recalcLSD(alldiffs.obj, LSDtype = "overall", LSDsupplied = NULL,

LSDby = NULL, LSDstatistic = "mean", LSDaccuracy = "maxAbsDeviation",
alpha = 0.05, ...)

188 recalcLSD.alldiffs

Arguments

alldiffs.obj An alldiffs.object.

LSDtype A character string that can be overall, factor.combinations, per.prediction
or supplied. It determines whether the values stored in a row of a LSD.frame
are the values calculated (i) overall from the LSD values for all pairwise
comparison2, (ii) the values calculated from the pairwise LSDs for the lev-
els of each factor.combination, unless there is only one prediction for a
level of the factor.combination, when a notional LSD is calculated, (iii)
per.prediction, being based, for each prediction, on all pairwise differences
involving that prediction, or (iv) as supplied values of the LSD, specified
with the LSDsupplied argument; these supplied values are to be placed in the
assignedLSD column of the LSD.frame stored in an alldiffs.object so that
they can be used in LSD calculations.
See LSD.frame for further information on the values in a row of this data.frame
and how they are calculated.

LSDsupplied A data.frame or a named numeric containing a set of LSD values that cor-
respond to the observed combinations of the values of the LSDby variables in
the predictions.frame or a single LSD value that is an overall LSD. If a
data.frame, it may have (i) a column for the LSDby variable and a column of
LSD values or (ii) a single column of LSD values with rownames being the com-
binations of the observed values of the LSDby variables. Any name can be used
for the column of LSD values; assignedLSD is sensible, but not obligatory. Oth-
erwise, a numeric containing the LSD values, each of which is named for the ob-
served combination of the values of the LSDby variables to which it corresponds.
(Applying the function dae::fac.combine to the predictions component is
one way of forming the required combinations for the (row) names.) The val-
ues supplied will be incorporated into assignedLSD column of the LSD.frame
stored as the LSD component of the alldiffs.object.

LSDby A character (vector) of variables names, being the names of the factors or
numerics in the classify; for each combination of their levels and values,
there will be or is a row in the LSD.frame stored in the LSD component of the
alldiffs.object when LSDtype is factor.combinatons.

LSDstatistic A character nominating one or more of minimum, q10, q25, mean, median,
q75, q90 or maximum as the value(s) to be stored in the assignedLSD column
in an LSD.frame; the values in the assignedLSD column are used in computing
halfLeastSignificant error.intervals. Here q10, q25, q75 and q90 indi-
cate the sample quantiles corresponding to probabilities of 0.1, 0.25, 0.75 and
0.9 for the group of LSDs from which a single LSD value is calculated. The
function quantile is used to obtain them. The mean LSD is calculated as the
square root of the mean of the squares of the LSDs for the group. The median
is calculated using the median function. Multiple values are only produced for
LSDtype set to factor.combination, in which case LSDby must not be NULL
and the number of values must equal the number of observed combinations of
the values of the variables specified by LSDby. If LSDstatistic is NULL, it is
reset to mean.

LSDaccuracy A character nominating one of maxAbsDeviation, maxDeviation, q90Deviation
or RootMeanSqDeviation as the statistic to be calculated as a measure of the ac-
curacy of assignedLSD. The option q90Deviation produces the sample quan-
tile corresponding to a probability of 0.90. The deviations are the differences
between the LSDs used in calculating the LSD statistics and each assigned LSD

recalcLSD.alldiffs 189

and the accuracy is expressed as a proportion of the assigned LSD value. The
calculated values are stored in the column named accuracyLSD in an LSD.frame.

alpha The significance level for an LSD to compare a pair of predictions. It is stored
as an attribute to the alldiffs.object.

... further arguments passed to allDifferences.data.frame; attributes transform.power,
offset and scale cannot be passed.

Value

An alldiffs.object with components predictions, vcov, differences, p.differences sed,
LSD and, if present in alldiffs.obj, backtransforms.

Author(s)

Chris Brien

See Also

asremlPlus-package, as.alldiffs, sort.alldiffs, subset.alldiffs, print.alldiffs,
renewClassify.alldiffs, exploreLSDs.alldiffs, pickLSDstatistics.alldiffs,
redoErrorIntervals.alldiffs, plotPredictions.data.frame, predictPlus.asreml,
predictPresent.asreml

Examples

data(WaterRunoff.dat)

##Use asreml to get predictions and associated statistics

Not run:
asreml.options(keep.order = TRUE) #required for asreml-R4 only
current.asr <- asreml(fixed = pH ~ Benches + (Sources * (Type + Species)),

random = ~ Benches:MainPlots,
keep.order=TRUE, data= WaterRunoff.dat)

current.asrt <- as.asrtests(current.asr, NULL, NULL)
TS.diffs <- predictPlus(classify = "Sources:Type",

asreml.obj = current.asr,
wald.tab = current.asrt$wald.tab,
present = c("Sources", "Type", "Species"))

End(Not run)

Use lmeTest and emmmeans to get predictions and associated statistics

if (requireNamespace("lmerTest", quietly = TRUE) &
requireNamespace("emmeans", quietly = TRUE))

{
m1.lmer <- lmerTest::lmer(pH ~ Benches + (Sources * (Type + Species)) +

(1|Benches:MainPlots),
data=na.omit(WaterRunoff.dat))

TS.emm <- emmeans::emmeans(m1.lmer, specs = ~ Sources:Species)
TS.preds <- summary(TS.emm)
den.df <- min(TS.preds$df, na.rm = TRUE)
Modify TS.preds to be compatible with a predictions.frame
TS.preds <- as.predictions.frame(TS.preds, predictions = "emmean",

190 recalcWaldTab.asrtests

se = "SE", interval.type = "CI",
interval.names = c("lower.CL", "upper.CL"))

Form an all.diffs object and check its validity
TS.vcov <- vcov(TS.emm)
TS.diffs <- allDifferences(predictions = TS.preds, classify = "Sources:Species",

vcov = TS.vcov, tdf = den.df)
validAlldiffs(TS.diffs)

}

Plot p-values for predictions obtained using asreml or lmerTest
if (exists("TS.diffs"))
{

##Recalculate the LSD values for predictions obtained using asreml or lmerTest
TS.diffs <- recalcLSD.alldiffs(TS.diffs, LSDtype = "factor.combinations",

LSDby = "Sources")
}

recalcWaldTab.asrtests

Recalculates the denDF, F.inc and P values for a table of Wald test
statistics obtained using wald.asreml

Description

If some or all denDF are not available, either because they are NA or because F.inc values were
not calculated, this function allows the user to specify how approximate denDF values are to be
obtained. This is done through the dDF.na and dDF.values arguments. Note that if denDF values
are available in the Wald table then only those that are NA will be replaced. The P values are
recalculated using F.con, if present in the wald.tab, otherwise F.inc is used. It is noted that, as of
asreml version 4, wald.asreml has a kenadj argument.

Usage

S3 method for class 'asrtests'
recalcWaldTab(asrtests.obj, recalc.wald = FALSE,

denDF="numeric", dDF.na = "none",
dDF.values = NULL, trace = FALSE, ...)

Arguments

asrtests.obj an asrtests.object containing the components (i) asreml.obj, (ii) wald.tab,
and (iii) test.summary.

recalc.wald A logical indicating whether to call wald.asreml to recalculate the pseu-
doanova table for the model fit stored in the asreml object contained in asrtests.obj.

denDF Specifies the method to use in computing approximate denominator degrees of
freedom when wald.asreml is called. Can be none to suppress the compu-
tations, numeric for numerical methods, algebraic for algebraic methods or
default, the default, to automatically choose numeric or algebraic computa-
tions depending on problem size. The denominator degrees of freedom are cal-
culated according to Kenward and Roger (1997) for fixed terms in the dense part
of the model.

recalcWaldTab.asrtests 191

dDF.na The method to use to obtain substitute denominator degrees of freedom. when
the numeric or algebraic methods produce an NA. If dDF.na = "none", no sub-
stitute denominator degrees of freedom are employed; if dDF.na = "residual",
the residual degrees of freedom from asreml.obj$nedf are used; if dDF.na =
"maximum", the maximum of those denDF that are available, excluding that for
the Intercept, is used; if all denDF are NA, asreml.obj$nedf is used. If dDF.na
= "supplied", a vector of values for the denominator degrees of freedom is to
be supplied in dDF.values. Any other setting is ignored and a warning message
produced. Generally, substituting these degrees of freedom is anticonservative
in that it is likely that the degrees of freedom used will be too large.

dDF.values A vector of values to be used when dDF.na = "supplied". Its values will be
used when denDF in a test for a fixed effect is NA. This vector must be the same
length as the number of fixed terms, including (Intercept) whose value could be
NA.

trace If TRUE then partial iteration details are displayed when ASReml-R functions
are invoked; if FALSE then no output is displayed.

... further arguments passed to asreml and to wald.asreml.

Value

A wald.tab: a 4- or 6-column data.frame containing a pseudo-anova table for the fixed terms
produced by wald.asreml.

Author(s)

Chris Brien

References

Kenward, M. G., & Roger, J. H. (1997). Small sample inference for fixed effects from restricted
maximum likelihood. Biometrics, 53, 983-997.

See Also

as.asrtests, testranfix.asrtests

Examples

Not run:
wald.tab <- recalcWaldTab(current.asrt,

dDF.na = "supplied",
dDF.values = c(NA,rep(c(330,346), c(4,3))))

End(Not run)

192 redoErrorIntervals.alldiffs

redoErrorIntervals.alldiffs

Adds or replaces the error intervals stored in a prediction component
of an alldiffs.object.

Description

Given an alldiffs.object, adds or replaces error.intervals for its prediction component.
If the backtransforms component is present, the transform.power, offset and scale will be
retrieved from the backtransforms attributes, ignoring the values for the function’s arguments,
and the backtransformed error.intervals will also be calculated.

Usage

S3 method for class 'alldiffs'
redoErrorIntervals(alldiffs.obj, error.intervals = "Confidence",

alpha = 0.05,
avsed.tolerance = 0.25, accuracy.threshold = NA,
LSDtype = NULL, LSDsupplied = NULL,
LSDby = NULL, LSDstatistic = "mean",
LSDaccuracy = "maxAbsDeviation",
retain.zeroLSDs = FALSE,
zero.tolerance = .Machine$double.eps ^ 0.5, ...)

Arguments

alldiffs.obj An alldiffs.object.
error.intervals

A character string indicating the type of error interval, if any, to calculate in
order to indicate uncertainty in the predicted values. Possible values are "none",
"StandardError", "Confidence" and "halfLeastSignificant". The de-
fault is for confidence limits to be used. The "halfLeastSignificant" option
results in half the Least Significant Difference (LSD) being added and subtracted
to the predictions, the LSD being calculated using the square root of the mean
of the variances of all or a subset of pairwise differences between the predic-
tions. If the LSD is zero, as can happen when predictions are constrained to be
equal, then the limits of the error intervals are set to NA. If LSDtype is set to
overall, the avsed.tolerance is not NA and the range of the SEDs divided by
the average of the SEDs exceeds avsed.tolerance then the error.intervals
calculations and the plotting will revert to confidence intervals.

alpha A numeric giving the significance level for LSDs or one minus the confidence
level for confidence intervals. It is stored as an attribute to the alldiffs.object.

avsed.tolerance

A numeric giving the value of the SED range, the range of the SEDs divided
by the square root of the mean of the variances of all or a subset of the pairwise
differences, that is considered reasonable in calculating error.intervals. To
have it ignored, set it to NA. It should be a value between 0 and 1. The following
rules apply:

1. If avsed.tolerance is NA then mean LSDs of the type specified by LSDtype
are calculated and used in error.intervals and plots.

redoErrorIntervals.alldiffs 193

2. Irrespective of the setting of LSDtype, if avsed.tolerance is not exceeded
then the mean LSDs are used in error.intervals and plots.

3. If LSDtype is set to overall, avsed.tolerance is not NA, and avsed.tolerance
is exceeded then error.intervals and plotting revert to confidence inter-
vals.

4. If LSDtype is set to factor.combinations and avsed.tolerance is not
exceeded for any factor combination then the half LSDs are used in error.intervals
and plots; otherwise, error.intervals and plotting revert to confidence
intervals.

5. If LSDtype is set to per.prediction and avsed.tolerance is not ex-
ceeded for any prediction then the half LSDs are used in error.intervals
and plots; otherwise, error.intervals and plotting revert to confidence
intervals.

accuracy.threshold

A numeric specifying the value of the LSD accuracy measure, which measure
is specified by LSDaccuracy, as a threshold value in determining whether the
hallfLeastSignificant error.interval for a predicted value is a reason-
able approximation; this will be the case if the LSDs across all pairwise compar-
isons for which the interval’s LSD was computed, as specified by LSDtype and
LSDby, are similar enough to the interval’s LSD, as measured by LSDaccuracy.
If it is NA, it will be ignored. If it is not NA, a column of logicals named
LSDwarning will be added to the predictions component of the alldiffs.object.
The value of LSDwarning for a predicted.value will be TRUE if the value of
the LSDaccuracy measure computed from the LSDs for differences between
this predicted.value and the other predicted.values as compared to its
assignedLSD exceeds the value of accuracy.threshold. Otherwise, the value
of LSDwarning for a predicted.value will be FALSE.

LSDtype A character string that can be overall, factor.combinations, per.prediction
or supplied. It determines whether the values stored in a row of a LSD.frame
are the values calculated (i) overall from the LSD values for all pairwise
comparison2, (ii) the values calculated from the pairwise LSDs for the lev-
els of each factor.combination, unless there is only one prediction for a
level of the factor.combination, when a notional LSD is calculated, (iii)
per.prediction, being based, for each prediction, on all pairwise differences
involving that prediction, or (iv) as supplied values of the LSD, specified
with the LSDsupplied argument; these supplied values are to be placed in the
assignedLSD column of the LSD.frame stored in an alldiffs.object so that
they can be used in LSD calculations.
If LSDtype is NULL (the default), the LSDtype attribute of the alldiffs.obj
will be used; it is also NULL, then the LSDtype will be set to overall.
See LSD.frame for further information on the values in a row of this data.frame
and how they are calculated.

LSDsupplied A data.frame or a named numeric containing a set of LSD values that cor-
respond to the observed combinations of the values of the LSDby variables in
the predictions.frame or a single LSD value that is an overall LSD. If a
data.frame, it may have (i) a column for the LSDby variable and a column of
LSD values or (ii) a single column of LSD values with rownames being the com-
binations of the observed values of the LSDby variables. Any name can be used
for the column of LSD values; assignedLSD is sensible, but not obligatory. Oth-
erwise, a numeric containing the LSD values, each of which is named for the ob-
served combination of the values of the LSDby variables to which it corresponds.

194 redoErrorIntervals.alldiffs

(Applying the function dae::fac.combine to the predictions component is
one way of forming the required combinations for the (row) names.) The val-
ues supplied will be incorporated into assignedLSD column of the LSD.frame
stored as the LSD component of the alldiffs.object.

LSDby A character (vector) of variables names, being the names of the factors or
numerics in the classify; for each combination of their levels and values,
there will be or is a row in the LSD.frame stored in the LSD component of the
alldiffs.object when LSDtype is factor.combinatons.

LSDstatistic A character nominating one or more of minimum, q10, q25, mean, median,
q75, q90 or maximum as the value(s) to be stored in the assignedLSD column
in an LSD.frame; the values in the assignedLSD column are used in computing
halfLeastSignificant error.intervals. Here q10, q25, q75 and q90 indi-
cate the sample quantiles corresponding to probabilities of 0.1, 0.25, 0.75 and
0.9 for the group of LSDs from which a single LSD value is calculated. The
function quantile is used to obtain them. The mean LSD is calculated as the
square root of the mean of the squares of the LSDs for the group. The median
is calculated using the median function. Multiple values are only produced for
LSDtype set to factor.combination, in which case LSDby must not be NULL
and the number of values must equal the number of observed combinations of
the values of the variables specified by LSDby. If LSDstatistic is NULL, it is
reset to mean.

LSDaccuracy A character nominating one of maxAbsDeviation, maxDeviation, q90Deviation
or RootMeanSqDeviation as the statistic to be calculated as a measure of the ac-
curacy of assignedLSD. The option q90Deviation produces the sample quan-
tile corresponding to a probability of 0.90. The deviations are the differences
between the LSDs used in calculating the LSD statistics and each assigned LSD
and the accuracy is expressed as a proportion of the assigned LSD value. The
calculated values are stored in the column named accuracyLSD in an LSD.frame.

retain.zeroLSDs

A logical indicating whether to retain or omit LSDs that are zero when calcu-
lating the summaries of LSDs.

zero.tolerance A numeric specifying the value such that if an LSD is less than it, the LSD will
be considered to be zero.

... further arguments passed to recalcLSD.alldiffs.

Value

An alldiffs.object with components predictions, vcov, differences, p.differences sed,
LSD and, if present in alldiffs.obj, backtransforms.

If error.intervals is not "none", then the predictions component and, if present, the backtransforms
component will contain columns for the lower and upper values of the limits for the interval. The
names of these columns will consist of three parts separated by full stops: 1) the first part will be
lower or upper; 2) the second part will be one of Confidence, StandardError or halfLeastSignificant;
3) the third component will be limits.

The name of the response, the term, the classify and tdf, as well as the degrees of free-
dom of the standard error, will be set as attributes to the object. Also, if error.intervals is
"halfLeastSignificant", then those of LSDtype, LSDby and LSDstatistic that are not NULL
will be added as attributes of the object and of the predictions frame; additionally, LSDvalues
will be added as attribute of the predictions frame, LSDvalues being the LSD values used in
calculating the error.intervals.

redoErrorIntervals.alldiffs 195

Author(s)

Chris Brien

See Also

recalcLSD.alldiffs, exploreLSDs.alldiffs, pickLSDstatistics.alldiffs,
predictPresent.asreml, plotPredictions.data.frame, allDifferences.data.frame,
as.alldiffs, print.alldiffs, sort.alldiffs, subset.alldiffs,
as.Date, predict.asreml

Examples

data(WaterRunoff.dat)

##Use asreml to get predictions and associated statistics

Not run:
asreml.options(keep.order = TRUE) #required for asreml-R4 only
current.asr <- asreml(fixed = pH ~ Benches + (Sources * (Type + Species)),

random = ~ Benches:MainPlots,
keep.order=TRUE, data= WaterRunoff.dat)

current.asrt <- as.asrtests(current.asr, NULL, NULL)
TS.diffs <- predictPlus(classify = "Sources:Type",

asreml.obj = current.asr,
wald.tab = current.asrt$wald.tab,
present = c("Sources", "Type", "Species"))

End(Not run)

Use lmeTest and emmmeans to get predictions and associated statistics

if (requireNamespace("lmerTest", quietly = TRUE) &
requireNamespace("emmeans", quietly = TRUE))

{
m1.lmer <- lmerTest::lmer(pH ~ Benches + (Sources * (Type + Species)) +

(1|Benches:MainPlots),
data=na.omit(WaterRunoff.dat))

TS.emm <- emmeans::emmeans(m1.lmer, specs = ~ Sources:Species)
TS.preds <- summary(TS.emm)
den.df <- min(TS.preds$df, na.rm = TRUE)
Modify TS.preds to be compatible with a predictions.frame
TS.preds <- as.predictions.frame(TS.preds, predictions = "emmean",

se = "SE", interval.type = "CI",
interval.names = c("lower.CL", "upper.CL"))

Form an all.diffs object and check its validity
TS.vcov <- vcov(TS.emm)
TS.diffs <- allDifferences(predictions = TS.preds,

classify = "Sources:Species",
vcov = TS.vcov, tdf = den.df)

validAlldiffs(TS.diffs)
}

Plot p-values for predictions obtained using asreml or lmerTest
if (exists("TS.diffs"))
{

196 REMLRT.asreml

##Recalculate the LSD values for predictions obtained using asreml or lmerTest
TS.diffs <- redoErrorIntervals.alldiffs(TS.diffs,

error.intervals = "halfLeastSignificant")

}

REMLRT.asreml Performs a REML ratio test to compare two models.

Description

Extracts the REML log likelihood and the number of variance parameters from two asreml objects.
It assumes that the first asreml object corresponds to the null hypothesis and the second asreml
object to the alternative hypothesis for the test being conducted. That is, the second asreml object
is the result of fitting a model that is a reduced version of the model for the first object. In the
case where the reduced model is obtained by setting positively-constrained variance parameters in
the full model to zero, the positive.zero argument should be set to TRUE so that the p-value is
computed using a mixture of chi-square distributions as described in Self and Liang (1987).

The function checks that the models do not differ in either their fixed or sparse models.

Usage

S3 method for class 'asreml'
REMLRT(h0.asreml.obj, h1.asreml.obj,

positive.zero = FALSE, bound.test.parameters = "none",
DF = NULL, bound.exclusions = c("F","B","S","C"), ...)

Arguments

h0.asreml.obj asreml object containing the fit under the model for the null hypothesis.

h1.asreml.obj asreml object containing the fit under the model for the alternative hypothesis.

positive.zero Indicates whether the hypothesized values for the variance components being
tested are on the boundary of the parameter space. For example, this is true for
positively-constrained variance components that, under the reduced model, are
zero. This argument does not need to be set if bound.test.parameters is set.

bound.test.parameters

Indicates whether for the variance components being tested, at least some of the
hypothesized values are on the boundary of the parameter space. The possibili-
ties are "none", "onlybound" and "one-and-one". The default is "none", al-
though if it is set to "none" and positive.zero is TRUE then bound.test.parameters
is taken to be "onlybound". When bound.test.parameters is set to "one-and-one",
it signifies that there are two parameters being tested, one of which is bound and
the other is not. For example, the latter is true for testing a covariance and a
positively-constrained variance component that, under the reduced model, are
zero.

DF A numeric giving the difference between the two models in the number of vari-
ance parameters whose estimates are not of the type specified in bound.exclusions.
If NULL then this is determined from the information in full.asreml.obj and
reduced.asreml.obj.

REMLRT.asreml 197

bound.exclusions

A character specifying one or more bound (constraint) codes that will result
in a variance parameter being excluded from the count of estimated variance
parameters. If set to NULL then none will be excluded.

... Provision for passing arguments to functions called internally - not used at
present.

Value

A data.frame containing the log of the likelihood ratio, its degrees of freedom, its p-value and the
number of bound parameters in each of the two models being compared.

Note

If DF is not NULL, the supplied value is used. Otherwise DF is determined from the information in
h1.asreml.obj and h0.asreml.obj. In this case, the degrees of freedom for the test are computed
as the difference between the two models in the number of variance parameters whose estimates do
not have a code for bound specified in bound.exclusions.

If ASReml-R version 4 is being used then the codes specified in bound.exclusions are not re-
stricted to a subset of the default codes, but a warning is issued if a code other than these is specified.
For ASReml-R version 3, only a subset of the default codes are allowed: F (Fixed), B (Boundary),
C (Constrained) and S (Singular).

The test statistic is calculated as 2(log(REML)1 − log(REML)0).

This procedure is only appropriate when the null hypothesis is that (i) all parameters are on the
boundary of the parameter space (ii) all parameters are in the interior of the parameter space, or (iii)
there are two parameters, one of which is on the boundary and the other is not. Other cases have
been discussed by Self and Liang (1987), but are not implemented here.

Author(s)

Chris Brien

References

Self, S.G., and Liang, K-Y. (1987) Asymptotic Properties of Maximum Likelihood Estimators and
Likelihood Ratio Tests Under Nonstandard Conditions. Journal of the American Statistical Associ-
ation, 82, 605-10.

See Also

infoCriteria.asreml, testranfix.asrtests

Examples

Not run:
REMLRT(ICV.max, ICV.red, bound.test.parameters = "onlybound")

End(Not run)

198 renewClassify.alldiffs

renewClassify.alldiffs

Renews the components in an alldiffs.object according to a new
classify.

Description

The classify is an attribute of an alldiffs.object and determines the order within the compo-
nents of an unsorted alldiffs.object. This function resets the classify attribute and re-orders
the components of alldiffs.object to be in standard order for the variables in a newclassify,
using allDifferences.data.frame. The newclassify may be just a re-ordering of the variable
names in the previous classify, or be based on a new set of variable names. The latter is particu-
larly useful when linTransform.alldiffs has been used with a matrix and it is desired to replace
the resulting Combination classify with a newclassify comprised of a more meaningful set of
variables; first replace Combination in the predictions component with the new set of variables
and then call renewClassify.

Usage

S3 method for class 'alldiffs'
renewClassify(alldiffs.obj, newclassify,

sortFactor = NULL, sortParallelToCombo = NULL,
sortNestingFactor = NULL, sortOrder = NULL, decreasing = FALSE, ...)

Arguments

alldiffs.obj An alldiffs.object.

newclassify A character string giving the variables that define the margins of the multiway
table that was predicted, but ordered so that the predictions are in the desired
order when they are arranged in standard order for the newclassify. Multiway
tables are specified by forming an interaction type term from the classifying
variables, that is, separating the variable names with the : operator. The number
of combined values of the set of variable name(s) must equal the number of rows
in the predictions component.

sortFactor A character containing the name of the factor that indexes the set of pre-
dicted values that determines the sorting of the components. If there is only
one variable in the classify term then sortFactor can be NULL and the order
is defined by the complete set of predicted values. If there is more than one
variable in the classify term then sortFactor must be set. In this case the
sortFactor is sorted in the same order within each combination of the values
of the sortParallelToCombo variables: the classify variables, excluding the
sortFactor. There should be only one predicted value for each unique value
of sortFactor within each set defined by a combination of the values of the
classify variables, excluding the sortFactor factor. The order to use is
determined by either sortParallelToCombo or sortOrder.

sortParallelToCombo

A list that specifies a combination of the values of the factors and numerics,
excluding sortFactor, that are in classify. Each of the components of the
supplied list is named for a classify variable and specifies a single value for
it. The combination of this set of values will be used to define a subset of the

renewClassify.alldiffs 199

predicted values whose order will define the order of sortFactor. Each of the
other combinations of the values of the factors and numerics will be sorted in
parallel. If sortParallelToCombo is NULL then the first value of each classify
variable, except for the sortFactor factor, in the predictions component
is used to define sortParallelToCombo. If there is only one variable in the
classify then sortParallelToCombo is ignored.

sortNestingFactor

A character containing the name of the factor that defines groups of the
sortFactor within which the predicted values are to be ordered. If there is only
one variable in the classify then sortNestingFactor is ignored.

sortOrder A character vector whose length is the same as the number of levels for
sortFactor in the predictions component of the alldiffs.object. It speci-
fies the desired order of the levels in the reordered components of the alldiffs.object.
The argument sortParallelToCombo is ignored.
The following creates a sortOrder vector levs for factor f based on the values
in x: levs <- levels(f)[order(x)].

decreasing A logical passed to order that detemines whether the order is for increasing
or decreasing magnitude of the predicted values.

... further arguments passed to allDifferences.data.frame; attributes tranform.power,
offset and scale cannot be passed.

Details

First, the components of the alldiffs.object is arranged in standard order for the newclassify.
Then predictions are reordered according to the settings of sortFactor, sortParallelToCombo,
sortOrder and decreasing (see sort.alldiffs for details).

Value

The alldiffs.object supplied with the following components, if present, sorted: predictions,
vcov, backtransforms, differences, p.differences and sed. Also, the sortFactor and sortOrder
attributes are set.

Author(s)

Chris Brien

See Also

as.alldiffs, allDifferences.data.frame, print.alldiffs, sort.alldiffs,
redoErrorIntervals.alldiffs, recalcLSD.alldiffs,
predictPlus.asreml, predictPresent.asreml

Examples

data(WaterRunoff.dat)

##Use asreml to get predictions and associated statistics

Not run:
#Analyse pH
m1.asr <- asreml(fixed = pH ~ Benches + (Sources * (Type + Species)),

random = ~ Benches:MainPlots,

200 reparamSigDevn.asrtests

keep.order=TRUE, data= WaterRunoff.dat)
current.asrt <- as.asrtests(m1.asr, NULL, NULL)
current.asrt <- as.asrtests(m1.asr)
current.asrt <- rmboundary(current.asrt)
m1.asr <- current.asrt$asreml.obj

#Get predictions and associated statistics
TS.diffs <- predictPlus.asreml(classify = "Sources:Type",

asreml.obj = m1.asr, tables = "none",
wald.tab = current.asrt$wald.tab,
present = c("Type","Species","Sources"))

End(Not run)

Use lmeTest and emmmeans to get predictions and associated statistics

if (requireNamespace("lmerTest", quietly = TRUE) &
requireNamespace("emmeans", quietly = TRUE))

{
#Analyse pH
m1.lmer <- lmerTest::lmer(pH ~ Benches + (Sources * (Type + Species)) +

(1|Benches:MainPlots),
data=na.omit(WaterRunoff.dat))

TS.emm <- emmeans::emmeans(m1.lmer, specs = ~ Sources:Type)
TS.preds <- summary(TS.emm)
den.df <- min(TS.preds$df, na.rm = TRUE)
Modify TS.preds to be compatible with a predictions.frame
TS.preds <- as.predictions.frame(TS.preds, predictions = "emmean",

se = "SE", interval.type = "CI",
interval.names = c("lower.CL", "upper.CL"))

Form an all.diffs object and check its validity
TS.vcov <- vcov(TS.emm)
TS.diffs <- allDifferences(predictions = TS.preds,

classify = "Sources:Type",
vcov = TS.vcov, tdf = den.df)

validAlldiffs(TS.diffs)
}

#Re-order predictions from asreml or lmerTest so all Sources for the same Type are together
#for each combination of A and B
if (exists("TS.diffs"))
{

TS.diffs.reord <- renewClassify(TS.diffs, newclassify = "Type:Sources")
validAlldiffs(TS.diffs.reord)

}

reparamSigDevn.asrtests

Reparamterizes each random (deviations) term involving devn.fac to
a fixed term and ensures that the same term, with trend.num replacing
devn.fac, is included if any other term with trend.num is included in
terms.

reparamSigDevn.asrtests 201

Description

This function reparamterizes each random (deviations) term involving devn.fac to a fixed term
and ensures that the same term with trend.num replacing devn.fac is included if any other term
with trend.num is included in terms. It also ansures that any term with spl{trend.num} replacing
devn.fac in a term being reparameterized is removed from the model.

Usage

S3 method for class 'asrtests'
reparamSigDevn(asrtests.obj,terms = NULL,

trend.num = NULL, devn.fac = NULL,
allow.unconverged = TRUE, allow.fixedcorrelation = TRUE,
checkboundaryonly = FALSE,
denDF = "numeric", IClikelihood = "none",
trace = FALSE, update = TRUE,
set.terms = NULL, ignore.suffices = TRUE,
bounds = "P", initial.values = NA,...)

Arguments

asrtests.obj an asrtests.object containing the components (i) asreml.obj, (ii) wald.tab,
and (iii) test.summary.

terms A character string vector giving the random terms that are to be reparameterized.

trend.num A character string giving the name of the numeric covariate that corresponds to
devn.fac and is potentially included in terms in the fitted model.

devn.fac A character string giving the name of the factor that corresponds to trend.num
and is included in terms in the fitted model. The name must match those in the
vparameters component of the asreml.obj component in the asrtests.obj.

allow.unconverged

A logical indicating whether to accept a new model even when it does not
converge. Initially all changes are made with allow.unconverged set to TRUE.
If allow.unconverged has been set to FALSE in the call and the final fit does not
converge, an attempt is made to achieve convergence by removing any boundary
terms. If this is unsuccessful, the supplied asrtests.obj is returned.

allow.fixedcorrelation

A logical indicating whether to accept a new model even when it contains
correlations in the model whose values have been designated as fixed, bound
or singular. If FALSE and the new model contains correlations whose values
have not been able to be estimated, the supplied asrtests.obj is returned.
The fit in the asreml.obj component of the supplied asrtests.obj will also
be tested and a warning issued if both fixed correlations are found in it and
allow.fixedcorrelation is FALSE.

checkboundaryonly

If TRUE then boundary and singular terms are not removed by rmboundary.asrtests;
a warning is issued instead.

denDF Specifies the method to use in computing approximate denominator degrees of
freedom when wald.asreml is called. Can be none to suppress the compu-
tations, numeric for numerical methods, algebraic for algebraic methods or
default, the default, to autommatically choose numeric or algebraic compu-
tations depending on problem size. The denominator degrees of freedom are

202 reparamSigDevn.asrtests

calculated according to Kenward and Roger (1997) for fixed terms in the dense
part of the model.

IClikelihood A character that controls both the occurrence and the type of likelihood for
information criterion in the test.summary of the new asrtests.object. If
none, none are included. Otherwise, if REML, then the AIC and BIC based on the
Restricted Maximum Likelihood are included; if full, then the AIC and BIC
based on the full likelihood, evaluated using REML estimates, are included.
(See also infoCriteria.asreml.)

trace If TRUE then partial iteration details are displayed when ASReml-R functions
are invoked; if FALSE then no output is displayed.

update If TRUE, and set.terms is NULL, then newfit.asreml is called to fit the model
to be tested, using the values of the variance parameters stored in the asreml.object,
that is stored in asrtests.obj, as starting values. If FALSE or set.terms is not
NULL, then newfit.asreml will not use the stored variance parameter values as
starting values when fitting the new model, the only modifications being (i) the
models are updated and (ii) those specified via

set.terms A character vector specifying the terms that are to have bounds and/or initial
values set prior to fitting.

ignore.suffices

A logical vector specifying whether the suffices of the asreml-assigned names
of the variance terms (i.e. the information to the right of an "!", other than
"R!") is to be ignored in matching elements of terms. If TRUE for an element
of terms, the suffices are stripped from the asreml-assigned names. If FALSE
for an element of terms, the element must exactly match an asreml-assigned
name for a variance term. This vector must be of length one or the same length
as terms. If it is of length one then the same action is applied to the asreml-
assigned suffices for all the terms in terms.

bounds A character vector specifying the bounds to be applied to the terms speci-
fied in set.terms. This vector must be of length one or the same length as
set.terms. If it is of length one then the same constraint is applied to all the
terms in set.terms. If any of the bounds are equal to NA then they are left
unchanged for those terms.

initial.values A character vector specifying the initial values for the terms specified in terms.
This vector must be of length one or the same length as terms. If it is of length
one then the same initial value is applied to all the terms in terms. If any of the
initial.values are equal to NA then they are left unchanged for those terms.

... further arguments passed to asreml via changeTerms.asrtests and as.asrtests.

Value

An asrtests.object containing the components (i) asreml.obj, (ii) wald.tab, and (iii) test.summary.

Author(s)

Chris Brien

References

Kenward, M. G., & Roger, J. H. (1997). Small sample inference for fixed effects from restricted
maximum likelihood. Biometrics, 53, 983-997.

reparamSigDevn.asrtests 203

See Also

as.asrtests, changeTerms.asrtests, testranfix.asrtests, testresidual.asrtests,
newfit.asreml, chooseModel.asrtests

Examples

Not run:
data(WaterRunoff.dat)
asreml.options(keep.order = TRUE) #required for asreml-R4 only
current.asr <- asreml(fixed = log.Turbidity ~ Benches + Sources + Type + Species +

Sources:Type + Sources:Species + Sources:Species:xDay +
Sources:Species:Date,

data = WaterRunoff.dat, keep.order = TRUE)
current.asrt <- as.asrtests(current.asr, NULL, NULL)

#Examine terms that describe just the interactions of Date and the treatment factors
terms.treat <- c("Sources", "Type", "Species", "Sources:Type", "Sources:Species")
date.terms <- sapply(terms.treat,

FUN=function(term){paste("Date:",term,sep="")},
simplify=TRUE)

date.terms <- c("Date", date.terms)
date.terms <- unname(date.terms)
treat.marginality <- matrix(c(1,0,0,0,0,0, 1,1,0,0,0,0, 1,0,1,0,0,0,

1,0,1,1,0,0, 1,1,1,0,1,0, 1,1,1,1,1,1), nrow=6)
rownames(treat.marginality) <- date.terms
colnames(treat.marginality) <- date.terms
choose <- chooseModel(current.asrt, treat.marginality, denDF="algebraic")
current.asrt <- choose$asrtests.obj
current.asr <- current.asrt$asreml.obj
sig.date.terms <- choose$sig.terms

#Remove all Date terms left in the fixed model
terms <- "(Date/(Sources * (Type + Species)))"
current.asrt <- changeTerms(current.asrt, dropFixed = terms)
#if there are significant date terms, reparameterize to xDays + spl(xDays) + Date
if (length(sig.date.terms) != 0)
{ #add lin + spl + devn for each to fixed and random models

trend.date.terms <- sapply(sig.date.terms,
FUN=function(term){sub("Date","xDay",term)},
simplify=TRUE)

trend.date.terms <- paste(trend.date.terms, collapse=" + ")
current.asrt <- changeTerms(current.asrt, addFixed=trend.date.terms)
trend.date.terms <- sapply(sig.date.terms,

FUN=function(term){sub("Date","spl(xDay)",term)},
simplify=TRUE)

trend.date.terms <- c(trend.date.terms, sig.date.terms)
trend.date.terms <- paste(trend.date.terms, collapse=" + ")
current.asrt <- changeTerms(current.asrt, addRandom = trend.date.terms)
current.asrt <- rmboundary(current.asrt)

}

#Now test terms for sig date terms
spl.terms <- sapply(terms.treat,

FUN=function(term){paste("spl(xDay):",term,sep="")},
simplify=TRUE)

spl.terms <- c("spl(xDay)",spl.terms)

204 rmboundary.asrtests

lin.terms <- sapply(terms.treat,
FUN=function(term){paste(term,":xDay",sep="")},
simplify=TRUE)

lin.terms <- c("xDay",lin.terms)
systematic.terms <- c(terms.treat, lin.terms, spl.terms, date.terms)
systematic.terms <- unname(systematic.terms)
treat.marginality <- matrix(c(1,0,0,0,0,0, 1,1,0,0,0,0, 1,0,1,0,0,0,

1,0,1,1,0,0, 1,1,1,1,1,0, 1,1,1,1,1,1), nrow=6)
systematic.marginality <- kronecker(matrix(c(1,0,0,0, 1,1,0,0,

1,1,1,0, 1,1,1,1), nrow=4),
treat.marginality)

systematic.marginality <- systematic.marginality[-1, -1]
rownames(systematic.marginality) <- systematic.terms
colnames(systematic.marginality) <- systematic.terms
choose <- chooseModel(current.asrt, systematic.marginality,

denDF="algebraic", pos=TRUE)
current.asrt <- choose$asrtests.obj

#Check if any deviations are significant and, for those that are, go back to
#fixed dates
current.asrt <- reparamSigDevn(current.asrt, choose$sig.terms,

trend.num = "xDay", devn.fac = "Date",
denDF = "algebraic")

End(Not run)

rmboundary.asrtests Removes any boundary or singular variance components from
the fit stored in asrtests.obj and records their removal in an
asrtests.object.

Description

Any terms specified in the random model that are estimated on the boundary or are singular and can
be removed are removed from the fit stored in the asreml object stored in the asrtests.object.
Terms that specify multiple parameters in the random model cannot be removed (e.g. terms speci-
fied using the at function with more than one level of the factor) and terms in residual model are
not removed. Terms that can be removed are selected for removal in the following order based on
whether they involve: (i) a dev function, (ii) only factors, (iii) an spl function, (iv) a pol function
and (v) a lin function or a variable that is an integer or a numeric. It should be noted that this
order of removal presumes that random deviation terms are specified via the dev function rather
than via a random factor. Once the earliest of the above classes with a boundary term is identified,
a term within this class is selected for removal. For all classes, except for factor-only terms, the
smallest term with the largest number of variables/factors is removed. Amongst factor-only terms,
the smallest term with the smallest number of variables/factors is removed. After each variance
component is removed, a row for it is added to the test.summary data.frame and the model re-
fitted. If there are further boundary or singular terms, one is removed using the above strategy.
This process continues until there are no further boundary or singular variance components that are
removable. Other types of boundary or singular terms, which cannot be removed, are reported in
warning messages.

rmboundary.asrtests 205

Usage

S3 method for class 'asrtests'
rmboundary(asrtests.obj, checkboundaryonly = FALSE,

IClikelihood = "none", trace = FALSE, update = TRUE,
set.terms = NULL, ignore.suffices = TRUE,
bounds = "P", initial.values = NA, ...)

Arguments

asrtests.obj an asrtests.object containing the components (i) asreml.obj, (ii) wald.tab,
and (iii) test.summary.

checkboundaryonly

If TRUE then boundary and singular terms are not removed by rmboundary.asrtests;
a warning is issued instead.

IClikelihood A character that controls both the occurrence and the type of likelihood for
information criterion in the test.summary of the new asrtests.object. If
none, none are included. Otherwise, if REML, then the AIC and BIC based on the
Restricted Maximum Likelihood are included; if full, then the AIC and BIC
based on the full likelihood, evaluated using REML estimates, are included.
(See also infoCriteria.asreml.)

trace If TRUE then partial iteration details are displayed when ASReml-R functions are
invoked; if FALSE then no output is displayed.

update If TRUE, and set.terms is NULL, then newfit.asreml is called to fit the model
with any boundary terms removed and using the values of the variance param-
eters stored in the asreml.object, that is stored in asrtests.obj, as starting
values. If FALSE or set.terms is not NULL, then newfit.asreml will not use
the stored variance parameter values as starting values when fitting the model
without the boundary terms.

set.terms A character vector specifying the terms that are to have bounds and/or initial
values set prior to fitting. The names must match those in the vparameters
component of the asreml.obj component in the asrtests.object.

ignore.suffices

A logical vector specifying whether the suffices of the asreml-assigned names
of the variance terms (i.e. the information to the right of an "!", other than
"R!") is to be ignored in matching elements of terms. If TRUE for an element
of terms, the suffices are stripped from the asreml-assigned names. If FALSE
for an element of terms, the element must exactly match an asreml-assigned
name for a variance term. This vector must be of length one or the same length
as terms. If it is of length one then the same action is applied to the asreml-
assigned suffices for all the terms in terms.

bounds A character vector specifying the bounds to be applied to the terms speci-
fied in set.terms. This vector must be of length one or the same length as
set.terms. If it is of length one then the same constraint is applied to all the
terms in set.terms. If any of the bounds are equal to NA then they are left
unchanged for those terms.

initial.values A character vector specifying the initial values for the terms specified in terms.
This vector must be of length one or the same length as terms. If it is of length
one then the same initial value is applied to all the terms in terms. If any of the
initial.values are equal to NA then they are left unchanged for those terms.

... Further arguments, including asreml arguments, passed to newfit.asreml.

206 setvarianceterms.call

Value

An asrtests.object containing the components (i) asreml.obj, (ii) wald.tab, and (iii) test.summary.

Author(s)

Chris Brien

See Also

as.asrtests, changeTerms.asrtests, testranfix.asrtests, testresidual.asrtests,
newfit.asreml, reparamSigDevn.asrtests, chooseModel.asrtests

Examples

Not run:
current.asrt <- rmboundary(current.asrt)

End(Not run)

setvarianceterms.call allows the setting of bounds and initial values for terms in the random
and residual arguments of an asreml call, with the resulting call
being evaluated.

Description

Takes an unevaluated call and evaluates the call after setting the bounds and initial values for
the terms specified in terms. The elements of terms are matched with those generated by asreml
and used, for example, in the varcomp component of a summary.asreml object. These names
generally include descriptive suffices. To match an element of terms that includes such a suffix, set
ignore.suffices to FALSE so that a literal match between the element and the assigned names is
sought.

Note that the terms, bounds and initial.values are stored on entry in a data.frame, named
setvparameters, as a component in call that is itself a component of the asreml.obj that is re-
turned. The data.frame setvparameters contains all of the values of terms, ignore.suffices,
bounds and initial.values that have been set in this and previous calls to setvarianceterms.call
and other model modification and selection functions in asremlPlus, for example changeMode-
lOnIC.asrtests, testranfix.asrtests and changeTerms.asrtests. It is used in subsequent calls to model
modification and selection functions to ensure that the bounds and initial values that have been set
are retained in new model fits.

Usage

S3 method for class 'call'
setvarianceterms(call, terms, ignore.suffices = TRUE,

bounds = "P", initial.values = NA, ...)

setvarianceterms.call 207

Arguments

call an unevaluated call to asreml. One way to create such a call is to use the call
function with its name argument set to "asreml". Another is to obtain it from
the call component of an asreml object (e.g. call <- asreml.obj$call).

terms A character vector specifying the terms that are to have bounds and/or initial
values specified. The names must match those in the vparameters component
of the asreml.obj component in the asrtests.object.

ignore.suffices

A logical vector specifying whether the suffices of the asreml-assigned names
of the variance terms (i.e. the information to the right of an "!", other than
"R!") is to be ignored in matching elements of terms. If TRUE for an element
of terms, the suffices are stripped from the asreml-assigned names. If FALSE
for an element of terms, the element must exactly match an asreml-assigned
name for a variance term. This vector must be of length one or the same length
as terms. If it is of length one then the same action is applied to the asreml-
assigned suffices for all the terms in terms.

bounds A character vector specifying the bounds to be applied to the terms specified
in terms. This vector must be of length one or the same length as terms. If it
is of length one then the same constraint is applied to all the terms in terms. If
any of the bounds are equal to NA then they are left unchanged for those terms.
The codes used by ASReml are:

• B - fixed at a boundary;
• F - fixed by the user;
• P - positive definite;
• C - Constrained by user;
• U - unbounded.

initial.values A character vector specifying the initial values for the terms specified in terms.
This vector must be of length one or the same length as terms. If it is of length
one then the same initial value is applied to all the terms in terms. If any of the
initial.values are equal to NA then they are left unchanged for those terms.

... additional arguments to be added to the asreml call, or arguments in the asreml
call with changed values.

Value

An asreml object, with the updated setvparameters data.frame, stored in the call component
of the asreml object.

Author(s)

Chris Brien

References

Butler, D. G., Cullis, B. R., Gilmour, A. R., Gogel, B. J. and Thompson, R. (2023). ASReml-R
Reference Manual Version 4.2. VSN International Ltd, https://asreml.kb.vsni.co.uk/.

See Also

newfit.asreml, update.asreml

https://asreml.kb.vsni.co.uk/

208 simulate.asreml

Examples

Not run:
m1.call <- call("asreml",

fixed = Height ~ (Block + Irrig)*csDay.num,
random= ~ spl(csDay.num)/(Irrig+Block)

+ dev(csDay.num)
+ str(~Block:Plot/csDay.num, ~us(2):id(20))
+ Block:Plot:spl(csDay.num),

data=quote(dat)) ##use quote to stop evaluation of dat here
terms <- c("Block:Plot+Block:Plot:csDay.num!us(2).2:1", "R!variance")
m1.asreml <- setvarianceterms(m1.call, terms, bounds=c("U","P"),

initial=c(NA,3), ignore.suffices=c(FALSE,TRUE))
summary(m1.asreml)

End(Not run)

simulate.asreml Produce sets of simulated data from a multivariate normal distribution
and save quantities related to the simulated data

Description

Produce in parallel sets of simulated data corresponding to an asreml model, along with its fitted
values and residuals. A variance matrix V, corresponding to the random and residual models must
be supplied. What to save is specified by the which argument.

Usage

S3 method for class 'asreml'
simulate(object, nsim=100, seed = NULL, means=NULL, V, tolerance = 1E-10,

update = TRUE, trace = FALSE, which="data", units = "ignore",
ncores = 2, ...)

Arguments

object An asreml object from a call to asreml in which the data argument has been
set.

means The vector of means to be used in generating simulated data sets. If it is NULL,
the fitted values based on object are used. It must be the same length as the
response variable for object.

V The fitted variance matrix, i.e. having the pattern and values that conform to
the model fit stored in the supplied object.

nsim The number of data sets to be simulated.

seed A single value, interpreted as an integer, that specifies the starting value of the
random number generator. The "L’Ecuyer-CMRG" random generator is used
and nextRNGStream is used to seed each core from the original seed.

tolerance The value such that eigenvalues less than it are considered to be zero.

simulate.asreml 209

update If TRUE then the arguments R.param and G.param are set to those in the asreml
object supplied in object so that the values from the original model are used
as starting values. If FALSE then asreml calls are evaluated, the only changes
from the previous call being that (i) the model is fitted to simulated data and (ii)
modifications specified via ... are mode, except that changes cannot be made
to any of the models.

trace If TRUE then partial iteration details are displayed when ASReml-R functions are
invoked; if FALSE then no output is displayed.

which The quantities from the simulated data set to be stored. Any combination of
"response", "residuals" and "fitted", or "all". If residuals and/or
fitted is specified, those for the analysis stored in object will be added to
the data.frame nominated in the data argument of object and the modified
data.frame added as a component named data in the list that is the value
returned by the function.

units A character indicating whether the BLUPs for units are added to the residuals
when this reserved factor is included in the random model. Possible values are
addtoresiduals and ignore.

ncores A numeric specifying the number of cores to use in doing the simulations. In
choosing a value for ncores, it is necessary to take into account other processes
that are using parallel processing at the same time.

... Other arguments that are passed down to the function asreml. Changes to the
models are not allowed. Other changes are dangerous and generally should be
avoided.

Details

Generate nsim sets of data and analyse them using asreml using the model in object, performing
the generation and analysis of several sets in parallel. Note, if the analysis for a data set does not
converge in maxiter iterations, it is discarded and a replacement data set generated. The value
of maxiter can be specified in the call to simulate.asreml. The fitted values and residuals are
extracted as required. If aom = TRUE when the simulated data are analysed, standardised condi-
tional residuals are stored. If which includes residuals or fitted, the specified quantities for the
observed data are added to the data.frame on which the fit in object is based.

Value

A list with the following components whose presence depends on the setting of which:

1. observed: present if which includes residuals or fitted, in which case it will be the
data.frame on which the fit in object is based, with residuals and/or fitted.

2. data: present if which includes data, a data.frame containing the simulated data sets.

3. fitted: present if which includes fitted, a data.frame containing the fitted values from the
analyses of the simulated data sets.

4. residuals: present if which includes residuals, a data.frame containing the residuals from
the analyses of the simulated data sets.

Author(s)

Chris Brien

210 sort.alldiffs

See Also

asreml, newfit.asreml, variofaces.asreml, plotVariofaces.data.frame, set.seed.

Examples

Not run:
data(Wheat.dat)
current.asr <- asreml(yield ~ Rep + WithinColPairs + Variety,

random = ~ Row + Column + units,
residual = ~ ar1(Row):ar1(Column),
data=Wheat.dat)

current.asrt <- as.asrtests(current.asr, NULL, NULL)
current.asrt <- rmboundary.asrtests(current.asrt)
Form variance matrix based on estimated variance parameters
s2 <- current.asr$sigma2
gamma.Row <- current.asr$gammas[1]
gamma.unit <- current.asr$gammas[2]
rho.r <- current.asr$gammas[4]
rho.c <- current.asr$gammas[5]
row.ar1 <- mat.ar1(order=10, rho=rho.r)
col.ar1 <- mat.ar1(order=15, rho=rho.c)
V <- gamma.Row * fac.sumop(Wheat.dat$Row) +

gamma.unit * diag(1, nrow=150, ncol=150) +
mat.dirprod(col.ar1, row.ar1)

V <- s2*V

#Produce residuals from 100 simulated data sets
resid <- simulate(current.asr, V=V, which="residuals", ncores = parallel::detectCores())

End(Not run)

sort.alldiffs Sorts the components in an alldiffs.object according to the pre-
dicted values associated with a factor.

Description

Sorts the rows of the components in an alldiffs.object (see as.alldiffs) that are data.frames
and the rows and columns of those that are matrices according to the predicted values in the
predictions component. These predicted values are generally obtained using predict.asreml by
specifying a classify term comprised of one or more variables. Generally, the values associated
with one variable are sorted in parallel within each combination of values of the other variables.
When there is more than one variable in the classify term, the sorting is controlled using one or
more of sortFactor, sortParallelToCombo and sortOrder. If there is only one variable in the
classify then all components are sorted according to the order of the complete set of predictions.

Note that renewClassify.alldiffs is called after sorting to ensure that the order of the rows and
columns of the components is in standard order for the new variable order.

Usage

S3 method for class 'alldiffs'
sort(x, decreasing = FALSE, classify = NULL, sortFactor = NULL,

sortParallelToCombo = NULL, sortNestingFactor = NULL,
sortOrder = NULL, ...)

sort.alldiffs 211

Arguments

x An alldiffs.object.

decreasing A logical passed to order that detemines whether the order is for increasing
or decreasing magnitude of the predicted values.

classify A character string giving the variables that define the margins of the multiway
table that was predicted. Multiway tables are specified by forming an interaction
type term from the classifying variables, that is, separating the variable names
with the : operator. If NULL, it will be obtained from the classify attribute of
the as.alldiffs object supplied through x.

sortFactor A character containing the name of the factor that indexes the set of pre-
dicted values that determines the sorting of the components. If there is only
one variable in the classify term then sortFactor can be NULL and the order
is defined by the complete set of predicted values. If there is more than one
variable in the classify term then sortFactor must be set. In this case the
sortFactor is sorted in the same order within each combination of the values
of the sortParallelToCombo variables: the classify variables, excluding the
sortFactor. There should be only one predicted value for each unique value
of sortFactor within each set defined by a combination of the values of the
classify variables, excluding the sortFactor factor. The order to use is
determined by either sortParallelToCombo or sortOrder.

sortParallelToCombo

A list that specifies a combination of the values of the factors and numerics,
excluding sortFactor, that are in classify. Each of the components of the
supplied list is named for a classify variable and specifies a single value for
it. The combination of this set of values will be used to define a subset of the
predicted values whose order will define the order of sortFactor. Each of the
other combinations of the values of the factors and numerics will be sorted in
parallel. If sortParallelToCombo is NULL then the first value of each classify
variable, except for the sortFactor factor, in the predictions component
is used to define sortParallelToCombo. If there is only one variable in the
classify then sortParallelToCombo is ignored.

sortNestingFactor

A character containing the name of the factor that defines groups of the
sortFactor within which the predicted values are to be ordered. If there is only
one variable in the classify then sortNestingFactor is ignored.

sortOrder A character vector whose length is the same as the number of levels for
sortFactor in the predictions component of the alldiffs.object. It speci-
fies the desired order of the levels in the reordered components of the alldiffs.object.
The argument sortParallelToCombo is ignored.
The following creates a sortOrder vector levs for factor f based on the values
in x: levs <- levels(f)[order(x)].

... further arguments passed to or from other methods. Not used at present.

Details

The basic technique is to change the order of the levels of the sortFactor within the predictions
and, if present, backtransforms components so that they are ordered for a subset of predicted
values, one for each levels of the sortFactor. When the classify term consists of more than one
variable then a subset of one combination of the values of variables other than the sortFactor, the
sortParallelToCombo combination, must be chosen for determining the order of the sortFactor

212 sort.alldiffs

levels. Then the sorting of the rows (and columns) will be in parallel within each combination of
the values of sortParallelToCombo variables: the classify term, excluding the sortFactor.

Value

The alldiffs.object supplied with the following components, if present, sorted: predictions,
vcov, backtransforms, differences, p.differences and sed. Also, the sortFactor and sortOrder
attributes are set.

Author(s)

Chris Brien

See Also

as.alldiffs, allDifferences.data.frame, print.alldiffs,
sort.predictions.frame, renewClassify.alldiffs, redoErrorIntervals.alldiffs,
recalcLSD.alldiffs, predictPlus.asreml, predictPresent.asreml

Examples

##Halve WaterRunoff data to reduce time to execute
data(WaterRunoff.dat)
tmp <- subset(WaterRunoff.dat, Date == "05-18")

##Use asreml to get predictions and associated statistics

Not run:
#Analyse pH
m1.asr <- asreml(fixed = pH ~ Benches + (Sources * (Type + Species)),

random = ~ Benches:MainPlots,
keep.order=TRUE, data= tmp)

current.asrt <- as.asrtests(m1.asr, NULL, NULL)
current.asrt <- as.asrtests(m1.asr)
current.asrt <- rmboundary(current.asrt)
m1.asr <- current.asrt$asreml.obj

#Get predictions and associated statistics
TS.diffs <- predictPlus.asreml(classify = "Sources:Type",

asreml.obj = m1.asr, tables = "none",
wald.tab = current.asrt$wald.tab,
present = c("Type","Species","Sources"))

#Use sort.alldiffs and save order for use with other response variables
TS.diffs.sort <- sort(TS.diffs, sortFactor = "Sources",

sortParallelToCombo = list(Type = "Control"))
sort.order <- attr(TS.diffs.sort, which = "sortOrder")

#Analyse Turbidity
m2.asr <- asreml(fixed = Turbidity ~ Benches + (Sources * (Type + Species)),

random = ~ Benches:MainPlots,
keep.order=TRUE, data= tmp)

current.asrt <- as.asrtests(m2.asr)
#Use pH sort.order to sort Turbidity alldiffs object
diffs2.sort <- predictPlus(m2.asr, classify = "Sources:Type",

pairwise = FALSE, error.intervals = "Stand",

sort.alldiffs 213

tables = "none", present = c("Type","Species","Sources"),
sortFactor = "Sources",
sortOrder = sort.order)

End(Not run)

Use lmeTest and emmmeans to get predictions and associated statistics

if (requireNamespace("lmerTest", quietly = TRUE) &
requireNamespace("emmeans", quietly = TRUE))

{
#Analyse pH
m1.lmer <- lmerTest::lmer(pH ~ Benches + (Sources * (Type + Species)) +

(1|Benches:MainPlots),
data=na.omit(tmp))

TS.emm <- emmeans::emmeans(m1.lmer, specs = ~ Sources:Type)
TS.preds <- summary(TS.emm)
den.df <- min(TS.preds$df, na.rm = TRUE)
Modify TS.preds to be compatible with a predictions.frame
TS.preds <- as.predictions.frame(TS.preds, predictions = "emmean",

se = "SE", interval.type = "CI",
interval.names = c("lower.CL", "upper.CL"))

Form an all.diffs object and check its validity
TS.vcov <- vcov(TS.emm)
TS.diffs <- allDifferences(predictions = TS.preds,

classify = "Sources:Type",
vcov = TS.vcov, tdf = den.df)

validAlldiffs(TS.diffs)

#Use sort.alldiffs and save order for use with other response variables
TS.diffs.sort <- sort(TS.diffs, sortFactor = "Sources",

sortParallelToCombo = list(Type = "Control"))
sort.order <- attr(TS.diffs.sort, which = "sortOrder")

#Analyse Turbidity
m2.lmer <- lmerTest::lmer(Turbidity ~ Benches + (Sources * (Type + Species)) +

(1|Benches:MainPlots),
data=na.omit(tmp))

TS.emm <- emmeans::emmeans(m2.lmer, specs = ~ Sources:Type)
TS.preds <- summary(TS.emm)
den.df <- min(TS.preds$df, na.rm = TRUE)
Modify TS.preds to be compatible with a predictions.frame
TS.preds <- as.predictions.frame(TS.preds, predictions = "emmean",

se = "SE", interval.type = "CI",
interval.names = c("lower.CL", "upper.CL"))

Form an all.diffs object, sorting it using the pH sort.order and check its validity
TS.vcov <- vcov(TS.emm)
TS.diffs2.sort <- allDifferences(predictions = TS.preds,

classify = "Sources:Type",
vcov = TS.vcov, tdf = den.df,
sortFactor = "Sources",
sortOrder = sort.order)

validAlldiffs(TS.diffs2.sort)
}

214 sort.predictions.frame

sort.predictions.frame

Sorts a predictions.frame according to the predicted values asso-
ciated with a factor.

Description

Sorts the rows of a predictions.frame according to the predicted values in the predictions.frame.
These predicted values are generally obtained using predict.asreml by specifying a classify
term comprised of one or more variables. Generally, the values associated with one variable are
sorted in parallel within each combination of values of the other variables. When there is more
than one variable in the classify term, the sorting is controlled using one or more of sortFactor,
sortParallelToCombo and sortOrder. If there is only one variable in the classify then the
predictions.frame is sorted according to the order of the complete set of predictions.

Usage

S3 method for class 'predictions.frame'
sort(x, decreasing = FALSE, classify, sortFactor = NULL,

sortParallelToCombo = NULL, sortNestingFactor = NULL,
sortOrder = NULL, ...)

Arguments

x A predictions.frame.

decreasing A logical passed to order that detemines whether the order is for increasing
or decreasing magnitude of the predicted values.

classify A character string giving the variables that define the margins of the multiway
table that was predicted. Multiway tables are specified by forming an interaction
type term from the classifying variables, that is, separating the variable names
with the : operator.

sortFactor A character containing the name of the factor that indexes the set of pre-
dicted values that determines the sorting of the components. If there is only
one variable in the classify term then sortFactor can be NULL and the order
is defined by the complete set of predicted values. If there is more than one
variable in the classify term then sortFactor must be set. In this case the
sortFactor is sorted in the same order within each combination of the values
of the sortParallelToCombo variables: the classify variables, excluding the
sortFactor. There should be only one predicted value for each unique value
of sortFactor within each set defined by a combination of the values of the
classify variables, excluding the sortFactor factor. The order to use is
determined by either sortParallelToCombo or sortOrder.

sortParallelToCombo

A list that specifies a combination of the values of the factors and numerics,
excluding sortFactor, that are in classify. Each of the components of the
supplied list is named for a classify variable and specifies a single value for
it. The combination of this set of values will be used to define a subset of the
predicted values whose order will define the order of sortFactor. Each of the
other combinations of the values of the factors and numerics will be sorted in
parallel. If sortParallelToCombo is NULL then the first value of each classify

sort.predictions.frame 215

variable, except for the sortFactor factor, in the predictions component
is used to define sortParallelToCombo. If there is only one variable in the
classify then sortParallelToCombo is ignored.

sortNestingFactor

A character containing the name of the factor that defines groups of the
sortFactor within which the predicted values are to be ordered. If there is only
one variable in the classify then sortNestingFactor is ignored.

sortOrder A character vector whose length is the same as the number of levels for
sortFactor in the predictions.frame. It specifies the desired order of the
levels in the reordered the predictions.frame. The argument sortParallelToCombo
is ignored.
The following creates a sortOrder vector levs for factor f based on the values
in x: levs <- levels(f)[order(x)].

... further arguments passed to or from other methods. Not used at present.

Details

The basic technique is to change the order of the levels of the sortFactor within the predictions.frame
so that they are ordered for a subset of predicted values, one for each levels of the sortFactor.
When the classify term consists of more than one variable then a subset of one combination of
the values of variables other than the sortFactor, the sortParallelToCombo combination, must
be chosen for determining the order of the sortFactor levels. Then the sorting of the rows (and
columns) will be in parallel within each combination of the values of sortParallelToCombo vari-
ables: the classify term, excluding the sortFactor.

Value

The sorted predictions.frame. Also, the sortFactor and sortOrder attributes are set.

Author(s)

Chris Brien

See Also

as.predictions.frame, print.predictions.frame, sort.alldiffs,
predictPlus.asreml, predictPresent.asreml

Examples

##Halve WaterRunoff data to reduce time to execute
data(WaterRunoff.dat)
tmp <- subset(WaterRunoff.dat, Date == "05-18")

##Use asreml to get predictions and associated statistics

Not run:
#Analyse pH
m1.asr <- asreml(fixed = pH ~ Benches + (Sources * (Type + Species)),

random = ~ Benches:MainPlots,
keep.order=TRUE, data= tmp)

current.asrt <- as.asrtests(m1.asr, NULL, NULL)
current.asrt <- as.asrtests(m1.asr)
current.asrt <- rmboundary(current.asrt)

216 sort.predictions.frame

m1.asr <- current.asrt$asreml.obj

#Get predictions and associated statistics
TS.diffs <- predictPlus.asreml(classify = "Sources:Type",

asreml.obj = m1.asr, tables = "none",
wald.tab = current.asrt$wald.tab,
present = c("Type","Species","Sources"))

#Use sort.predictions.frame and save order for use with other response variables
TS.preds <- TS.diffs$predictions
TS.preds.sort <- sort(TS.preds, sortFactor = "Sources",

sortParallelToCombo = list(Type = "Control"))
sort.order <- attr(TS.preds.sort, which = "sortOrder")

#Analyse Turbidity
m2.asr <- asreml(fixed = Turbidity ~ Benches + (Sources * (Type + Species)),

random = ~ Benches:MainPlots,
keep.order=TRUE, data= tmp)

current.asrt <- as.asrtests(m2.asr)
#Use pH sort.order to sort Turbidity alldiffs object
TS.diffs2 <- predictPlus(m2.asr, classify = "Sources:Type",

pairwise = FALSE, error.intervals = "Stand",
tables = "none", present = c("Type","Species","Sources"))

TS.preds2 <- TS.diffs2$predictions
TS.preds2.sort <- sort(TS.preds, sortFactor = "Sources", sortOder = sort.order)

End(Not run)

Use lmeTest and emmmeans to get predictions and associated statistics

if (requireNamespace("lmerTest", quietly = TRUE) &
requireNamespace("emmeans", quietly = TRUE))

{
#Analyse pH
m1.lmer <- lmerTest::lmer(pH ~ Benches + (Sources * (Type + Species)) +

(1|Benches:MainPlots),
data=na.omit(tmp))

TS.emm <- emmeans::emmeans(m1.lmer, specs = ~ Sources:Type)
TS.preds <- summary(TS.emm)
den.df <- min(TS.preds$df, na.rm = TRUE)
Modify TS.preds to be compatible with a predictions.frame
TS.preds <- as.predictions.frame(TS.preds, predictions = "emmean",

se = "SE", interval.type = "CI",
interval.names = c("lower.CL", "upper.CL"))

#Use sort.predictions.frame and save order for use with other response variables
TS.preds.sort <- sort(TS.preds, classify = "Sources:Type", sortFactor = "Sources",

sortParallelToCombo = list(Type = "Control"))
sort.order <- attr(TS.preds.sort, which = "sortOrder")

#Analyse Turbidity
m2.lmer <- lmerTest::lmer(Turbidity ~ Benches + (Sources * (Type + Species)) +

(1|Benches:MainPlots),
data=na.omit(tmp))

TS.emm <- emmeans::emmeans(m2.lmer, specs = ~ Sources:Type)
TS.preds <- summary(TS.emm)
den.df <- min(TS.preds$df, na.rm = TRUE)

subset.alldiffs 217

Modify TS.preds to be compatible with a predictions.frame
TS.preds <- as.predictions.frame(TS.preds, predictions = "emmean",

se = "SE", interval.type = "CI",
interval.names = c("lower.CL", "upper.CL"))

}

subset.alldiffs Subsets the components in an alldiffs.object according to the sup-
plied condition.

Description

Subsets each of the components of an alldiffs.object. The subset is determined by applying
the condition to the prediction component to determine which of its rows are to be included
in the subset. Then, if present, this subset is applied to the rows of backtransforms and to the
rows and columns of differences, p.differences and sed components. In addition, if sed is
present, recalcLSD.alldiffs is called to recalculate the values in the LSD.frame stored in the
LSD component, with any arguments supplied via the ... argument passed ot it.

The select argument of subset is not implemented, but can be achieved for variables in the
classify using the rmClassifyVars argument.

Usage

S3 method for class 'alldiffs'
subset(x, subset = rep(TRUE, nrow(x$predictions)),

rmClassifyVars = NULL, ...)

Arguments

x An alldiffs.object.

subset A logical that detemines rows of the predictions component of x to be in-
cluded in the subset. By default allws are included.

rmClassifyVars A character that contains the names of the variables in the classify attribute
of x that are to be removed from the predictions data.frame and the names of
the dimensions of the other components of x. In doing this, the combinations of
the remaining classify variables must uniquely index the predictions.

... further arguments passed to recalcLSD.alldiffs.

Value

An alldiffs.object with the following components of the supplied alldiffs.object subsetted,
if present in the original object: predictions, vcov, backtransforms, differences, p.differences
and sed. In addition, if sed is present, the LSD.frame in the LSD component will be recalculated.

Author(s)

Chris Brien

218 subset.alldiffs

See Also

as.alldiffs, allDifferences.data.frame, print.alldiffs, sort.alldiffs,
redoErrorIntervals.alldiffs, recalcLSD.alldiffs,
predictPlus.asreml, predictPresent.asreml

Examples

data(WaterRunoff.dat)

##Use asreml to get predictions and associated statistics

Not run:
asreml.options(keep.order = TRUE) #required for asreml-R4 only
current.asr <- asreml(fixed = pH ~ Benches + (Sources * (Type + Species)),

random = ~ Benches:MainPlots,
keep.order=TRUE, data= WaterRunoff.dat)

current.asrt <- as.asrtests(current.asr, NULL, NULL)
TS.diffs <- predictPlus.asreml(classify = "Sources:Type",

asreml.obj = current.asr, tables = "none",
wald.tab = current.asrt$wald.tab,
present = c("Type","Species","Sources"))

End(Not run)

Use lmeTest and emmmeans to get predictions and associated statistics

if (requireNamespace("lmerTest", quietly = TRUE) &
requireNamespace("emmeans", quietly = TRUE))

{
m1.lmer <- lmerTest::lmer(pH ~ Benches + (Sources * (Type + Species)) +

(1|Benches:MainPlots),
data=na.omit(WaterRunoff.dat))

TS.emm <- emmeans::emmeans(m1.lmer, specs = ~ Sources:Type)
TS.preds <- summary(TS.emm)
den.df <- min(TS.preds$df, na.rm = TRUE)
Modify TS.preds to be compatible with a predictions.frame
TS.preds <- as.predictions.frame(TS.preds, predictions = "emmean",

se = "SE", interval.type = "CI",
interval.names = c("lower.CL", "upper.CL"))

Form an all.diffs object and check its validity
TS.vcov <- vcov(TS.emm)
TS.diffs <- allDifferences(predictions = TS.preds, classify = "Sources:Type",

vcov = TS.vcov, tdf = den.df)
validAlldiffs(TS.diffs)

}

Plot p-values for predictions obtained using asreml or lmerTest
if (exists("TS.diffs"))
{

##Use subset.alldiffs to select a subset of the alldiffs object
TS.diffs.subs <- subset(TS.diffs,

subset = grepl("R", Sources, fixed = TRUE) &
Type %in% c("Control","Medicinal"))

}

subset.list 219

subset.list Forms a list that contains a subset of the components of the supplied
list.

Description

Select components of a list specified by a list of numbers or names, or by a logical indicating for
each component of the list whether or not it is to be retained.

Usage

S3 method for class 'list'
subset(x, select = 1:length(x), ...)

Arguments

x An list object.

select A numeric or character that lists or names the components of the list x that
are to be retained in the subset. It can also be a logical that is the same length
as x and indicates whether or not a component is to be retained.

... further arguments passed to or from other methods. Not used at present.

Value

A list with just the subset of the components from x. If the components of x are named, then these
names are retained in the subset list.

Author(s)

Chris Brien

See Also

subset.alldiffs

Examples

x <- list(1:3,letters[1:3],LETTERS[1:3])
y <- subset.list(x, select = c(1,3))
y <- subset.list(x, select = c(TRUE,FALSE,TRUE))

names(x) <- LETTERS[1:3]
y <- subset.list(x, select = c(1,3))
z <- subset.list(x, select = LETTERS[c(1,3)])
x <- list(1:3,letters[1:3],LETTERS[1:3])
names(x)[c(1,3)] <- LETTERS[c(1,3)]
z <- subset.list(x, select = c(1,2))
v <- subset.list(x)

220 testranfix.asrtests

testranfix.asrtests Tests for a single fixed or random term in model fitted using asreml
and records the result in an asrtests.object.

Description

Tests for a single term, using a REML ratio test (REMLRT) for a random term or based on Wald
statistics for a fixed term. The term must be in the fitted model. A random term is removed from the
model fit and a REMLRT is performed using REMLRT.asreml. It compares the fit of the model in
asreml.obj and the newly fitted model without the term. If the newly fitted model is retained, any
boundary terms are then removed using rmboundary.asrtests. For a fixed term, the probability
of the Wald statistics is extracted from the pseudo-anova table produced by wald.asreml. If this
is available in the asrtests.object, it is used; otherwise wald.asreml is called to add it to the
asrtests.object. Whether nonsignificant terms are dropped is controlled by drop.ran.ns for
random terms and drop.fix.ns for fixed terms. A row is added to the test.summary data.frame
for the term that is tested.

Usage

S3 method for class 'asrtests'
testranfix(asrtests.obj, term=NULL, alpha = 0.05,

allow.unconverged = TRUE, allow.fixedcorrelation = TRUE,
checkboundaryonly = FALSE,
drop.ran.ns = TRUE, positive.zero = FALSE,
bound.test.parameters = "none",
bound.exclusions = c("F","B","S","C"), REMLDF = NULL,
drop.fix.ns = FALSE, denDF="numeric", dDF.na = "none",
dDF.values = NULL, IClikelihood = "none",
trace = FALSE, update = TRUE,
set.terms = NULL, ignore.suffices = TRUE,
bounds = "P", initial.values = NA, ...)

Arguments

asrtests.obj An asrtests.object containing the components (i) asreml.obj, (ii) wald.tab,
and (iii) test.summary.

term A single model term that is valid in asreml, stored as a character. The
names of fixed terms must match those in the wald.tab component of the
asrtests.obj, while the names of random terms must match those in the vparameters
component of the asreml.obj component in the asrtests.obj.

alpha The significance level for the test.
allow.unconverged

A logical indicating whether to accept a new model even when it does not
converge. If FALSE, it will be checked whether convergence can be achieved
with the removal of any boundary random terms; random terms will be retested
if terms are removed. Also, if FALSE and the fit of the new model has converged,
but that of the old model has not, the new model will be accepted.

allow.fixedcorrelation

A logical indicating whether to accept a new model even when it contains
correlations in the model whose values have been designated as fixed, bound

testranfix.asrtests 221

or singular. If FALSE and the new model contains correlations whose values
have not been able to be estimated, the supplied asrtests.obj is returned.
The fit in the asreml.obj component of the supplied asrtests.obj will also
be tested and a warning issued if both fixed correlations are found in it and
allow.fixedcorrelation is FALSE.

checkboundaryonly

If TRUE then boundary and singular terms are not removed by rmboundary.asrtests;
a warning is issued instead.

drop.ran.ns A logical indicating whether to drop a random term from the model when it
is nonsignificant. Note that multiple terms specified using a single asreml::at
function will only be dropped as a whole. If the term was specified using an
asreml::at function with a single level, then it can be removed and either the
level itself or its numeric position in the levels returned by the levels function
can be specified in term.

positive.zero Indicates whether the hypothesized values for the variance components being
tested are on the boundary of the parameter space. For example, this is true for
positively-constrained variance components that, under the reduced model, are
zero. This argument does not need to be set if bound.test.parameters is set.

bound.test.parameters

Indicates whether for the variance components being tested, at least some of the
hypothesized values are on the boundary of the parameter space. The possibili-
ties are "none", "onlybound" and "one-and-one". The default is "none", al-
though if it is set to "none" and positive.zero is TRUE then bound.test.parameters
is taken to be "onlybound". When bound.test.parameters is set to "one-and-one",
it signifies that there are two parameters being tested, one of which is bound and
the other is not. For example, the latter is true for testing a covariance and a
positively-constrained variance component that, under the reduced model, are
zero.

bound.exclusions

A character specifying one or more bound (constraint) codes that will result
in a variance parameter being excluded from the count of estimated variance
parameters in using REMLRT.asreml. If set to NULL then none will be excluded.

REMLDF A numeric giving the difference in the number of variance parameters whose
estimates are not of the type specified in bound.exclusions for two models
being compared in a REML ratio test using REMLRT.asreml. If NULL then this
is determined from the information in the asreml object for the two models.

drop.fix.ns A logical indicating whether to drop a fixed term from the model when it is
nonsignificant. Note that multiple terms specified using a single asreml::at
function can only be dropped as a whole. If the term was specified using an
asreml::at function with a single level, then it can be removed and either the
level itself or its numeric position in the levels returned by the levels function
can be specified.

denDF Specifies the method to use in computing approximate denominator degrees of
freedom when wald.asreml is called. Can be none to suppress the compu-
tations, numeric for numerical methods, algebraic for algebraic methods or
default, the default, to autommatically choose numeric or algebraic compu-
tations depending on problem size. The denominator degrees of freedom are
calculated according to Kenward and Roger (1997) for fixed terms in the dense
part of the model.

dDF.na The method to use to obtain substitute denominator degrees of freedom. when
the numeric or algebraic methods produce an NA. If dDF.na = "none", no sub-
titute denominator degrees of freedom are employed; if dDF.na = "residual",

222 testranfix.asrtests

the residual degrees of freedom from asreml.obj$nedf are used; if dDF.na =
"maximum", the maximum of those denDF that are available, excluding that for
the Intercept, is used; if all denDF are NA, asreml.obj$nedf is used. If dDF.na
= "supplied", a vector of values for the denominator degrees of freedom is to
be supplied in dDF.values. Any other setting is ignored and a warning message
produced. Generally, substituting these degrees of freedom is anticonservative
in that it is likely that the degrees of freedom used will be too large.

dDF.values A vector of values to be used when dDF.na = "supplied". Its values will be
used when denDF in a test for a fixed effect is NA. This vector must be the same
length as the number of fixed terms, including (Intercept) whose value could be
NA.

IClikelihood A character that controls both the occurence and the type of likelihood for
information criterion in the test.summary of the new asrtests.object. If
none, none are included. Otherwise, if REML and family is set to asr_guassian
(the default), then the AIC and BIC based on the Restricted Maximum Likeli-
hood are included; if full and family is set to asr_guassian, then the AIC
and BIC based on the full likelihood, evaluated using REML estimates, are in-
cluded. If family is asr_binomial or asr_poisson, with dispersion set to 1,
the deviance is extracted from object and used to calculate the AIC and BIC.
(See also infoCriteria.asreml.)

trace If TRUE then partial iteration details are displayed when ASReml-R functions
are invoked; if FALSE then no output is displayed.

update If TRUE, and set.terms is NULL, then newfit.asreml is called to fit the model
to be tested, using the values of the variance parameters stored in the asreml.object,
that is stored in asrtests.obj, as starting values. If FALSE or set.terms is not
NULL, then newfit.asreml will not use the stored variance parameter values
as starting values when fitting the new model, the only modifications being (i)
those for the supplied terms and (ii) those specified via

set.terms A character vector specifying the terms that are to have bounds and/or initial
values set prior to fitting. The names must match those in the vparameters
component of the asreml.obj component in the new asrtests.object.

ignore.suffices

A logical vector specifying whether the suffices of the asreml-assigned names
of the variance terms (i.e. the information to the right of an "!", other than
"R!") is to be ignored in matching elements of terms. If TRUE for an element
of terms, the suffices are stripped from the asreml-assigned names. If FALSE
for an element of terms, the element must exactly match an asreml-assigned
name for a variance term. This vector must be of length one or the same length
as terms. If it is of length one then the same action is applied to the asreml-
assigned suffices for all the terms in terms.

bounds A character vector specifying the bounds to be applied to the terms speci-
fied in set.terms. This vector must be of length one or the same length as
set.terms. If it is of length one then the same constraint is applied to all the
terms in set.terms. If any of the bounds are equal to NA then they are left
unchanged for those terms.

initial.values A character vector specifying the initial values for the terms specified in terms.
This vector must be of length one or the same length as terms. If it is of length
one then the same initial value is applied to all the terms in terms. If any of the
initial.values are equal to NA then they are left unchanged for those terms.

... Further arguments passed to asreml, wald.asreml and as.asrtests.

testresidual.asrtests 223

Value

An asrtests.object containing the components (i) asreml.obj, (ii) wald.tab, and (iii) test.summary.
If the term is not in the model, then the supplied asreml object will be returned. Also, reml.test
will have the likelihood ratio and the p-value set to NA and the degrees of freedom to zero. Simi-
larly, the row of test.summary for the term will have its name, DF set to NA, p-value set to NA,
and action set to Absent.

Author(s)

Chris Brien

References

Kenward, M. G., & Roger, J. H. (1997). Small sample inference for fixed effects from restricted
maximum likelihood. Biometrics, 53, 983-997.

See Also

asremlPlus-package, as.asrtests, chooseModel.asrtests, REMLRT.asreml,
rmboundary.asrtests, newfit.asreml, changeModelOnIC.asrtests,
changeTerms.asrtests, reparamSigDevn.asrtests

Examples

Not run:
data(Wheat.dat)
current.asr <- asreml(yield ~ Rep + WithinColPairs + Variety,

random = ~ Row + Column + units,
residual = ~ ar1(Row):ar1(Column),
data=Wheat.dat)

current.asrt <- as.asrtests(current.asr, NULL, NULL)
current.asrt <- rmboundary(current.asrt)
Test nugget term
current.asrt <- testranfix(current.asrt, "units", positive=TRUE)

End(Not run)

testresidual.asrtests Fits a new residual formula, tests whether the change is significant and
records the result in an asrtests.object.

Description

Fits a new residual formula using asreml-R4 (replaces the rcov formula of asreml-R3) and tests
whether the change is significant. If simpler = FALSE the model to be fitted must be more complex
than the one whose fit has been stored in asrtests.obj. That is, the new model must have more
parameters. However, if simpler = TRUE the model to be fitted must be simpler than the one whose
fit has been stored in asrtests.obj in that it must have fewer parameters. Any boundary terms are
removed using rmboundary.asrtests, which may mean that the models are not nested. The test
is a REML likelihood ratio test that is performed using REMLRT.asreml, which is only valid if the
models are nested. It compares the newly fitted model with the fit of the model in asrtest.obj.
If the two models have the same number of variance parameters, then no change is made to the
residual. A row is added to the test.summary data.frame using the supplied label.

224 testresidual.asrtests

Usage

S3 method for class 'asrtests'
testresidual(asrtests.obj, terms=NULL, label = "R model",

simpler = FALSE, alpha = 0.05,
allow.unconverged = TRUE, allow.fixedcorrelation = TRUE,
checkboundaryonly = FALSE, positive.zero = FALSE,
bound.test.parameters = "none",
bound.exclusions = c("F","B","S","C"), REMLDF = NULL,
denDF="numeric", IClikelihood = "none",
update = TRUE, trace = FALSE,
set.terms = NULL, ignore.suffices = TRUE,
bounds = "P", initial.values = NA, ...)

Arguments

asrtests.obj an asrtests.object for a fitted model that is a list containing the componets
(i) asreml.obj, (ii) wald.tab (iii) test.summary.

terms A model for the residual argument in asreml-R4 (the rcov formula in older
versions of asreml), stored as a character. To remove the model, enter "-(.)".

label A character string to use as the label in test.summary and which indicates what
is being tested.

simpler A logical indicating whether the new model to be fitted is simpler than the al-
ready fitted model whose fit is stored in asrtests.obj.

alpha The significance level for the test.
allow.unconverged

A logical indicating whether to accept a new model even when it does not
converge. If FALSE and the fit of the new model does not converge, the supplied
asreml object is returned. Also, if FALSE and the fit of the new model has
converged, but that of the old model has not, the new model will be accepted.

allow.fixedcorrelation

A logical indicating whether to accept a new model even when it contains
correlations in the model whose values have been designated as fixed, bound
or singular. If FALSE and the new model contains correlations whose values
have not been able to be estimated, the supplied asrtests.obj is returned.
The fit in the asreml.obj component of the supplied asrtests.obj will also
be tested and a warning issued if both fixed correlations are found in it and
allow.fixedcorrelation is FALSE.

checkboundaryonly

If TRUE then boundary and singular terms are not removed by rmboundary.asrtests;
a warning is issued instead.

positive.zero Indicates whether the hypothesized values for the variance components being
tested are on the boundary of the parameter space. For example, this is true for
positively-constrained variance components that, under the reduced model, are
zero. This argument does not need to be set if bound.test.parameters is set.

bound.test.parameters

Indicates whether for the variance components being tested, at least some of the
hypothesized values are on the boundary of the parameter space. The possibili-
ties are "none", "onlybound" and "one-and-one". The default is "none", al-
though if it is set to "none" and positive.zero is TRUE then bound.test.parameters
is taken to be "onlybound". When bound.test.parameters is set to "one-and-one",

testresidual.asrtests 225

it signifies that there are two parameters being tested, one of which is bound and
the other is not. For example, the latter is true for testing a covariance and a
positively-constrained variance component that, under the reduced model, are
zero.

bound.exclusions

A character specifying one or more bound (constraint) codes that will result
in a variance parameter being excluded from the count of estimated variance
parameters in using REMLRT.asreml. If set to NULL then none will be excluded.

REMLDF A numeric giving the difference in the number of variance parameters whose
estimates are not of the type specified in bound.exclusions for two models
being compared in a REML ratio test using REMLRT.asreml. If NULL then this
is determined from the information in the asreml object for the two models.

denDF Specifies the method to use in computing approximate denominator degrees of
freedom when wald.asreml is called. Can be none to suppress the compu-
tations, numeric for numerical methods, algebraic for algebraic methods or
default, the default, to autommatically choose numeric or algebraic compu-
tations depending on problem size. The denominator degrees of freedom are
calculated according to Kenward and Roger (1997) for fixed terms in the dense
part of the model.

IClikelihood A character that controls both the occurence and the type of likelihood for
information criterion in the test.summary of the new asrtests.object. If
none, none are included. Otherwise, if REML, then the AIC and BIC based on the
Restricted Maximum Likelihood are included; if full, then the AIC and BIC
based on the full likelihood, evaluated using REML estimates, are included.
(See also infoCriteria.asreml.)

update If TRUE, and set.terms is NULL, then newfit.asreml is called to fit the model
to be tested, using the values of the variance parameters stored in the asreml.object,
that is stored in asrtests.obj, as starting values. If FALSE or set.terms is not
NULL, then newfit.asreml will not use the stored variance parameter values as
starting values when fitting the new model, the only modifications being (i) the
residual (rcov) model is that specified in terms (ii) those specified via

trace If TRUE then partial iteration details are displayed when ASReml-R functions
are invoked; if FALSE then no output is displayed.

set.terms A character vector specifying the terms that are to have bounds and/or initial
values set prior to fitting. The names must match those in the vparameters
component of the asreml.obj component in the new asrtests.object.

ignore.suffices

A logical vector specifying whether the suffices of the asreml-assigned names
of the variance terms (i.e. the information to the right of an "!", other than "R!")
is to be ignored in matching elements of terms. If TRUE for an element of
terms, the suffices are stripped from the asreml-assigned names. If FALSE for
an element of terms, the element must exactly match an asreml-assigned name
for a variance term. This vector must be of length one or the same length as
terms. If it is of length one then the same action is applied to the asreml-
assigned suffices for all the terms in terms.

bounds A character vector specifying the bounds to be applied to the terms speci-
fied in set.terms. This vector must be of length one or the same length as
set.terms. If it is of length one then the same constraint is applied to all the
terms in set.terms. If any of the bounds are equal to NA then they are left
unchanged for those terms.

226 testresidual.asrtests

initial.values A character vector specifying the initial values for the terms specified in terms.
This vector must be of length one or the same length as terms. If it is of length
one then the same initial value is applied to all the terms in terms. If any of the
initial.values are equal to NA then they are left unchanged for those terms.

... Further arguments passed to asreml, wald.asreml and as.asrtests.

Value

An asrtests.object containing the components (i) asreml.obj, (ii) wald.tab, and (iii) test.summary.
If the term is not in the model, then the supplied asreml.obj will be returned. Also, reml.test
will have the likelihood ratio and the p-value set to NA and the degrees of freedom to zero. Simi-
larly, the row of test.summary for the term will have its name, a p-value set to NA, and action set
to Absent.

Author(s)

Chris Brien

References

Kenward, M. G., & Roger, J. H. (1997). Small sample inference for fixed effects from restricted
maximum likelihood. Biometrics, 53, 983-997.

See Also

asremlPlus-package, as.asrtests, changeTerms.asrtests,
chooseModel.asrtests, REMLRT.asreml, rmboundary.asrtests,
newfit.asreml, testswapran.asrtests, changeModelOnIC.asrtests,
changeTerms.asrtests, reparamSigDevn.asrtests

Examples

Not run:
data(Wheat.dat)
current.asr <- asreml(yield ~ Rep + WithinColPairs + Variety,

random = ~ Row + Column + units,
residual = ~ ar1(Row):ar1(Column),
data=Wheat.dat)

current.asrt <- as.asrtests(current.asr, NULL, NULL)
current.asrt <- rmboundary(current.asrt)
Test Row autocorrelation
current.asrt <- testresidual(current.asrt, "~ Row:ar1(Column)",

label="Row autocorrelation", simpler=TRUE)
print(current.asrt)

End(Not run)

testswapran.asrtests 227

testswapran.asrtests Tests, using a REMLRT, the significance of the difference between the
current random model and one in which oldterms are dropped and
newterms are added. The result is recorded in an asrtests.object.

Description

Fits a new random model using asreml by removing oldterms and adding newterms. If simpler
= FALSE the model to be fitted must be more complex than the one whose fit has been stored in
asrtests.obj. That is, the new model must have more parameters. However, if simpler = TRUE
the model to be fitted must be simpler than the one whose fit has been stored in asrtests.obj
in that it must have fewer parameters. The test is a REML ratio test that is performed using
REMLRT.asreml, which is only valid if the models are nested. It compares the newly fitted model
with the fit of the model in asrtests.obj. A row is added to the test.summary data.frame using
the supplied label. If the newly fitted model is retained, any boundary terms are then removed us-
ing rmboundary.asrtests. If the models are not nested, then using changeModelOnIC.asrtests
may be the more appropriate approach for comparing models.

Usage

S3 method for class 'asrtests'
testswapran(asrtests.obj, oldterms = NULL, newterms = NULL,

label = "Swap in random model", simpler = FALSE, alpha = 0.05,
allow.unconverged = TRUE, allow.fixedcorrelation = TRUE,
checkboundaryonly = FALSE,
positive.zero = FALSE, bound.test.parameters = "none",
bound.exclusions = c("F","B","S","C"), REMLDF = NULL,
denDF="numeric", IClikelihood = "none",
trace = FALSE, update = TRUE,
set.terms = NULL, ignore.suffices = TRUE,
bounds = "P", initial.values = NA, ...)

Arguments

asrtests.obj an asrtests.object for a fitted model that is a list containing the components
(i) asreml.obj, (ii) wald.tab (iii) test.summary.

oldterms Terms, stored as a character, that are to be removed from the random model
using asreml. The names of the terms must match those in the vparameters
component of the asreml.obj component in asrtests.obj. Note that multiple
terms specified using a single asreml::at function can only be dropped as a
whole. If the term was specified using an asreml::at function with a single
level, then it can be removed and either the level itself or its numeric position in
the levels returned by the levels function can be specified.

newterms Terms, stored as a character, that are to be added to the random model using
asreml.

simpler A logical indicating whether the new model to be fitted. after the changes made
as a result of swapping oldterms for newterms, is simpler than the already fitted
model whose fit is stored in asrtests.obj.

alpha The significance level for the test.

228 testswapran.asrtests

allow.unconverged

A logical indicating whether to accept a new model even when it does not
converge. If FALSE and the fit of the new model does not converge, the supplied
asrtests.obj is returned. Also, if FALSE and the fit of the new model has
converged, but that of the old model has not, the new model will be accepted.

allow.fixedcorrelation

A logical indicating whether to accept a new model even when it contains
correlations in the model whose values have been designated as fixed, bound
or singular. If FALSE and the new model contains correlations whose values
have not been able to be estimated, the supplied asrtests.obj is returned.
The fit in the asreml.obj component of the supplied asrtests.obj will also
be tested and a warning issued if both fixed correlations are found in it and
allow.fixedcorrelation is FALSE.

checkboundaryonly

If TRUE then boundary and singular terms are not removed by rmboundary.asrtests;
a warning is issued instead.

label A character string to use as the label in test.summary and which indicates what
is being tested.

positive.zero Indicates whether the hypothesized values for the variance components being
tested are on the boundary of the parameter space. For example, this is true for
positively-constrained variance components that, under the reduced model, are
zero. This argument does not need to be set if bound.test.parameters is set.

bound.test.parameters

Indicates whether for the variance components being tested, at least some of the
hypothesized values are on the boundary of the parameter space. The possibili-
ties are "none", "onlybound" and "one-and-one". The default is "none", al-
though if it is set to "none" and positive.zero is TRUE then bound.test.parameters
is taken to be "onlybound". When bound.test.parameters is set to "one-and-one",
it signifies that there are two parameters being tested, one of which is bound and
the other is not. For example, the latter is true for testing a covariance and a
positively-constrained variance component that, under the reduced model, are
zero.

bound.exclusions

A character specifying one or more bound (constraint) codes that will result
in a variance parameter being excluded from the count of estimated variance
parameters in using REMLRT.asreml. If set to NULL then none will be excluded.

REMLDF A numeric giving the difference in the number of variance parameters whose
estimates are not of the type specified in bound.exclusions for two models
being compared in a REML ratio test using REMLRT.asreml. If NULL then this
is determined from the information in the asreml object for the two models.

denDF Specifies the method to use in computing approximate denominator degrees of
freedom when wald.asreml is called. Can be none to suppress the compu-
tations, numeric for numerical methods, algebraic for algebraic methods or
default, the default, to automatically choose numeric or algebraic computa-
tions depending on problem size. The denominator degrees of freedom are cal-
culated according to Kenward and Roger (1997) for fixed terms in the dense part
of the model.

IClikelihood A character that controls both the occurrence and the type of likelihood for
information criterion in the test.summary of the new asrtests.object. If
none, none are included. Otherwise, if REML, then the AIC and BIC based on the
Restricted Maximum Likelihood are included; if full, then the AIC and BIC

testswapran.asrtests 229

based on the full likelihood, evaluated using REML estimates, are included.
(See also infoCriteria.asreml.)

trace If TRUE then partial iteration details are displayed when ASReml-R functions
are invoked; if FALSE then no output is displayed.

update If TRUE, and set.terms is NULL, then newfit.asreml is called to fit the model
to be tested, using the values of the variance parameters stored in the asreml.object,
that is stored in asrtests.obj, as starting values. If FALSE or set.terms is not
NULL, then newfit.asreml will not use the stored variance parameter values as
starting values when fitting the new model, the only modifications being (i) for
the supplied oldterms and (ii) those specified via

set.terms A character vector specifying the terms that are to have bounds and/or initial
values set prior to fitting. The names must match those in the vparameters
component of the asreml.obj component in the asrtests.object.

ignore.suffices

A logical vector specifying whether the suffices of the asreml-assigned names
of the variance terms (i.e. the information to the right of an "!", other than
"R!") is to be ignored in matching elements of terms. If TRUE for an element
of terms, the suffices are stripped from the asreml-assigned names. If FALSE
for an element of terms, the element must exactly match an asreml-assigned
name for a variance term. This vector must be of length one or the same length
as terms. If it is of length one then the same action is applied to the asreml-
assigned suffices for all the terms in terms.

bounds A character vector specifying the bounds to be applied to the terms speci-
fied in set.terms. This vector must be of length one or the same length as
set.terms. If it is of length one then the same constraint is applied to all the
terms in set.terms. If any of the bounds are equal to NA then they are left
unchanged for those terms.

initial.values A character vector specifying the initial values for the terms specified in terms.
This vector must be of length one or the same length as terms. If it is of length
one then the same initial value is applied to all the terms in terms. If any of the
initial.values are equal to NA then they are left unchanged for those terms.

... Further arguments passed to asreml, wald.asreml and as.asrtests.

Value

An asrtests.object for a fitted model that is a list containing the components (i) asreml.obj,
(ii) wald.tab (iii) test.summary. If the term is not in the model, then the supplied asreml object
will be returned. Also, reml.test will have the likelihood ratio and the p-value set to NA and the
degrees of freedom to zero. Similarly, the row of test.summary for the term will have its name, a
p-value set to NA, and action set to Absent.

Author(s)

Chris Brien

References

Kenward, M. G., & Roger, J. H. (1997). Small sample inference for fixed effects from restricted
maximum likelihood. Biometrics, 53, 983-997.

230 validAlldiffs

See Also

as.asrtests, chooseModel.asrtests, REMLRT.asreml, rmboundary.asrtests,
newfit.asreml, testresidual.asrtests, changeModelOnIC.asrtests,
changeTerms.asrtests, reparamSigDevn.asrtests

Examples

Not run:
current.asrt <- testswapran(current.asrt, oldterms = "str(~ Cart/xDays, ~us(2):id(184))",

newterms = "Cart/xDays", pos = FALSE,
label = "Intercept/Slope correlation",
simpler = TRUE)

print(current.asrt)

End(Not run)

validAlldiffs Checks that an object is a valid alldiffs object.

Description

Checks that an object is an alldiffs.object of S3-class alldiffs containing the components
asreml.obj, wald.tab and test.summary.

Usage

validAlldiffs(object)

Arguments

object an alldiffs.object.

Value

TRUE or a character describing why the object is not a valid alldiffs.object.

Author(s)

Chris Brien

See Also

alldiffs.object, is.alldiffs, as.alldiffs,
validPredictionsFrame, validAsrtests

validAsrtests 231

Examples

data(Oats.dat)

Use lmerTest and emmmeans to get predictions and associated statistics
if (requireNamespace("lmerTest", quietly = TRUE) &

requireNamespace("emmeans", quietly = TRUE))
{

m1.lmer <- lmerTest::lmer(Yield ~ Nitrogen*Variety + (1|Blocks/Wplots),
data=Oats.dat)

Var.emm <- emmeans::emmeans(m1.lmer, specs = ~ Nitrogen:Variety)
Var.preds <- summary(Var.emm)
den.df <- min(Var.preds$df)
Modify Var.preds to be compatible with a predictions.frame
Var.preds <- as.predictions.frame(Var.preds, predictions = "emmean",

se = "SE", interval.type = "CI",
interval.names = c("lower.CL", "upper.CL"))

Var.vcov <- vcov(Var.emm)
Var.sed <- NULL

Form an all.diffs object
Var.diffs <- as.alldiffs(predictions = Var.preds, classify = "Nitrogen:Variety",

sed = Var.sed, vcov = Var.vcov, tdf = den.df)

check the validity of Var.diffs
validAlldiffs(Var.diffs)

}

validAsrtests Checks that an object is a valid asrtests object.

Description

Checks that an object is an asrtests.object of S3-class asrtests containing the components
asreml.obj, wald.tab and test.summary.

Usage

validAsrtests(object)

Arguments

object an asrtests.object.

Value

TRUE or a character describing why the object is not a valid asrtests.object.

Author(s)

Chris Brien

232 validPredictionsFrame

See Also

asrtests.object, is.asrtests, as.asrtests,
validPredictionsFrame, validAlldiffs

Examples

Not run:
library(dae)
library(asreml)
library(asremlPlus)
use ?Wheat.dat for data set details
data(Wheat.dat)

Fit initial model
current.asr <- asreml(yield ~ Rep + WithinColPairs + Variety,

random = ~ Row + Column + units,
residual = ~ ar1(Row):ar1(Column),
data=Wheat.dat)

Load current fit into an asrtests object
current.asrt <- as.asrtests(current.asr, NULL, NULL)

check validity of current.asrt
validAsrtests(current.asrt)

End(Not run)

validPredictionsFrame Checks that an object is a valid predictions.frame.

Description

Checks that an object is a predictions.frame of S3-class data.frame that contains the columns
predicted.value, standard.error and est.status.

Usage

validPredictionsFrame(object)

Arguments

object an predictions.frame.

Value

TRUE or a character describing why the object is not a valid predictions.frame.

Author(s)

Chris Brien

variofaces.asreml 233

See Also

predictions.frame, is.predictions.frame, as.predictions.frame,
validAsrtests, validAlldiffs

Examples

data(Oats.dat)

Use asreml to get predictions and associated statistics

Not run:
m1.asr <- asreml(Yield ~ Nitrogen*Variety,

random=~Blocks/Wplots,
data=Oats.dat)

current.asrt <- as.asrtests(m1.asr)
Var.pred <- asreml::predict.asreml(m1.asr, classify="Nitrogen:Variety",

sed=TRUE)
if (getASRemlVersionLoaded(nchar = 1) == "3")

Var.pred <- Var.pred$predictions
Var.preds <- as.predictions.frame(Var.pred$pvals, se = "std.error",

est.status = "status")

End(Not run)

Use lmerTest and emmmeans to get predictions and associated statistics
if (requireNamespace("lmerTest", quietly = TRUE) &

requireNamespace("emmeans", quietly = TRUE))
{

m1.lmer <- lmerTest::lmer(Yield ~ Nitrogen*Variety + (1|Blocks/Wplots),
data=Oats.dat)

Var.emm <- emmeans::emmeans(m1.lmer, specs = ~ Nitrogen:Variety)
Var.preds <- summary(Var.emm)
Var.preds <- as.predictions.frame(Var.preds, predictions = "emmean",

se = "SE", interval.type = "CI",
interval.names = c("lower.CL", "upper.CL"))

}

if (exists("Var.preds"))
{

Check the class and validity of the predictions.frame
is.predictions.frame(Var.preds)
validPredictionsFrame(Var.preds)

}

variofaces.asreml Plots empirical variogram faces, including envelopes, as described by
Stefanova, Smith & Cullis (2009).

Description

A function that produces a plot for each face of an empirical 2D variogram based on residuals
produced after the fitting of a model using the function asreml. It also adds envelopes to the plot
by simulating data sets in parallel from a multivariate normal distribution with expectation equal

234 variofaces.asreml

to the fitted values obtained from the fixed and spline terms and variance matrix equal to the fitted
variance matrix (Stefanova, Smith & Cullis, 2009). The plot is controlled by the residual model,
which must consist of two factors corresponding to the two physical dimensions underlying the
data. It can also have a third term involving the at or dsum function that defines sections of the data,
such as experiments in different environments. In this case, the two variogram faces are produced
for each section.

Usage

S3 method for class 'asreml'
variofaces(asreml.obj, means=NULL, V=NULL,

sections = NULL, row.factor = NULL, col.factor = NULL,
nsim=100, seed = NULL,
extra.matrix = NULL, ignore.terms = NULL, fixed.spline.terms = NULL,
bound.exclusions = c("F","B","S","C"), tolerance=1E-10,
units = "ignore", update = TRUE, trace = FALSE,
graphics.device=NULL, ncores = 2, ...)

Arguments

asreml.obj An asreml object from a call to asreml in which the data argument has been
set.

means The vector of means to be used in generating simulated data sets. If it is NULL,
the fitted values based on object are used. It must be the same length as the
response variable for object.

V The fitted variance matrix, i.e. having the appropriate pattern and values given
the model fitted to the observed data and the estimates of the parameters ob-
tained. If V is NULL then estimateV.asreml is called to obtain it from asreml.obj

sections A single character string that specifies the name of the column in the data.frame
that contains the factor that identifies different sections of the data to which
separate spatial models have been fitted.

row.factor A single character string nominating a factor that indexes the rows of a grid
that are one dimension of a spatial correlation model. The factor must a col-
umn in the data.frame stored in the asreml.obj.

col.factor A single character string nominating a factor that indexes the columns of a
grid that are one dimension of a spatial correlation model. The factor must a
column in the data.frame stored in the asreml.obj.

nsim The number of data sets to be simulated in obtaining the envelopes.

seed A single value, interpreted as an integer, that specifies the starting value of the
random number generator. The "L’Ecuyer-CMRG" random generator is used
and nextRNGStream is used to seed each core from the original seed.

extra.matrix A matrix of order equal to the number of observations that is to be added to
the variance matrix, the latter based on the information in asreml.obj. It is
assumed that the sigma-parameterized values of the variance parameter esti-
mates, such as is given in the varcomp component of summary.asreml, have
been used in calculating extra.matrix; the values in the vparameters compo-
nent of G.param and R.param may be either gamma- or sigma-parameterized.
The argument extra.matrix can be used in conjunction with ignore.terms as
a workaround to include components of the variance matrix for variance func-
tions that have not been implemented in estimateV.

variofaces.asreml 235

ignore.terms A character giving terms from either the random or residual models that are
to be ignored in that their contributions to the variance is not to be included in the
estimated matrix. The term names are those given in the vparameters compo-
nent of the asreml object or the varcomp component produced by summary.asreml,
but only up to the first exclamation mark (!). This can be used in conjunction
with estimateV.asreml as a workaround to include components of the variance
matrix for variance functions that have not been implemented in estimateV.

fixed.spline.terms

A character vector giving one or more spline terms in the random model
that are regarded as fixed and so are to be ignored because they are not re-
garded as contributing to the variance. The term names are those given in the
vparameters component of the asreml object or the varcomp component pro-
duced by summary.asreml, but only up to the first exclamation mark (!).

bound.exclusions

A character specifying one or more bound codes that will result in a variance
parameter in the random model being excluded from contributing to the vari-
ance. If set to NULL then none will be excluded.

tolerance The value such that eigenvalues less than it are considered to be zero.

units A character indicating whether the BLUPs for units are added to the residuals
when this reserved factor is included in the random model. Possible values are
addtoresiduals and ignore. If standardized conditional residuals are plotted
and the BLUPs for units are to be added then it is the standardized BLUPs that
are added.

update If TRUE, and set.terms is NULL, then newfit.asreml is called to fit the model
to be tested, using the values of the variance parameters stored in the asreml.object,
that is stored in asrtests.obj, as starting values. If FALSE or set.terms is not
NULL, then newfit.asreml will not use the stored variance parameter values
as starting values when fitting the new model, the only modifications being ((i)
the model is fitted to simulated data and (ii) those specified via ..., except that
changes cannot be made to any of the models.

trace If TRUE then partial iteration details are displayed when ASReml-R functions
are invoked; if FALSE then no output is displayed.

graphics.device

A character specifying a graphics device for plotting. The default is
graphics.device = NULL, which will result in plots being produced on the cur-
rent graphics device. Setting it to "windows", for example, will result in a win-
dows graphics device being opened.

ncores A numeric specifying the number of cores to use in doing the simulations. In
choosing a value for ncores, it is necessary to take into account other processes
that are using parallel processing at the same time.

... Other arguments that are passed down to the function asreml. Changes to the
models are not allowed. Other changes are dangerous and generally should be
avoided.

Details

The residual model is scanned to ensure that it involves only two factors not included in the at
function, and to see if it has a third factor in an at function. If so, the faces of the 2D variogram,
each based on one of the two non-at factors, are derived from the residuals in the supplied asreml
object using asreml.variogram, this yielding the observed variogram faces. If aom was set to

236 variofaces.asreml

TRUE for the asreml object, the standardized conditional residuals are used. Then nsim data sets
are generated by adding the fitted.values, extracted from the asreml object, to a vector of values
randomly generated from a normal distribution with expectation zero and variance matrix V. Each
data set is analyzed using the model in object and several sets are generated and analyzed in
parallel. The variogram values for the faces are obtained using asreml.variogram stored. Note, if
the analysis for a data set does not converge in maxiter iterations, it is discarded and a replacement
data set generated. The value of maxiter can be specified in the call to variofaces.asreml. Plots
are produced for each face and include the observed values and the 2.5%, 50% & 97.5% quantiles.

Value

A list with the following components:

1. face1: a data.frame containing the variogram values on which the plot for the first dimension
is based.

2. face2: a data.frame containing the variogram values on which the plot for the second di-
mension is based.

Author(s)

Chris Brien

References

Stefanova, K. T., Smith, A. B. & Cullis, B. R. (2009) Enhanced diagnostics for the spatial analysis
of field trials. Journal of Agricultural, Biological, and Environmental Statistics, 14, 392–410.

See Also

asremlPlus-package, asreml, newfit.asreml, plotVariofaces.data.frame, simulate.asreml,
set.seed.

Examples

Not run:
data(Wheat.dat)
current.asr <- asreml(yield ~ Rep + WithinColPairs + Variety,

random = ~ Row + Column + units,
residual = ~ ar1(Row):ar1(Column),
data=Wheat.dat)

current.asrt <- as.asrtests(current.asr, NULL, NULL)
current.asrt <- rmboundary.asrtests(current.asrt)
Form variance matrix based on estimated variance parameters
s2 <- current.asr$sigma2
gamma.Row <- current.asr$gammas[1]
gamma.unit <- current.asr$gammas[2]
rho.r <- current.asr$gammas[4]
rho.c <- current.asr$gammas[5]
row.ar1 <- mat.ar1(order=10, rho=rho.r)
col.ar1 <- mat.ar1(order=15, rho=rho.c)
V <- gamma.Row * fac.sumop(Wheat.dat$Row) +

gamma.unit * diag(1, nrow=150, ncol=150) +
mat.dirprod(col.ar1, row.ar1)

V <- s2*V

WaterRunoff.dat 237

#Produce variogram faces plot (Stefanaova et al, 2009)
variofaces(current.asr, V=V, ncores = parallel::detectCores())

End(Not run)

WaterRunoff.dat Data for an experiment to investigate the quality of water runoff over
time

Description

This data is from an experiment to investigate the quality of water runoff. However, it has been
modified to hide the true identity of the Species and Sources. It is used to provide executable
examples of the functions listed under Examples.

Usage

data(WaterRunoff.dat)

Format

A data.frame containing 440 observations of 13 variables.

Author(s)

Chris Brien

Source

Kazemi, F. (pers. comm.)

See Also

chooseModel.asrtests, reparamSigDevn.asrtests,
plotPredictions.data.frame, predictPlus.asreml, predictPresent.asreml

Wheat.dat Data for a 1976 experiment to investigate 25 varieties of wheat

Description

The data appears in Gilmour et al. (1995) and is from a field experiment designed to compare the
performance of 25 varieties of spring wheat. An analysis of it using asreml is presented by Butler et
al. (2023, Section 7.6), although they suggest that it is a barley experiment. It is used in the Wheat
vignettes [Enter vignette(package = "asremlPlus")] as an executable example of the use of the
asremlPlus to analyse a data set.

The experiment was conducted at Slate Hall Farm, UK, in 1976 and was designed as a balanced
lattice square with 6 replicates laid out in a 10 × 15 rectangular grid. The columns in the data frame
are: Rep, Row, Column, WithinColPairs, Variety, yield. The response variable is the grain yield.

238 Wheat.dat

Usage

data(Wheat.dat)

Format

A data.frame containing 150 observations of 6 variables.

Author(s)

Chris Brien

Source

Butler, D. G., Cullis, B. R., Gilmour, A. R., Gogel, B. J. and Thompson, R. (2023). ASReml-R
Reference Manual Version 4.2. VSN International Ltd, https://asreml.kb.vsni.co.uk/.

Gilmour, A. R., et al. (1995) Average Information REML: An efficient algorithm for variance
parameter estimation in linear mixed models. Biometrics, 51, 1440-1450.

https://asreml.kb.vsni.co.uk/

Index

∗ array
permute.square, 128
permute.to.zero.lowertri, 129

∗ asreml
addBacktransforms.alldiffs, 11
addSpatialModel.asrtests, 13
addSpatialModelOnIC.asrtests, 21
addto.test.summary, 29
allDifferences.data.frame, 31
alldiffs.object, 38
as.alldiffs, 42
as.asrtests, 45
as.predictions.frame, 47
asremlPlusTips, 50
asrtests.object, 51
bootREMLRT.asreml, 52
changeModelOnIC.asrtests, 55
changeTerms.asrtests, 59
chooseModel.asrtests, 64
chooseSpatialModelOnIC.asrtests,

69
convAsremlobj.asreml, 78
convEffectNames2DataFrame.asreml,

79
estimateV.asreml, 80
exploreLSDs.alldiffs, 82
facCombine.alldiffs, 85
facRecast.alldiffs, 87
facRename.alldiffs, 89
findLSDminerrors.alldiffs, 91
getASRemlVersionLoaded, 94
getFormulae.asreml, 95
getTestEntry.asrtests, 96
getTestPvalue.asrtests, 97
iterate.asrtests, 105
linTransform.alldiffs, 107
loadASRemlVersion, 113
LSD.frame, 114
makeTPPSplineMats.data.frame, 116
newfit.asreml, 120
pairdiffsTransform.alldiffs, 124
pickLSDstatistics.alldiffs, 130
plotLSDerrors.alldiffs, 132

plotLSDerrors.data.frame, 136
plotLSDs.alldiffs, 138
plotLSDs.data.frame, 142
plotPredictions.data.frame, 144
plotPvalues.alldiffs, 148
plotPvalues.data.frame, 152
plotVariofaces.data.frame, 154
predictions.frame, 158
predictPlus.asreml, 159
predictPresent.asreml, 167
print.alldiffs, 175
print.asrtests, 176
print.LSDdata, 177
print.predictions.frame, 178
print.test.summary, 179
print.wald.tab, 180
printFormulae.asreml, 181
R2adj.asreml, 182
ratioTransform.alldiffs, 185
recalcLSD.alldiffs, 187
recalcWaldTab.asrtests, 190
redoErrorIntervals.alldiffs, 192
REMLRT.asreml, 196
renewClassify.alldiffs, 198
reparamSigDevn.asrtests, 200
rmboundary.asrtests, 204
setvarianceterms.call, 206
simulate.asreml, 208
sort.alldiffs, 210
sort.predictions.frame, 214
subset.alldiffs, 217
subset.list, 219
testranfix.asrtests, 220
testresidual.asrtests, 223
testswapran.asrtests, 227
validAlldiffs, 230
validAsrtests, 231
validPredictionsFrame, 232
variofaces.asreml, 233

∗ datasets
ChickpeaEnd.dat, 62
Ladybird.dat, 106
Oats.dat, 123

239

240 INDEX

WaterRunoff.dat, 237
Wheat.dat, 237

∗ dplot
estimateV.asreml, 80
plotLSDerrors.alldiffs, 132
plotLSDerrors.data.frame, 136
plotLSDs.alldiffs, 138
plotLSDs.data.frame, 142
plotPvalues.alldiffs, 148
plotPvalues.data.frame, 152
plotVariofaces.data.frame, 154
simulate.asreml, 208
variofaces.asreml, 233

∗ factor
facCombine.alldiffs, 85
facRecast.alldiffs, 87
facRename.alldiffs, 89

∗ hplot
estimateV.asreml, 80
plotLSDerrors.alldiffs, 132
plotLSDerrors.data.frame, 136
plotLSDs.alldiffs, 138
plotLSDs.data.frame, 142
plotPvalues.alldiffs, 148
plotPvalues.data.frame, 152
plotVariofaces.data.frame, 154
simulate.asreml, 208
variofaces.asreml, 233

∗ htest
addto.test.summary, 29
alldiffs.object, 38
as.alldiffs, 42
as.asrtests, 45
as.predictions.frame, 47
asrtests.object, 51
bootREMLRT.asreml, 52
chooseModel, 63
chooseModel.asrtests, 64
chooseModel.data.frame, 67
getTestEntry.asrtests, 96
getTestPvalue.asrtests, 97
infoCriteria, 98
iterate.asrtests, 105
LSD.frame, 114
predictions.frame, 158
print.asrtests, 176
print.LSDdata, 177
print.test.summary, 179
print.wald.tab, 180
recalcWaldTab.asrtests, 190
REMLRT.asreml, 196
rmboundary.asrtests, 204

testranfix.asrtests, 220
testresidual.asrtests, 223
testswapran.asrtests, 227
validAlldiffs, 230
validAsrtests, 231
validPredictionsFrame, 232

∗ manip
angular, 41
angular.mod, 42
facCombine.alldiffs, 85
facRecast.alldiffs, 87
facRename.alldiffs, 89
getFormulae.asreml, 95
is.alldiffs, 100
is.asrtests, 101
is.predictions.frame, 102
isCompoundSymmetric.matrix, 104
num.recode, 122
powerTransform, 156
printFormulae.asreml, 181

∗ package
asremlPlus-package, 4

addBacktransforms
(addBacktransforms.alldiffs),
11

addBacktransforms.alldiffs, 6, 11
addrm.terms.asreml

(asremlPlus-deprecated), 49
addrm.terms.asrtests

(asremlPlus-deprecated), 49
addSpatialModel

(addSpatialModel.asrtests), 13
addSpatialModel.asrtests, 4, 13, 27, 29,

75, 77, 119
addSpatialModelOnIC

(addSpatialModelOnIC.asrtests),
21

addSpatialModelOnIC.asrtests, 4, 20, 21,
77, 116, 119

addto.test.summary, 5, 29
allDifferences

(allDifferences.data.frame), 31
allDifferences.data.frame, 6, 31, 38, 40,

44, 49, 86, 88, 90, 107, 112, 124,
127, 146, 150, 153, 160, 166, 167,
173–175, 178, 186, 189, 195, 198,
199, 212, 218

alldiffs (asremlPlus-deprecated), 49
alldiffs-class (alldiffs.object), 38
alldiffs.object, 6–8, 11, 12, 31–36, 38, 38,

39, 40, 42–44, 82, 83, 85–92, 101,
107–111, 114, 124–127, 130, 133,

INDEX 241

135, 139, 140, 148, 150, 159–166,
168–170, 172–175, 177, 185–189,
192–194, 198, 199, 210–212, 217,
230

angular, 7, 41, 42, 157
angular.mod, 7, 41, 42, 157
as.alldiffs, 7, 12, 36, 38, 40, 42, 44, 47, 49,

86, 88, 90, 101, 112, 127, 166, 175,
178, 186, 189, 195, 199, 210–212,
218, 230

as.asrtests, 7, 20, 29, 45, 49, 51, 52, 58, 61,
66, 67, 77, 96, 97, 102, 106, 176,
179, 180, 191, 202, 203, 206, 222,
223, 226, 229, 230, 232

as.predictions.frame, 7, 36, 47, 103, 158,
215, 233

asremlPlus (asremlPlus-package), 4
asremlPlus-deprecated, 49
asremlPlus-package, 4
asremlPlusTips, 50
asrtests, 7
asrtests (asremlPlus-deprecated), 49
asrtests-class (asrtests.object), 51
asrtests.object, 5–8, 13, 14, 17, 18, 20, 22,

25, 26, 28, 30, 45, 46, 51, 55, 57–61,
63, 64, 66, 68–70, 74–76, 96, 97,
102, 105, 106, 117, 176, 190, 201,
202, 204–207, 220, 222–229, 231,
232

bootREMLRT (bootREMLRT.asreml), 52
bootREMLRT.asreml, 5, 52

changeModelOnIC, 51
changeModelOnIC

(changeModelOnIC.asrtests), 55
changeModelOnIC.asrtests, 5, 18, 20, 26,

28, 29, 55, 59, 61, 63, 67, 75–77, 96,
100, 223, 226, 227, 230

changeTerms, 55
changeTerms (changeTerms.asrtests), 59
changeTerms.asrtests, 4, 20, 28, 29, 49, 55,

58, 59, 67, 76, 77, 96, 97, 100, 202,
203, 206, 223, 226, 230

character, 11, 30, 33–36, 43, 47, 48, 57, 61,
66, 79, 83, 86, 88, 90, 92, 107–111,
116, 121, 124–126, 130, 131, 134,
137, 140, 145, 149, 150, 152, 153,
160–165, 170–173, 178, 183, 185,
186, 188, 192–194, 198, 199, 202,
205, 207, 211, 214, 215, 217, 219,
222, 225, 229

ChickpeaEnd.dat, 62

choose.model.asreml
(asremlPlus-deprecated), 49

choose.model.asrtests
(asremlPlus-deprecated), 49

chooseModel, 63, 67, 69
chooseModel.asrtests, 5, 47, 49, 58, 61, 63,

64, 69, 96, 97, 203, 206, 223, 226,
230, 237

chooseModel.data.frame, 5, 63, 67, 67
chooseSpatialModelOnIC

(chooseSpatialModelOnIC.asrtests),
69

chooseSpatialModelOnIC.asrtests, 5, 13,
20, 29, 69, 116, 119

convAsremlobj (convAsremlobj.asreml), 78
convAsremlobj.asreml, 7, 78, 122
convEffectNames2DataFrame

(convEffectNames2DataFrame.asreml),
79

convEffectNames2DataFrame.asreml, 7, 79

data.frame, 7, 8, 14, 15, 17, 19, 20, 22, 23,
25, 26, 28, 30, 33, 47, 63, 67, 68, 70,
71, 74, 76, 77, 79, 93, 99, 109,
116–120, 126, 136, 158, 162, 163,
169, 170, 188, 193, 206, 207, 234

environment, 117
estimateV (estimateV.asreml), 80
estimateV.asreml, 6, 53, 80, 184, 234
exploreLSDs, 6, 135, 137, 141, 143, 177
exploreLSDs (exploreLSDs.alldiffs), 82
exploreLSDs.alldiffs, 82, 93, 130, 131,

166, 177, 189, 195

facCombine (facCombine.alldiffs), 85
facCombine.alldiffs, 7, 85, 88, 90
facRecast (facRecast.alldiffs), 87
facRecast.alldiffs, 7, 49, 87, 90
facRecode (asremlPlus-deprecated), 49
facRename (facRename.alldiffs), 89
facRename.alldiffs, 7, 88, 89
factor, 7, 14, 15, 22, 23, 33, 34, 44, 70, 71,

83, 85–90, 92, 107, 108, 110, 114,
116, 126, 130, 131, 137, 145, 161,
163, 164, 168, 170, 171, 188, 194,
234

findLSDminerrors, 6
findLSDminerrors

(findLSDminerrors.alldiffs), 91
findLSDminerrors.alldiffs, 91
formula, 95, 107, 108, 111, 161, 168, 181–184

getASRemlVersionLoaded, 8, 94, 113

242 INDEX

getFormulae, 4
getFormulae (getFormulae.asreml), 95
getFormulae.asreml, 4, 7, 95
getTestEntry (getTestEntry.asrtests), 96
getTestEntry.asrtests, 96, 97
getTestPvalue (getTestPvalue.asrtests),

97
getTestPvalue.asrtests, 5, 96, 97

info.crit (asremlPlus-deprecated), 49
infoCriteria, 28, 76, 98
infoCriteria.asreml, 5, 17, 18, 20, 25, 29,

46, 49, 54, 55, 58, 61, 66, 73, 77,
197, 202, 205, 222, 225, 229

infoCriteria.list, 5
is.alldiffs, 8, 38, 40, 44, 47, 100, 101, 230
is.asrtests, 8, 101, 102, 232
is.list, 51
is.predictions.frame, 8, 48, 102, 158, 233
isCompoundSymmetric, 8
isCompoundSymmetric

(isCompoundSymmetric.matrix),
104

isCompoundSymmetric.matrix, 104
isSymmetric, 104
iterate (iterate.asrtests), 105
iterate.asrtests, 5, 105

Ladybird.dat, 106
levels, 16, 24, 56, 59, 60, 72, 221, 227
linTransform, 112, 124, 127, 186
linTransform (linTransform.alldiffs),

107
linTransform.alldiffs, 6, 107, 127, 166,

186, 198
list, 8, 36, 76, 84, 118, 134, 135, 137, 140,

141, 143, 146, 149, 150, 153, 164,
165, 173, 174, 177, 198, 211, 214,
219

loadASRemlVersion, 8, 94, 113
logical, 15–17, 23, 25, 34, 71–73, 83, 92, 94,

108, 109, 111, 117, 121, 124–126,
131, 133, 149, 161–163, 166,
168–170, 175, 176, 178, 180, 193,
194, 199, 211, 214, 217, 219, 225

LSD.frame, 7, 33, 34, 39, 43, 83, 109, 110,
114, 114, 125, 126, 130, 158, 163,
164, 170, 171, 187–189, 193, 194,
217

makeTPPSplineMats
(makeTPPSplineMats.data.frame),
116

makeTPPSplineMats.data.frame, 8, 17, 20,
26, 28, 29, 74, 76, 77, 116

matrix, 104, 107, 108, 111, 161, 168, 198
median, 34, 110, 126, 164, 171, 188, 194

newfit (newfit.asreml), 120
newfit.asreml, 5, 18, 20, 26, 29, 54, 56, 58,

60, 61, 66, 67, 74, 77, 78, 106, 120,
121, 202, 203, 205–207, 210, 222,
223, 225, 226, 229, 230, 235, 236

newrcov.asrtests
(asremlPlus-deprecated), 49

num.recode, 8, 122
numeric, 11, 14, 16–18, 23–26, 30, 33–35, 44,

56, 59, 60, 71–74, 83, 92, 104,
108–111, 114, 116, 117, 125–127,
130, 131, 133, 134, 137, 139, 140,
142, 143, 149, 152, 153, 161–164,
169, 170, 172, 185, 188, 192–194,
219, 221, 227

Oats.dat, 4, 123

pairdiffsTransform, 186
pairdiffsTransform

(pairdiffsTransform.alldiffs),
124

pairdiffsTransform.alldiffs, 6, 124
permute.square, 8, 128, 129
permute.to.zero.lowertri, 8, 129, 129
pickLSDstatistics, 6
pickLSDstatistics

(pickLSDstatistics.alldiffs),
130

pickLSDstatistics.alldiffs, 37, 84, 112,
127, 130, 166, 174, 189, 195

plotLSDerrors (plotLSDerrors.alldiffs),
132

plotLSDerrors.alldiffs, 6, 84, 93, 131,
132, 135, 136, 143

plotLSDerrors.data.frame, 6, 84, 93, 131,
133–135, 136, 143

plotLSDs (plotLSDs.alldiffs), 138
plotLSDs.alldiffs, 6, 84, 93, 131, 137, 138,

143
plotLSDs.data.frame, 6, 84, 93, 131, 135,

137, 139–141, 142
plotPredictions

(plotPredictions.data.frame),
144

plotPredictions.data.frame, 6, 12, 37, 44,
49, 112, 127, 144, 166, 167, 173,
174, 186, 189, 195, 237

INDEX 243

plotPvalues (plotPvalues.alldiffs), 148
plotPvalues.alldiffs, 6, 148, 153
plotPvalues.data.frame, 6, 148–150, 151
plotVariofaces, 6
plotVariofaces

(plotVariofaces.data.frame),
154

plotvariofaces.asreml
(asremlPlus-deprecated), 49

plotVariofaces.data.frame, 49, 154, 210,
236

power.transform
(asremlPlus-deprecated), 49

powerTransform, 7, 41, 42, 49, 156
pred.present.asreml

(asremlPlus-deprecated), 49
predictiondiffs.asreml

(asremlPlus-deprecated), 49
predictionplot.asreml

(asremlPlus-deprecated), 49
predictions.frame, 7, 8, 32, 33, 38, 43, 47,

48, 103, 107, 109, 126, 145, 158,
163, 170, 175, 178, 186, 188, 193,
214, 215, 232, 233

predictions.frame-class
(predictions.frame), 158

predictparallel.asreml
(asremlPlus-deprecated), 49

predictPlus (predictPlus.asreml), 159
predictPlus.asreml, 6, 12, 20, 28, 36, 37,

40, 44, 49, 76, 112, 115, 127, 158,
159, 167, 174, 186, 189, 199, 212,
215, 218, 237

predictPresent (predictPresent.asreml),
167

predictPresent.asreml, 7, 12, 37, 44, 49,
112, 115, 127, 146, 166, 167, 186,
189, 195, 199, 212, 215, 218, 237

print.alldiffs, 8, 12, 36, 44, 86, 88, 90,
112, 127, 166, 174, 175, 178, 186,
189, 195, 199, 212, 218

print.asrtests, 8, 176, 179, 180
print.LSDdata, 8, 177
print.predictions.frame, 8, 175, 178, 215
print.test.summary, 8, 30, 179, 180
print.wald.tab, 8, 176, 179, 180
printFormulae (printFormulae.asreml),

181
printFormulae.asreml, 8, 95, 181, 182

quantile, 34, 110, 126, 163, 171, 188, 194

R2adj (R2adj.asreml), 182

R2adj.asreml, 5, 182
ratioTransform, 127
ratioTransform

(ratioTransform.alldiffs), 185
ratioTransform.alldiffs, 7, 185
recalc.wald.tab.asreml

(asremlPlus-deprecated), 49
recalc.wald.tab.asrtests

(asremlPlus-deprecated), 49
recalcLSD (recalcLSD.alldiffs), 187
recalcLSD.alldiffs, 7, 37, 44, 84, 93, 112,

115, 127, 131, 146, 166, 174, 186,
187, 194, 195, 199, 212, 217, 218

recalcWaldTab, 45–47
recalcWaldTab (recalcWaldTab.asrtests),

190
recalcWaldTab.asrtests, 5, 49, 190
redoErrorIntervals

(redoErrorIntervals.alldiffs),
192

redoErrorIntervals.alldiffs, 7, 12, 36,
44, 84, 86, 93, 111, 112, 115, 127,
131, 146, 166, 174, 186, 187, 189,
192, 199, 212, 218

reml.lrt (asremlPlus-deprecated), 49
REMLRT (REMLRT.asreml), 196
REMLRT.asreml, 5, 49, 54, 64, 67, 100, 196,

220, 221, 223, 225–228, 230
renewClassify (renewClassify.alldiffs),

198
renewClassify.alldiffs, 7, 12, 36, 44, 49,

86, 88, 90, 189, 198, 210, 212
reorderClassify

(asremlPlus-deprecated), 49
reparamSigDevn

(reparamSigDevn.asrtests), 200
reparamSigDevn.asrtests, 5, 20, 29, 47, 49,

58, 61, 67, 77, 200, 206, 223, 226,
230, 237

rmboundary (rmboundary.asrtests), 204
rmboundary.asreml

(asremlPlus-deprecated), 49
rmboundary.asrtests, 5, 18, 20, 26, 29, 47,

49, 56, 58, 60, 61, 64, 65, 67, 74, 77,
201, 204, 205, 220, 221, 223, 224,
226–228, 230

set.seed, 210, 236
setvarianceterms

(setvarianceterms.call), 206
setvarianceterms.asreml

(asremlPlus-deprecated), 49
setvarianceterms.call, 5, 49, 122, 206

244 INDEX

sig.devn.reparam.asreml
(asremlPlus-deprecated), 49

sig.devn.reparam.asrtests
(asremlPlus-deprecated), 49

simulate.asreml, 6, 82, 155, 208, 236
sort.alldiffs, 7, 8, 12, 32, 36, 44, 86, 88,

90, 107, 112, 124, 127, 133, 135,
139, 141, 148, 150, 160, 166, 167,
174, 186, 189, 195, 199, 210, 215,
218

sort.predictions.frame, 7, 212, 214
subset.alldiffs, 7, 8, 12, 36, 44, 112, 127,

135, 141, 150, 166, 174, 186, 189,
195, 217, 219

subset.list, 8, 219

testranfix (testranfix.asrtests), 220
testranfix.asreml

(asremlPlus-deprecated), 49
testranfix.asrtests, 5, 20, 29, 47, 49, 54,

58, 61, 63, 66, 67, 77, 96, 97, 191,
197, 203, 206, 220

testrcov.asreml
(asremlPlus-deprecated), 49

testrcov.asrtests
(asremlPlus-deprecated), 49

testresidual (testresidual.asrtests),
223

testresidual.asrtests, 5, 20, 29, 49, 58,
61, 67, 77, 96, 97, 203, 206, 223, 230

testswapran (testswapran.asrtests), 227
testswapran.asreml

(asremlPlus-deprecated), 49
testswapran.asrtests, 5, 49, 96, 97, 226,

227

validAlldiffs, 8, 38, 40, 230, 232, 233
validAsrtests, 8, 51, 52, 230, 231, 233
validPredictionsFrame, 8, 48, 103, 158,

230, 232, 232
variofaces (variofaces.asreml), 233
variofaces.asreml, 6, 82, 154, 155, 210, 233
vector, 88, 162

WaterRunoff.dat, 4, 237
Wheat.dat, 4, 237

	asremlPlus-package
	addBacktransforms.alldiffs
	addSpatialModel.asrtests
	addSpatialModelOnIC.asrtests
	addto.test.summary
	allDifferences.data.frame
	alldiffs.object
	angular
	angular.mod
	as.alldiffs
	as.asrtests
	as.predictions.frame
	asremlPlus-deprecated
	asremlPlusTips
	asrtests.object
	bootREMLRT.asreml
	changeModelOnIC.asrtests
	changeTerms.asrtests
	ChickpeaEnd.dat
	chooseModel
	chooseModel.asrtests
	chooseModel.data.frame
	chooseSpatialModelOnIC.asrtests
	convAsremlobj.asreml
	convEffectNames2DataFrame.asreml
	estimateV.asreml
	exploreLSDs.alldiffs
	facCombine.alldiffs
	facRecast.alldiffs
	facRename.alldiffs
	findLSDminerrors.alldiffs
	getASRemlVersionLoaded
	getFormulae.asreml
	getTestEntry.asrtests
	getTestPvalue.asrtests
	infoCriteria
	is.alldiffs
	is.asrtests
	is.predictions.frame
	isCompoundSymmetric.matrix
	iterate.asrtests
	Ladybird.dat
	linTransform.alldiffs
	loadASRemlVersion
	LSD.frame
	makeTPPSplineMats.data.frame
	newfit.asreml
	num.recode
	Oats.dat
	pairdiffsTransform.alldiffs
	permute.square
	permute.to.zero.lowertri
	pickLSDstatistics.alldiffs
	plotLSDerrors.alldiffs
	plotLSDerrors.data.frame
	plotLSDs.alldiffs
	plotLSDs.data.frame
	plotPredictions.data.frame
	plotPvalues.alldiffs
	plotPvalues.data.frame
	plotVariofaces.data.frame
	powerTransform
	predictions.frame
	predictPlus.asreml
	predictPresent.asreml
	print.alldiffs
	print.asrtests
	print.LSDdata
	print.predictions.frame
	print.test.summary
	print.wald.tab
	printFormulae.asreml
	R2adj.asreml
	ratioTransform.alldiffs
	recalcLSD.alldiffs
	recalcWaldTab.asrtests
	redoErrorIntervals.alldiffs
	REMLRT.asreml
	renewClassify.alldiffs
	reparamSigDevn.asrtests
	rmboundary.asrtests
	setvarianceterms.call
	simulate.asreml
	sort.alldiffs
	sort.predictions.frame
	subset.alldiffs
	subset.list
	testranfix.asrtests
	testresidual.asrtests
	testswapran.asrtests
	validAlldiffs
	validAsrtests
	validPredictionsFrame
	variofaces.asreml
	WaterRunoff.dat
	Wheat.dat
	Index

