Package ‘autoshiny’

July 22, 2025
Title Automatic Transformation of an 'R' Function into a 'shiny' App
Version 0.0.3
Description Static code compilation of a 'shiny' app given an R func-
tion (into 'ui.R' and 'server.R' files or into a 'shiny' app object). See exam-
ples at <https://github.com/alekrutkowski/autoshiny>.
URL https://github.com/alekrutkowski/autoshiny
Depends R (>=3.4.0)
License GPL-2
Encoding UTF-8
RoxygenNote 7.2.3
Imports shiny, utils
Suggests roxygen2, magrittr, webshot
NeedsCompilation no
Author Aleksander Rutkowski [aut, cre]
Maintainer Aleksander Rutkowski <alek.rutkowski@gmail.com>
Repository CRAN
Date/Publication 2023-03-09 10:50:05 UTC

Contents
File . .
make e e e
Index

https://github.com/alekrutkowski/autoshiny
https://github.com/alekrutkowski/autoshiny

2 make

File An obligatory wrapper for file names (paths)

Description

This function must be used

* in the arguments of function fun (passed to makeApp or makeFiles) and/or

* in the value returned by fun
to wrap the character string indicating a path respectively

* to an input file ("consumed" by fun or

* to an output file ("produced"” by fun as a side effect).

Otherwise autoshiny cannot distinguish file paths from character strings.

Usage
File(x)
Arguments
X A string, i.e. character vector of length 1, indicating a file path to an existing
file.
Value

x with an S3 class attribute "file".

make Create a Shiny app (object or files) from an R function

Description

Create a Shiny app (object or files) from an R function

Usage

makeApp(fun, withGoButton = FALSE)

makeFiles(fun, withGoButton = FALSE, directory)

https://en.wikipedia.org/wiki/Side_effect_(computer_science)

make

Arguments

fun

withGoButton

directory

Value

A function (preferably a symbol — a long self-explanatory name — pointing to
a pre-defined function object, rather than an anonymous function) with zero
or more arguments/parameters. Every argument must have a default value,
which will be used to define each argument’s:

* type/class,
¢ allowed values,
* pre-selected/start-up value.

Either TRUE or FALSE (default: FALSE). It indicates if the (re)evaluation of fun
in the Shiny app should be immediately triggered by every change in the value
of any argument/parameter (withGoButton = FALSE) or if the (re)calculation
should be started only when a specific button is pressed (withGoButton = TRUE).
The latter is preferred if the (re)evaluation of fun is significantly time-consuming
or if fun has no arguments (because then, without the button, only refreshing the
web page would trigger the (re)evaluation).

Path to a directory/folder where makeFiles should save the compiled server.R
and ui.R files.

makeApp A Shiny app object as returned by as.shiny.appobj.

makeFiles NULL. This function saves two plain text files: ui.R and server.R with the R code
of function fun translated into a Shiny app. If these files need further manual changes, it is
recommended that they are first re-formatted e.g. in RStudio (top menu -> Code -> Reformat
Code or Ctrl+Shift+A) or programmatically (e.g. https://github.com/google/rfmt).

Examples

Not run:
library(shiny)

Example 1: Trivial anonymous function
makeApp(function(x=1:3, y=5:9) xty)

#i## Example 2: Nicer function and argument names
“Histogram for normal distribution™ <-
function("Number of observations™ =
as.integer => the argument interpreted as categorical:
as.integer(c(100,10,1000)))
Generic R plots as "return values” are supported:
plot(hist(rnorm(~Number of observations™)))
makeApp(~Histogram for normal distribution™)

Example 3: Data frame in (upload CSV), data frame out (displayed and downloadable as CSV)
“Table of sin and cos values™ <-
function(“Upload CSV file with column "x"*~ =

data.frame(x = seq(@, 2*pi, .25))) {

dta <- “Upload CSV file with column "x"°
data.frame(X = dta$x,

https://github.com/google/rfmt

make

“Sin of X° = sin(dta$x),
“Cos of X° = cos(dta$x),
check.names = FALSE)

}

makeApp(~Table of sin and cos values™)

#i## Example 4: Arbitrary input and output files
openxlsx::write.xlsx(data.frame(x=1:5,
y=11:15),
'my_test_file.xlsx")
“Excel file in and out™ <-
function(" Input Excel file™ =
File('my_test_file.xlsx')) { # File() obligatory here!
my.data <- openxlsx::read.xlsx(Input Excel file™)
my.data2 <- within(my.data,
z <-x ty)
openxlsx::write.xlsx(my.dataz2,
'my_test_file_2.x1lsx")
File('my_test_file_2.x1sx') # File() obligatory here too!
}
makeApp(~Excel file in and out™)

Example 5: Using a button as a (re-)evaluation trigger
Use this option if:
#i## - the evaluation of your functon takes time, so it should not be re-evaluated with every
minor change of the value of inputs/arguments/parameter;
- the function is impure e.g. depends on some external data fetched internally and takes no
arguments/parameters -- in such a case the function would be re-evaluated only through
page refresh of the browser; the button is a faster and a more elegant solution.
“Get "GDP and main components” from Eurostat™ <-
function() {
Getting data from
http://ec.europa.eu/eurostat/estat-navtree-portlet-prod/BulkDownloadListing ...

... ?sort=1&file=data%2Fnama_10_gdp.tsv.gz
X <- eurodata::importData('nama_10_gdp')
head(x, 10)

}

makeApp(~Get "GDP and main components” from Eurostat~,
withGoButton = TRUE)

Example 6: Lists of inputs (arguments) and the output list (composite return value)
are always decomposed
“A function with lists everywhere™ <-
function("First argument group,” = list("number one™ = 1:3,
“number two™ = letters[1:3]),
“2nd arg group,” = list(1st argument™ = 11:14,
“second arg.” = LETTERS[1:51))
list("Some text™ =
as.character(c("First argument group,$ number two~,
“2nd arg group,”$ second arg.”)),
“Some numbers” =
“First argument group,”$ number one™ +
“2nd arg group,~$ 1st argument~,

make

“Even a ggplot2 chart™ =
ggplot2::gplot(a,b,data=data.frame(a=1:20,b=10g(1:20))))
makeApp("A function with lists everywhere™)

End(Not run)

Index

as.shiny.appobj, 3
File, 2

make, 2

makeApp, 2

makeApp (make), 2
makeFiles, 2
makeFiles (make), 2

	File
	make
	Index

