## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----setup-------------------------------------------------------------------- library(cld) ## ----example-basic------------------------------------------------------------ # Pairwise Wilcoxon rank sum test result <- pairwise.wilcox.test(chickwts$weight, chickwts$feed, exact = FALSE) make_cld(result) ## ----example-ttest------------------------------------------------------------ # Pairwise t-test result2 <- pairwise.t.test(chickwts$weight, chickwts$feed) make_cld(result2, alpha = 0.01) # More stringent threshold ## ----example-matrix----------------------------------------------------------- # Create a symmetric matrix of p-values m <- matrix(c( 1.00, 0.22, 0.05, 0.00, 0.22, 1.00, 0.17, 0.01, 0.05, 0.17, 1.00, 0.22, 0.00, 0.01, 0.22, 1.00 ), nrow = 4) rownames(m) <- colnames(m) <- c("GroupA", "GroupB", "GroupC", "GroupD") # Generate CLD make_cld(m, alpha = 0.05) ## ----example-pmcmr, eval=FALSE------------------------------------------------ # library(PMCMRplus) # # # Kruskal-Wallis post-hoc test # kw_result <- kwAllPairsConoverTest(count ~ spray, data = InsectSprays) # make_cld(kw_result) # # # Dunn test # dunn_result <- kwAllPairsDunnTest(count ~ spray, data = InsectSprays) # make_cld(dunn_result) ## ----example-rstatix, eval=FALSE---------------------------------------------- # library(rstatix) # # # Games-Howell test (for unequal variances) # gh_result <- games_howell_test(PlantGrowth, weight ~ group) # make_cld(gh_result, gr1_col = "group1", gr2_col = "group2", p_val_col = "p.adj") # # # Tukey HSD test # tukey_result <- tukey_hsd(PlantGrowth, weight ~ group) # make_cld(tukey_result, gr1_col = "group1", gr2_col = "group2", p_val_col = "p.adj") # # # Pairwise t-test # pwt_result <- pairwise_t_test(PlantGrowth, weight ~ group) # make_cld(pwt_result, gr1_col = "group1", gr2_col = "group2", p_val_col = "p.adj") ## ----example-desctools, eval=FALSE-------------------------------------------- # library(DescTools) # # # Conover test # conover_result <- ConoverTest(count ~ spray, data = InsectSprays) # make_cld(conover_result) # # # Dunnett test (comparison to control) # dunnett_result <- DunnettTest(weight ~ group, data = PlantGrowth) # make_cld(dunnett_result) ## ----example-dataframe-------------------------------------------------------- # Custom comparison results comparisons <- data.frame( group1 = c("Treatment_A", "Treatment_A", "Treatment_B"), group2 = c("Treatment_B", "Treatment_C", "Treatment_C"), p.adj = c(0.9, 0.02, 0.03) ) make_cld(comparisons, alpha = 0.05) ## ----example-custom-cols------------------------------------------------------ # Data frame with custom column names my_comparisons <- data.frame( first_group = c("A", "A", "B"), second_group = c("B", "C", "C"), adjusted_p = c(0.9, 0.02, 0.03) ) make_cld(my_comparisons, gr1_col = "first_group", gr2_col = "second_group", p_val_col = "adjusted_p", alpha = 0.05 ) ## ----example-formula---------------------------------------------------------- # Using formula for data frames with comparison strings my_data <- data.frame( Comparison = c("A-B", "A-C", "B-C"), p_value = c(0.12, 0.001, 0.045), p_adjusted = c(0.18, 0.003, 0.068) ) # Use the adjusted p-values make_cld(p_adjusted ~ Comparison, data = my_data) # Or use the raw p-values make_cld(p_value ~ Comparison, data = my_data) ## ----example-formula-two-var, eval=FALSE-------------------------------------- # # Data with group names containing hyphens # my_data2 <- data.frame( # group1 = c("Treatment-A", "Treatment-A", "Treatment-B"), # group2 = c("Treatment-B", "Treatment-C", "Treatment-C"), # p_adjusted = c(0.18, 0.003, 0.068) # ) # # # Two-variable formula (handles hyphens automatically) # make_cld(p_adjusted ~ group1 + group2, data = my_data2)