## ----eval = F----------------------------------------------------------------- # # Mass$climate <- 1 # ## ----eval = F----------------------------------------------------------------- # # Interaction <- slidingwin(xvar = list(Temp = MassClimate$Temp), # cdate = MassClimate$Date, # bdate = Mass$Date, # baseline = lm(Mass ~ climate*Age, data = Mass), # cinterval = "day", # range = c(150, 0), # type = "absolute", refday = c(20, 05), # stat = "mean", # func = "lin") # ## ----eval = F----------------------------------------------------------------- # # summary(Interaction[[1]]$BestModel) # ## ----eval = F----------------------------------------------------------------- # # Call: # lm(formula = yvar ~ climate + Age + climate:Age, data = modeldat) # # Residuals: # Min 1Q Median 3Q Max # -5.6266 -1.5716 0.2878 1.6086 4.7510 # # Coefficients: # Estimate Std. Error t value Pr(>|t|) # (Intercept) 170.2628 7.1678 23.754 < 2e-16 *** # climate -5.5466 0.9200 -6.029 3.32e-07 *** # Age -2.6046 2.6603 -0.979 0.333 # climate:Age 0.4024 0.3395 1.185 0.242 # --- # Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 # # Residual standard error: 2.449 on 43 degrees of freedom # Multiple R-squared: 0.7778, Adjusted R-squared: 0.7623 # F-statistic: 50.17 on 3 and 43 DF, p-value: 4.267e-14 # ## ----message = FALSE---------------------------------------------------------- library(climwin) ## ----eval = FALSE------------------------------------------------------------- # # MassWin <- slidingwin(xvar = list(Temp = MassClimate$Temp), # cdate = MassClimate$Date, # bdate = Mass$Date, # baseline = lm(Mass ~ 1, data = Mass), # cinterval = "day", # range = c(150, 0), # upper = 0, binary = TRUE, # type = "absolute", refday = c(20, 05), # stat = "sum", # func = "lin") # ## ----eval = FALSE------------------------------------------------------------- # # head(MassWin[[1]]$BestModelData) # ## ----eval = FALSE------------------------------------------------------------- # # SizeWin <- slidingwin(xvar = list(Temp = SizeClimate$Temperature), # cdate = SizeClimate$Date, # bdate = Size$Date, # baseline = lm(Size ~ 1, data = Size), # cohort = Size$Cohort, # cinterval = "day", # range = c(150, 0), # type = "absolute", refday = c(01, 10), # stat = "mean", # func = "lin") # ## ----eval = FALSE------------------------------------------------------------- # # MassWin <- slidingwin(xvar = list(Temp = Climate$Temp), # cdate = Climate$Date, # bdate = Biol$Date, # baseline = lm(Mass ~ 1, data = Biol), # cinterval = "day", # range = c(150, 0), # type = "absolute", refday = c(20, 05), # stat = "mean", # func = "lin", spatial = list(Biol$SiteID, Climate$SiteID)) # ## ----echo = FALSE, fig.width = 5, fig.height = 5------------------------------ Unweight <- data.frame(Time = seq(0, 100, 1), Weight = c(rep(0, times = 25), rep(1, times = 50), rep(0, 26))) Unweight$Weight <- Unweight$Weight/sum(Unweight$Weight) par(mar = c(5, 4.25, 4, 2) + 0.1) plot(x = Unweight$Time, y = Unweight$Weight, type = "l", ylab = "Weight", xlab = "Time", ylim = c(0, 0.05), yaxt = "n", xaxt = "n", lwd = 2, cex.lab = 1.25, cex.axis = 1.25, cex = 1.5) axis(2, cex.axis = 1.25, cex.lab = 1.25, yaxp = c(0, 0.05, 2)) axis(1, cex.axis = 1.5, cex.lab = 1.25, xaxp = c(0, 100, 2), mgp = c(2, 1.5, 0)) ## ----echo = FALSE, fig.width = 8, fig.height = 4------------------------------ par(mfrow = c(1, 2)) duration <- 365 j <- seq(1:duration) / duration k <- seq(-10, 10, by = (2 * 10 / duration)) weight <- 3 / 0.2 * ((j[1:duration] - 0) / 0.2) ^ (3 - 1) * exp( - ((j[1:duration] - 0) / 0.2) ^ 3) plot((weight / sum(weight)), type = "l", ylab = "Weight", xlab = "Day", cex.lab = 1.5, cex.axis = 1.5, main = "Weibull distribution") weight <- evd::dgev(k[1:duration], loc = 1, scale = 2, shape = -1, log = FALSE) plot((weight / sum(weight)), type = "l", ylab = "Weight", xlab = "Day", cex.lab = 1.5, cex.axis = 1.5, main = "GEV distribution") ## ----eval = FALSE------------------------------------------------------------- # # set.seed(100) # # weight <- weightwin(n = 5, xvar = list(Temp = MassClimate$Temp), cdate = MassClimate$Date, # bdate = Mass$Date, # baseline = lm(Mass ~ 1, data = Mass), # range = c(150, 0), # func = "lin", type = "absolute", # refday = c(20, 5), # weightfunc = "W", cinterval = "day", # par = c(3, 0.2, 0)) # ## ----eval = F----------------------------------------------------------------- # # weight$iterations # ## ----eval = F----------------------------------------------------------------- # # weight[[1]]$WeightedOutput # ## ----echo = FALSE, fig.width = 5, fig.height = 5------------------------------ explore(weightfunc = "W", shape = 2.17, scale = 0.35, loc = 0)