## ----message = FALSE---------------------------------------------------------- library(climwin) ## ----eval = FALSE------------------------------------------------------------- # # MassWin <- slidingwin(xvar = list(Temp = MassClimate$Temp), # cdate = MassClimate$Date, # bdate = Mass$Date, # baseline = lm(Mass ~ 1, data = Mass), # cinterval = "day", # range = c(150, 0), # type = "absolute", refday = c(20, 05), # stat = "mean", # func = "lin") # ## ----eval = FALSE------------------------------------------------------------- # # head(MassWin[[1]]$Dataset) # ## ----eval = FALSE------------------------------------------------------------- # # MassWin[[1]]$BestModel # ## ----eval = FALSE------------------------------------------------------------- # # Call: # lm(formula = Yvar ~ climate, data = modeldat) # # Coefficients: # (Intercept) climate # 163.544 -4.481 # ## ----eval = FALSE------------------------------------------------------------- # # head(MassWin[[1]]$BestModelData) # ## ----eval = FALSE------------------------------------------------------------- # # MassRand <- randwin(repeats = 5, # xvar = list(Temp = MassClimate$Temp), # cdate = MassClimate$Date, # bdate = Mass$Date, # baseline = lm(Mass ~ 1, data = Mass), # cinterval = "day", # range = c(150, 0), # type = "absolute", refday = c(20, 05), # stat = "mean", # func = "lin") # ## ----eval = F----------------------------------------------------------------- # # MassRand[[1]] # ## ----eval = F----------------------------------------------------------------- # # pvalue(dataset = MassWin[[1]]$Dataset, datasetrand = MassRand[[1]], metric = "C", sample.size = 47) # ## ----eval = F----------------------------------------------------------------- # # 1.94e-05 # ## ----fig.width = 4, fig.height = 4, message = FALSE--------------------------- plothist(dataset = MassOutput, datasetrand = MassRand) ## ----fig.width = 4, fig.height = 4-------------------------------------------- plotdelta(dataset = MassOutput) ## ----fig.width = 4, fig.height = 4-------------------------------------------- plotweights(dataset = MassOutput) ## ----fig.width = 4, fig.height = 4-------------------------------------------- plotbetas(dataset = MassOutput) ## ----fig.width = 4, fig.height = 4-------------------------------------------- plotwin(dataset = MassOutput) ## ----------------------------------------------------------------------------- MassSingle <- singlewin(xvar = list(Temp = MassClimate$Temp), cdate = MassClimate$Date, bdate = Mass$Date, baseline = lm(Mass ~ 1, data = Mass), cinterval = "day", range = c(72, 15), type = "absolute", refday = c(20, 5), stat = "mean", func = "lin") ## ----fig.width = 6, fig.height = 6-------------------------------------------- plotbest(dataset = MassOutput, bestmodel = MassSingle$BestModel, bestmodeldata = MassSingle$BestModelData) ## ----fig.width = 10, fig.height = 7.5----------------------------------------- plotall(dataset = MassOutput, datasetrand = MassRand, bestmodel = MassSingle$BestModel, bestmodeldata = MassSingle$BestModelData) ## ----eval = FALSE------------------------------------------------------------- # # MassWin2 <- slidingwin(xvar = list(Temp = MassClimate$Temp), # cdate = MassClimate$Date, # bdate = Mass$Date, # baseline = lm(Mass ~ 1, data = Mass), # cinterval = "day", # range = c(150, 0), # type = "absolute", refday = c(20, 5), # stat = c("max", "mean"), # func = c("lin", "quad")) # ## ----eval = FALSE------------------------------------------------------------- # # MassWin2$combos # ## ----eval = FALSE------------------------------------------------------------- # # MassWin2[[3]]$BestModel # ## ----eval = FALSE------------------------------------------------------------- # Call: # lm(formula = Yvar ~ climate + I(climate^2), data = modeldat) # # Coefficients: # (Intercept) climate I(climate^2) # 139.39170 -1.33767 0.03332