## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
warning = FALSE,
message = FALSE,
comment = "#>"
)
## ----setup--------------------------------------------------------------------
library(d3po)
# Load igraph conditionally for network examples
if (requireNamespace("igraph", quietly = TRUE)) {
library(igraph)
}
# Load sf conditionally for geomap examples
if (requireNamespace("sf", quietly = TRUE)) {
library(sf)
}
## ----bar1---------------------------------------------------------------------
trade_by_continent <- d3po::trade[d3po::trade$year == 2023L, ]
trade_by_continent <- aggregate(
trade ~ reporter_continent,
data = d3po::trade,
FUN = sum
)
# Assign colors to continents
# my_pal <- tintin::tintin_pal()(7)
# [1] "#1D8DAC" "#2C5D6A" "#52808F" "#64554D" "#9F3531" "#BB8259" "#D81A1E"
my_pal <- c("#1D8DAC", "#2C5D6A", "#52808F", "#64554D", "#9F3531", "#BB8259", "#D81A1E")
names(my_pal) <- c(
"Africa", "Antarctica", "Asia",
"Europe", "North America", "Oceania", "South America"
)
d3po(trade_by_continent, width = 800, height = 600) %>%
po_bar(daes(x = reporter_continent, y = trade, color = my_pal)) %>%
po_labels(
x = "Continent",
y = "Trade (USD billion)",
title = "Total Trade by Reporter Continent in 2023"
)
## ----bar2---------------------------------------------------------------------
trade_by_continent$color <- my_pal[trade_by_continent$reporter_continent]
d3po(trade_by_continent, width = 800, height = 600) %>%
po_bar(daes(x = trade, y = reporter_continent, color = color)) %>%
po_labels(
x = "Trade (USD billion)",
y = "Continent",
title = "Total Trade by Reporter Continent in 2023"
)
## ----bar3---------------------------------------------------------------------
trade_stacked <- d3po::trade
trade_stacked <- aggregate(trade ~ reporter_continent + partner_continent, data = trade_stacked, FUN = sum)
trade_stacked$color <- ifelse(trade_stacked$partner_continent == "Africa", my_pal["Africa"], NA)
trade_stacked$color <- ifelse(trade_stacked$partner_continent == "Antarctica", my_pal["Antarctica"], trade_stacked$color)
trade_stacked$color <- ifelse(trade_stacked$partner_continent == "Asia", my_pal["Asia"], trade_stacked$color)
trade_stacked$color <- ifelse(trade_stacked$partner_continent == "Europe", my_pal["Europe"], trade_stacked$color)
trade_stacked$color <- ifelse(trade_stacked$partner_continent == "North America", my_pal["North America"], trade_stacked$color)
trade_stacked$color <- ifelse(trade_stacked$partner_continent == "Oceania", my_pal["Oceania"], trade_stacked$color)
trade_stacked$color <- ifelse(trade_stacked$partner_continent == "South America", my_pal["South America"], trade_stacked$color)
d3po(trade_stacked, width = 800, height = 600) %>%
po_bar(daes(
x = reporter_continent, y = trade, group = partner_continent,
color = color, stack = TRUE
)) %>%
po_labels(
x = "Reporter Continent",
y = "Trade (USD billion)",
title = "Trade Distribution by Reporter and Partner Continent in 2023"
)
## ----bar4---------------------------------------------------------------------
d3po(trade_by_continent, width = 800, height = 600) %>%
po_bar(daes(x = reporter_continent, y = trade, color = my_pal)) %>%
po_labels(
x = "Reporter Continent",
y = "Trade (USD billion)",
title = "Total Trade by Reporter Continent in 2023"
) %>%
po_theme(axis = "#012169", tooltip = "#101418", background = "#cccccc") %>%
po_font("Liberation Serif", 12, "uppercase") %>%
po_download(FALSE)
## ----pie1---------------------------------------------------------------------
trade_by_continent <- d3po::trade[d3po::trade$year == 2023L, ]
trade_by_continent <- aggregate(
trade ~ reporter_continent,
data = d3po::trade,
FUN = sum
)
# Assign colors to continents
# my_pal <- tintin::tintin_pal(option = "The Black Island")(7)
# [1] "#265694" "#5A8FA9" "#5F718D" "#7D5164" "#8D817B" "#9D4649" "#B68563"
my_pal <- c("#265694", "#5A8FA9", "#5F718D", "#7D5164", "#8D817B", "#9D4649", "#B68563")
names(my_pal) <- c(
"Africa", "Antarctica", "Asia",
"Europe", "North America", "Oceania", "South America"
)
d3po(trade_by_continent, width = 800, height = 600) %>%
po_pie(daes(size = trade, group = reporter_continent, color = my_pal)) %>%
po_labels(title = "Trade Share by Reporter Continent in 2023")
## ----donut1-------------------------------------------------------------------
trade_by_continent$color <- my_pal[trade_by_continent$reporter_continent]
d3po(trade_by_continent, width = 800, height = 600) %>%
po_donut(daes(size = trade, group = reporter_continent, inner_radius = 0.3, color = color)) %>%
po_labels(title = "Trade Share by Reporter Continent in 2023")
## ----pie2---------------------------------------------------------------------
d3po(trade_by_continent, width = 800, height = 600) %>%
po_pie(daes(size = trade, group = reporter_continent, color = my_pal)) %>%
po_labels(title = "Trade Share by Reporter Continent in 2023") %>%
po_theme(tooltip = "#101418", background = "#cccccc") %>%
po_font("Liberation Serif", 12, "uppercase") %>%
po_download(FALSE)
## ----area1--------------------------------------------------------------------
trade_by_continent <- d3po::trade
trade_by_continent <- aggregate(
trade ~ year + reporter_continent,
data = trade_by_continent,
FUN = sum
)
# Assign colors to continents
# my_pal <- tintin::tintin_pal(option = "Cigars of the Pharaoh")(7)
#[1] "#889AB0" "#9B8D7C" "#B47E56" "#C2973F" "#CAA67E" "#DEA221" "#E7A65C"
my_pal <- c("#889AB0", "#9B8D7C", "#B47E56", "#C2973F", "#CAA67E", "#DEA221", "#E7A65C")
names(my_pal) <- c(
"Africa", "Antarctica", "Asia",
"Europe", "North America", "Oceania", "South America"
)
d3po(trade_by_continent, width = 800, height = 600) %>%
po_area(daes(
x = year, y = trade, group = reporter_continent, color = my_pal
)) %>%
po_labels(
x = "Year",
y = "Trade (USD billion)",
title = "Trade Distribution by Reporter Continent in 2019 and 2023"
)
## ----area2--------------------------------------------------------------------
trade_by_continent$color <- my_pal[trade_by_continent$reporter_continent]
d3po(trade_by_continent, width = 800, height = 600) %>%
po_area(daes(
x = year, y = trade, group = reporter_continent, color = color
)) %>%
po_labels(
x = "Year",
y = "Trade (USD billion)",
title = "Trade Distribution by Reporter Continent in 2019 and 2023"
)
## ----area3--------------------------------------------------------------------
trade_by_continent$proportion <- ave(
trade_by_continent$trade,
trade_by_continent$year,
FUN = function(x) x / sum(x)
)
d3po(trade_by_continent, width = 800, height = 600) %>%
po_area(daes(
x = year, y = proportion, group = reporter_continent, color = my_pal, stack = TRUE
)) %>%
po_labels(
x = "Year",
y = "Proportion of Trade",
title = "Trade Proportions by Reporter Continent in 2019 and 2023"
)
## ----area4--------------------------------------------------------------------
d3po(trade_by_continent, width = 800, height = 600) %>%
po_area(daes(
x = year, y = proportion, group = reporter_continent, color = color, stack = TRUE
)) %>%
po_labels(
x = "Year",
y = "Proportion of Trade",
title = "Trade Proportions by Reporter Continent in 2019 and 2023"
)
## ----area5--------------------------------------------------------------------
d3po(trade_by_continent, width = 800, height = 600) %>%
po_area(daes(
x = year, y = trade, group = reporter_continent, color = my_pal
)) %>%
po_labels(
x = "Year",
y = "Trade (USD billion)",
title = "Trade Distribution by Reporter Continent in 2019 and 2023"
) %>%
po_theme(axis = "#012169", tooltip = "#101418", background = "#cccccc") %>%
po_font("Liberation Serif", 12, "uppercase") %>%
po_download(FALSE)
## ----line1--------------------------------------------------------------------
trade_by_continent <- d3po::trade
trade_by_continent <- aggregate(
trade ~ year + reporter_continent,
data = trade_by_continent,
FUN = sum
)
# Assign colors to continents
# my_pal <- tintin::tintin_pal(option = "The Broken Ear")(7)
# [1] "#749972" "#7EA691" "#81B1BF" "#89BFE5" "#A8CCB6" "#A9BE53" "#B9CD82"
my_pal <- c("#749972", "#7EA691", "#81B1BF", "#89BFE5", "#A8CCB6", "#A9BE53", "#B9CD82")
names(my_pal) <- c(
"Africa", "Antarctica", "Asia",
"Europe", "North America", "Oceania", "South America"
)
d3po(trade_by_continent, width = 800, height = 600) %>%
po_line(daes(x = year, y = trade, group = reporter_continent, color = my_pal)) %>%
po_labels(
x = "Year",
y = "Trade (USD billion)",
title = "Trade Distribution by Reporter Continent in 2019 and 2023"
)
## ----line2--------------------------------------------------------------------
trade_by_continent$color <- my_pal[trade_by_continent$reporter_continent]
d3po(trade_by_continent, width = 800, height = 600) %>%
po_line(daes(x = year, y = trade, group = reporter_continent, color = color)) %>%
po_labels(
x = "Year",
y = "Trade (USD billion)",
title = "Trade Distribution by Reporter Continent in 2019 and 2023"
)
## ----line3--------------------------------------------------------------------
d3po(trade_by_continent, width = 800, height = 600) %>%
po_line(daes(x = year, y = trade, group = reporter_continent, color = my_pal)) %>%
po_labels(
x = "Year",
y = "Trade (USD billion)",
title = "Trade Distribution by Reporter Continent in 2019 and 2023"
) %>%
po_theme(axis = "#012169", tooltip = "#101418", background = "#cccccc") %>%
po_font("Liberation Serif", 12, "uppercase") %>%
po_download(FALSE)
## ----scatter1-----------------------------------------------------------------
# Create a wide dataset with x = 2019 and y = 2023 trade values
trade_wide_2019 <- d3po::trade[d3po::trade$year == 2019L, c("reporter", "trade")]
trade_wide_2019 <- aggregate(trade ~ reporter, data = trade_wide_2019, FUN = sum)
trade_wide_2023 <- d3po::trade[d3po::trade$year == 2023L, c("reporter", "trade")]
trade_wide_2023 <- aggregate(trade ~ reporter, data = trade_wide_2023, FUN = sum)
trade_wide <- merge(
trade_wide_2019,
trade_wide_2023,
by = "reporter",
suffixes = c("_2019", "_2023")
)
# my_pal <- tintin::tintin_pal(option = "red_rackhams_treasure")(7)
# [1] "#2C7B5E" "#47B280" "#6A785A" "#7AB8A2" "#B95D59" "#B9C780" "#F35A54"
my_pal <- c("#2C7B5E", "#47B280", "#6A785A", "#7AB8A2", "#B95D59", "#B9C780", "#F35A54")
d3po(trade_wide, width = 800, height = 600) %>%
po_scatter(daes(x = trade_2019, y = trade_2023, group = reporter, color = my_pal)) %>%
po_labels(
x = "Trade in 2019 (USD billion)",
y = "Trade in 2023 (USD billion)",
title = "Trade Volume by Country in 2019 and 2023"
)
## ----scatter2-----------------------------------------------------------------
trade_wide$color <- sample(my_pal, nrow(trade_wide), replace = TRUE)
d3po(trade_wide, width = 800, height = 600) %>%
po_scatter(daes(x = trade_2019, y = trade_2023, group = reporter, color = color)) %>%
po_labels(
x = "Trade in 2019 (USD billion)",
y = "Trade in 2023 (USD billion)",
title = "Trade Volume by Country in 2019 and 2023"
)
## ----scatter3-----------------------------------------------------------------
trade_wide$size <- (trade_wide$trade_2019 + trade_wide$trade_2023) / 2
d3po(trade_wide, width = 800, height = 600) %>%
po_scatter(daes(
x = trade_2019, y = trade_2023,
group = reporter, color = color, size = size
)) %>%
po_labels(
x = "Trade in 2019 (USD billion)",
y = "Trade in 2023 (USD billion)",
title = "Trade Volume by Country in 2019 and 2023"
)
## ----scatter4-----------------------------------------------------------------
d3po(trade_wide, width = 800, height = 600) %>%
po_scatter(daes(x = trade_2019, y = trade_2023, group = reporter, color = my_pal)) %>%
po_labels(
x = "Trade in 2019 (USD billion)",
y = "Trade in 2023 (USD billion)",
title = "Trade Volume by Country in 2019 and 2023"
) %>%
po_theme(axis = "#012169", tooltip = "#101418", background = "#cccccc") %>%
po_font("Liberation Serif", 12, "uppercase") %>%
po_download(FALSE)
## ----box1---------------------------------------------------------------------
trade_continent <- d3po::trade
trade_continent <- aggregate(
trade ~ reporter_continent + reporter,
data = trade_continent,
FUN = sum
)
# my_pal <- tintin::tintin_pal(option = "Destination Moon")(7)
# [1] "#2C7B5E" "#47B280" "#6A785A" "#7AB8A2" "#B95D59" "#B9C780" "#F35A54"
my_pal <- c("#2C7B5E", "#47B280", "#6A785A", "#7AB8A2", "#B95D59", "#B9C780", "#F35A54")
names(my_pal) <- c(
"Africa", "Antarctica", "Asia",
"Europe", "North America", "Oceania", "South America"
)
d3po(trade_continent, width = 800, height = 600) %>%
po_box(daes(x = reporter_continent, y = trade, color = my_pal, tooltip = reporter_continent)) %>%
po_labels(
x = "Continent",
y = "Trade (USD billion)",
title = "Trade Distribution by Reporter Continent"
)
## ----box2---------------------------------------------------------------------
trade_continent$color <- my_pal[trade_continent$reporter_continent]
d3po(trade_continent, width = 800, height = 600) %>%
po_box(daes(y = reporter_continent, x = trade, color = color, tooltip = reporter_continent)) %>%
po_labels(
y = "Continent",
x = "Trade (USD billion)",
title = "Trade Distribution by Continents with Custom Colors"
)
## ----box3---------------------------------------------------------------------
d3po(trade_continent, width = 800, height = 600) %>%
po_box(daes(x = reporter_continent, y = trade, color = my_pal, tooltip = reporter_continent)) %>%
po_labels(
x = "Continent",
y = "Trade (USD billion)",
title = "Trade Distribution by Reporter Continent"
) %>%
po_theme(axis = "#012169", tooltip = "#101418", background = "#cccccc") %>%
po_font("Liberation Serif", 12, "uppercase") %>%
po_download(FALSE)
## ----treemap1-----------------------------------------------------------------
trade_by_continent <- d3po::trade[d3po::trade$year == 2023L, ]
trade_by_continent <- aggregate(trade ~ reporter_continent, data = trade_by_continent, FUN = sum)
# my_pal <- tintin::tintin_pal(option = "The Secret of the Unicorn")(7)
# [1] "#0A9F5F" "#0C8FA0" "#3487B6" "#46AE5E" "#6EA5A6" "#AAB27B" "#E2BF70"
my_pal <- c("#0A9F5F", "#0C8FA0", "#3487B6", "#46AE5E", "#6EA5A6", "#AAB27B", "#E2BF70")
names(my_pal) <- c(
"Africa", "Antarctica", "Asia",
"Europe", "North America", "Oceania", "South America"
)
d3po(trade_by_continent, width = 800, height = 600) %>%
po_treemap(daes(size = trade, group = reporter_continent, color = my_pal, tiling = "squarify")) %>%
po_labels(title = "Trade Share by Continent in 2023")
## ----treemap2-----------------------------------------------------------------
trade_by_continent$color <- my_pal[trade_by_continent$reporter_continent]
d3po(trade_by_continent, width = 800, height = 600) %>%
po_treemap(daes(size = trade, group = reporter_continent, color = color, tiling = "slice-dice")) %>%
po_labels(title = "Trade Share by Continent in 2023")
## ----treemap3-----------------------------------------------------------------
trade_twolevel <- d3po::trade[d3po::trade$year == 2023L, ]
trade_twolevel <- aggregate(trade ~ reporter_continent + reporter, data = trade_twolevel, FUN = sum)
trade_twolevel$color <- my_pal[trade_twolevel$reporter_continent]
d3po(trade_twolevel, width = 800, height = 600) %>%
po_treemap(daes(
size = trade, group = reporter_continent, subgroup = reporter,
color = color, tiling = "squarify"
)) %>%
po_labels(title = "Trade Share by Continent in 2023 (click to see the countries)")
## ----treemap4-----------------------------------------------------------------
d3po(trade_twolevel, width = 800, height = 600) %>%
po_treemap(daes(
size = trade, group = reporter_continent, subgroup = reporter,
color = color, tiling = "squarify"
)) %>%
po_theme(background = "#cccccc") %>%
po_font("Liberation Serif", 12, "uppercase") %>%
po_download(FALSE) %>%
po_labels(
align = "center-middle",
labels = JS(
"function(percentage, row) {
var pct = (percentage).toFixed(2) + '%';
// Show reporter (country) if available, otherwise show reporter_continent
var name = (row && row.reporter) ? row.reporter : (row && row.reporter_continent ? row.reporter_continent : '');
var count = row && (row.trade != null ? row.trade : (row.value != null ? row.value : ''));
count = (count).toFixed(2) + 'B';
return '' + name + '
Trade: ' + (count || '') + '
Percentage: ' + pct;\n
}"
),
title = "Trade Share by Continent in 2023 (click to see the countries)",
subtitle = JS(
"function(_v, row) {
// row.mode is 'aggregated' | 'flat' | 'drilled'
if (row && row.mode === 'drilled') return 'Displaying Countries';
return 'Displaying Continents';\
}"
)
) %>%
po_tooltip(JS(
"function(percentage, row) {
var pct = (percentage).toFixed(2) + '%';
var count = row && row.count != null ? row.count : '';
count = (count).toFixed(2) + 'B';
if (!row || !row.reporter) {
var t1 = row && (row.reporter_continent || row.reporter) ? (row.reporter_continent || row.reporter) : '';
return 'Continent: ' + t1 + '
Trade: ' + count + '
Percentage: ' + pct;
}
return 'Continent: ' + (row.reporter_continent || '') + '
Country: ' + (row.reporter || '') +
'
Trade: ' + count + '
Percentage: ' + pct;
}"
))
## ----echo = FALSE-------------------------------------------------------------
has_geomap_deps <- requireNamespace("sf", quietly = TRUE) && requireNamespace("geojsonsf", quietly = TRUE)
## ----geomap1, eval = has_geomap_deps------------------------------------------
# world <- d3po::national
#
# # Fix geometries that cross the antimeridian (date line) to avoid horizontal lines
# # This affects Russia, Fiji, and other countries spanning the 180° meridian
# world$geometry <- sf::st_wrap_dateline(world$geometry, options = c("WRAPDATELINE=YES"))
#
# total_trade <- d3po::trade[d3po::trade$year == 2023L, c("reporter", "reporter_continent", "trade")]
# total_trade <- aggregate(trade ~ reporter, data = total_trade, FUN = sum)
# colnames(total_trade) <- c("country", "trade")
#
# world <- merge(
# world,
# total_trade,
# by = "country",
# all.x = TRUE,
# all.y = FALSE
# )
#
# # my_pal <- tintin::tintin_pal(option = "The Calculus Affair")(7)
# # [1] "#04AEEA" "#1386CE" "#30AEBA" "#3C8891" "#6D8859" "#92C06D" "#A78239"
#
# my_pal <- c("#04AEEA", "#1386CE", "#30AEBA", "#3C8891", "#6D8859", "#92C06D", "#A78239")
#
# names(my_pal) <- c(
# "Africa", "Antarctica", "Asia",
# "Europe", "North America", "Oceania", "South America"
# )
#
# d3po(world, width = 800, height = 600) %>%
# po_geomap(daes(group = country, size = trade, color = my_pal, tooltip = country)) %>%
# po_labels(title = "Trade Volume by Country in 2023")
## ----echo = FALSE, eval = !has_geomap_deps, results = 'asis'------------------
cat("*Geomap examples require the 'sf' and 'geojsonsf' packages to be installed.*\n")
## ----geomap2, eval = has_geomap_deps------------------------------------------
# world$color <- my_pal[world$continent]
#
# d3po(world, width = 800, height = 600) %>%
# po_geomap(daes(group = country, size = trade, color = color, tooltip = country)) %>%
# po_labels(title = "Trade Volume by Country in 2023")
## ----geomap3, eval = has_geomap_deps------------------------------------------
# europe <- world[world$continent == "Europe", ]
#
# # Filter to continental Europe + Iceland using bounding box
# # This excludes overseas territories like Canary Islands, French Guiana, etc.
# bbox <- sf::st_bbox(c(xmin = -27, ymin = 30, xmax = 40, ymax = 72), crs = sf::st_crs(europe))
# europe <- sf::st_crop(europe, bbox)
#
# europe$color <- my_pal[europe$continent]
#
# my_color <- c("#e74c3c", "#3498db", "#2ecc71")
#
# d3po(europe, width = 800, height = 600) %>%
# po_geomap(daes(group = country, size = trade, color = my_color, tooltip = country)) %>%
# po_labels(title = "Trade Volume by Country in 2023")
## ----geomap4, eval = has_geomap_deps------------------------------------------
# d3po(europe, width = 800, height = 600) %>%
# po_geomap(daes(group = country, size = trade, gradient = TRUE, tooltip = country)) %>%
# po_labels(title = "Trade Volume by Country in 2023")
## ----geomap5, eval = has_geomap_deps------------------------------------------
# d3po(europe, width = 800, height = 600) %>%
# po_geomap(daes(group = country, size = trade, color = my_color, gradient = TRUE, tooltip = country)) %>%
# po_labels(title = "Trade Volume by Country in 2023")
## ----geomap6, eval = has_geomap_deps------------------------------------------
# d3po(europe, width = 800, height = 600) %>%
# po_geomap(daes(group = country, size = trade, color = my_color, gradient = TRUE, tooltip = country)) %>%
# po_labels(title = "Trade Volume by Country in 2023") %>%
# po_theme(axis = "#012169", tooltip = "#101418", background = "#cccccc") %>%
# po_font("Liberation Serif", 12, "uppercase") %>%
# po_download(FALSE)
## ----echo = FALSE-------------------------------------------------------------
has_network_deps <- requireNamespace("igraph", quietly = TRUE)
## ----network1, eval = has_network_deps----------------------------------------
# trade_network <- d3po::trade[d3po::trade$year == 2023L, ]
# trade_network <- aggregate(trade ~ reporter_iso + partner_iso + reporter_continent + partner_continent,
# data = trade_network, FUN = sum
# )
#
# # subset to 5 largest connection per reporter country
# trade_network <- do.call(
# rbind,
# lapply(
# split(trade_network, trade_network$reporter_iso),
# function(df) head(df[order(-df$trade), ], 5)
# )
# )
#
# # Create vertex (node) attributes for coloring and sizing
# # Get unique countries with their continents and trade volumes
# vertices <- unique(rbind(
# data.frame(
# name = trade_network$reporter_iso,
# continent = trade_network$reporter_continent,
# stringsAsFactors = FALSE
# ),
# data.frame(
# name = trade_network$partner_iso,
# continent = trade_network$partner_continent,
# stringsAsFactors = FALSE
# )
# ))
#
# # Remove duplicates
# vertices <- vertices[!duplicated(vertices$name), ]
#
# # Calculate total trade volume per country (as reporter)
# trade_volume <- aggregate(trade ~ reporter_iso, data = trade_network, FUN = sum)
# colnames(trade_volume) <- c("name", "trade_volume")
#
# # Merge trade volume with vertices
# vertices <- merge(vertices, trade_volume, by = "name", all.x = TRUE)
# vertices$trade_volume[is.na(vertices$trade_volume)] <- 0
#
# # Assign colors to continents
# # my_pal <- tintin::tintin_pal(option = "The Blue Lotus")(7)
# # [1] "#358DA1" "#4D636A" "#624743" "#9F3531" "#9F8F6F" "#CA7C4D" "#D81A1E"
#
# my_pal <- c("#358DA1", "#4D636A", "#624743", "#9F3531", "#9F8F6F", "#CA7C4D", "#D81A1E")
#
# names(my_pal) <- c(
# "Africa", "Antarctica", "Asia",
# "Europe", "North America", "Oceania", "South America"
# )
#
# # Add color column based on continent
# vertices$color <- my_pal[vertices$continent]
#
# # Create igraph object with vertex attributes
# g <- graph_from_data_frame(trade_network, directed = TRUE, vertices = vertices)
#
# # Create the network visualization
# d3po(g, width = 800, height = 600) %>%
# po_network(daes(size = trade_volume, color = color, layout = "fr")) %>%
# po_labels(title = "Trade Network by Country in 2023")
## ----echo = FALSE, eval = !has_network_deps, results = 'asis'-----------------
cat("*Network examples require the 'igraph' package to be installed.*\n")
## ----network2, eval = has_network_deps----------------------------------------
# # Use a different color palette
# # my_pal <- tintin::tintin_pal(option = "Explorers on the Moon")(7)
# # [1] "#1291C2" "#4B8CA0" "#80A67C" "#97745F" "#D5B271" "#DE8A35" "#E14C43"
#
# my_pal <- c("#1291C2", "#4B8CA0", "#80A67C", "#97745F", "#D5B271", "#DE8A35", "#E14C43")
#
# names(my_pal) <- c(
# "Africa", "Antarctica", "Asia",
# "Europe", "North America", "Oceania", "South America"
# )
#
# # Update colors with new palette
# vertices$color <- my_pal[vertices$continent]
#
# # Create network with Kamada-Kawai layout
# d3po(g, width = 800, height = 600) %>%
# po_network(daes(size = trade_volume, color = color, layout = "kk")) %>%
# po_labels(title = "Trade Network by Country in 2023")
## ----network3, eval = has_network_deps----------------------------------------
# d3po(g, width = 800, height = 600) %>%
# po_network(daes(size = trade_volume, color = color, layout = "fr")) %>%
# po_labels(title = "Trade Network by Country in 2023") %>%
# po_theme(tooltip = "#101418", background = "#cccccc") %>%
# po_font("Liberation Serif", 12, "uppercase") %>%
# po_download(FALSE)