Package 'dcov'

October 13, 2022

Type Package

Title A Fast Implementation of Distance Covariance

Version 0.1.1

Author Hang Weiqiang <e0010758@u.nus.edu>

Maintainer Hang Weiqiang <e0010758@u.nus.edu>

Description Efficient methods for computing distance covariance and relevant statis-

tics. See Székely et al.(2007) <doi:10.1214/009053607000000505>; Székely and Rizzo (2013) <doi:10.1016/j.jmva.2013.02 AOS1255>; Huo and Székely (2016) <doi:10.1080/00401706.2015.1054435>.

License GPL-2

Encoding UTF-8

LazyData true

Imports Rcpp

LinkingTo Rcpp, RcppArmadillo

RoxygenNote 6.1.1

NeedsCompilation yes

Repository CRAN

Date/Publication 2020-06-25 21:30:02 UTC

R topics documented:

centering																																
dcor.test				•														•							•			•				2
dcor.ttest																																3
dcov				•			•	•										•	•	•	•				•					•		4
dcov2d																			•	•	•											5
mdcov				•	•		•	•			•	•						•	•	•	•	•			•	•				•	•	6
pcov																																
pdcov	•			•	•	•	•	•			•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•		•	•		7
																																9

Index

centering

Description

Centering method This method implements the double centering and U-centering during computing distance covariance.

Usage

```
centering(D, type = c("V", "U"))
```

centering_from_data(x, type = c("V", "U"))

Arguments

D	the pairwise distance matrix
type	"V" or "U". "V" for double centering. "U" for U-centering.
x	the matrix of x

Examples

x = matrix(rnorm(200),100,2) D = as.matrix(dist(x)) A = centering(D,'U') A = centering_from_data(x)

dcor.test	Permutation test of distance correlation and partial distance correla-
	tion

Description

Simple independence test based on data permutation using distance correlation and partial distance correlation.

Usage

dcor.test(x, y, R = 500, type = c("V", "U"))
pdcor.test(x, y, z, R = 500, type = c("U", "V"))

dcor.ttest

Arguments

x	the data of x
У	the data of y
R	the number of replicates
type	"U" or "V"
z	the data of controlling variables. Given z, pdcor between x and y is calculated.

Examples

```
n = 200
z = rnorm(n)
x = rnorm(n)*z
y = rnorm(n)*z
res1 = dcor.test(x,y,R=500)
res2 = pdcor.test(x,y,z,R=500)
```

dcor.ttest	Distance correlation T-test It uses the result of U-statistic distance cor-
	relation to test independence for high dimensional data

Description

Distance correlation T-test It uses the result of U-statistic distance correlation to test independence for high dimensional data

Usage

dcor.ttest(x, y)

Arguments

х	data of x
у	data of y

Examples

n = 200 x = rnorm(n) y = rnorm(n) res = dcor.ttest(x,y)

Description

This method implements the method to compute the value of distance covariance proposed by *Székely et al.*(2007) and *Székely and Rizzo*(2013) by Armadillo library. For distance covariance between two one dimensional variables, the fast algorithm proposed by *Huo and Székely*(2016) is used.

Usage

dcov(x, y, type = c("V", "U"))
dcor(x, y, type = c("V", "U"))

Arguments

х	the matrix of x	
У	the matrix of y	
type	"V" or "U", for V- or U-statistics of distance covariance or correlation. default value is "V".	The

Note

Note that the result of dcov(x, y, "V") and dcor(x, y, "V") is same with the result of energy:: $dcov(x,y)^2$ and energy:: $dcor(x,y)^2$. The result of dcov(x, y, 'U') and dcor(x, y, 'U') is same with the result of energy::dcovU(x, y) and energy::bcdcor(x, y).

References

Székely, G. J., Rizzo, M. L., & Bakirov, N. K. (2007). Measuring and testing dependence by correlation of distances. The annals of statistics, 35(6), 2769-2794.

Székely, G. J., & Rizzo, M. L. (2013). The distance correlation t-test of independence in high dimension. Journal of Multivariate Analysis, 117, 193-213.

Huo, X., & Székely, G. J. (2016). Fast computing for distance covariance. Technometrics, 58(4), 435-447.

See Also

dcov2d

dcov

dcov2d

Examples

```
x = matrix(rnorm(200),100,2)
y = matrix(rnorm(200),100,2)
dcov(x,y)
dcor(x,y)
```

dcov2d	
ucovzu	

Fast distance covariance for two bivariate variables

Description

This method implements the fast algorithm proposed by *Huo and Székely*. The result of dcov2d and dcor2d is same with the result of energy::dcov2d and energy::dcor2d

Usage

dcov2d(x, y, type = c("V", "U"))
dcor2d(x, y, type = c("V", "U"))

Arguments

x	the vector of x	
У	the vector of y	
type	"V" or "U", for V- or U-statistics of distance covariance or correlation. default value is "V".	The

References

Székely, G. J., Rizzo, M. L., & Bakirov, N. K. (2007). Measuring and testing dependence by correlation of distances. The annals of statistics, 35(6), 2769-2794.

Székely, G. J., & Rizzo, M. L. (2013). The distance correlation t-test of independence in high dimension. Journal of Multivariate Analysis, 117, 193-213.

Huo, X., & Székely, G. J. (2016). Fast computing for distance covariance. Technometrics, 58(4), 435-447.

Examples

```
x = rnorm(200)
y = rnorm(200)
dcov2d(x,y)
dcor2d(x,y)
```

mdcov

Description

Marginal distance covariance This function implements the method of calculating distance covariance between y and each column in x

Usage

mdcov(y, x, type = c("V", "U"))
mdcor(y, x, type = c("V", "U"))

Arguments

У	the matrix of y
х	the matrix of x, distance covariance is calculated for each variable in x with y.
type	"V" or "U", for V- or U-statistics of distance covariance or correlation. The default value is "V".

Examples

```
n = 200; p = 10
y = matrix(rnorm(n*2),n,2)
x = matrix(rnorm(n*p),n,p)
res1 = mdcov(y,x)
res2 = numeric(p)
for(j in 1:p){res2[j] = dcov::dcov(y,x[,j])}
# res1 is same with res2
res1 - res2
res3 = mdcor(y,x)
res4 = numeric(p)
for(j in 1:p){res4[j] = dcov::dcor(y,x[,j])}
# res3 is same with res4
res3-res4
```

pcov

Projection covariance between two random vectors This function implements the projection correlation in Zhu et al.(2017)

Description

Projection covariance between two random vectors This function implements the projection correlation in *Zhu et al.*(2017)

pdcov

Usage

pcov(x, y)

Arguments

х	the matrix of x
у	the matrix of y

References

Zhu, L., Xu, K., Li, R., & Zhong, W. (2017). Projection correlation between two random vectors. Biometrika, 104(4), 829-843.

Examples

x = matrix(rnorm(200),100,2)
y = matrix(rnorm(200),100,2)
pcov(x,y)

pdcov

Partial distance covariance

Description

This method implements the method to compute the value of partial distance covariance proposed by *Székely and Rizzo*, 2014.

Usage

pdcov(x, y, z, type = c("U", "V"))
pdcor(x, y, z, type = c("U", "V"))

Arguments

x	the matrix of x
У	the matrix of y
Z	the matrix of z. Given the value of z, pdcov or pdcor between x and y is calcuated.
type	"V" or "U", for V- or U-statistics of partial distance covariance or correlation. The default value is "U".

References

Székely, G. J., & Rizzo, M. L. (2014). Partial distance correlation with methods for dissimilarities. The Annals of Statistics, 42(6), 2382-2412.

pdcov

Examples

z = matrix(rnorm(400),200,2) x = matrix(rnorm(400),200,2)*z y = matrix(rnorm(400),200,2)*z pdcov(x,y,z) pdcor(x,y,z)

Index

centering, 2
centering_from_data(centering), 2

dcor (dcov), 4
dcor.test, 2
dcor.ttest, 3
dcor2d (dcov2d), 5
dcov, 4
dcov2d, 5

 $\begin{array}{l} \texttt{mdcor}\,(\texttt{mdcov}),\,6\\ \texttt{mdcov},\,6 \end{array}$

pcov, 6
pdcor (pdcov), 7
pdcor.test (dcor.test), 2
pdcov, 7