Package ‘doRNG’

April 2, 2025
Type Package
Title Generic Reproducible Parallel Backend for 'foreach' Loops
Version 1.8.6.2
Encoding UTF-8

Description Provides functions to perform
reproducible parallel foreach loops, using independent
random streams as generated by L'Ecuyer's combined
multiple-recursive generator [L'Ecuyer (1999), <DOI:10.1287/opre.47.1.159>].
It enables to easily convert standard '%dopar%' loops into
fully reproducible loops, independently of the number
of workers, the task scheduling strategy, or the chosen
parallel environment and associated foreach backend.

License GPL (>=2)
LazyLoad yes

URL https://renozao.github.io/doRNG/

BugReports https://github.com/renozao/doRNG/issues
Depends R (>=3.0.0), foreach, rngtools (>=1.5)
Imports stats, utils, iterators

Suggests doParallel, doMPI, doRedis, rbenchmark, devtools, knitr,
rbibutils (>= 1.3), testthat, covr

RoxygenNote 7.2.3

NeedsCompilation no

Author Renaud Gaujoux [aut, cre]

Maintainer Renaud Gaujoux <renozao@protonmail.com>
Repository CRAN

Date/Publication 2025-04-02 05:26:50 UTC

https://doi.org/10.1287/opre.47.1.159
https://renozao.github.io/doRNG/
https://github.com/renozao/doRNG/issues

2 doRNG-package

Contents
doRNG-package e 2
doRNGvVersion e e 3
registerDORNG e 5
Jodorng%o 6

Index 8

doRNG-package Generic Reproducible Parallel Backend for foreach Loops
Description

The doRNG package provides functions to perform reproducible parallel foreach loops, using inde-
pendent random streams as generated by L’Ecuyer’s combined multiple-recursive generator (L’Ecuyer
(1999)). It enables to easily convert standard %dopar% loops into fully reproducible loops, indepen-
dently of the number of workers, the task scheduling strategy, or the chosen parallel environment
and associated foreach backend. It has been tested with the following foreach backend: doMC,
doSNOW, doMPI.

References

L’Ecuyer P (1999). “Good Parameters and Implementations for Combined Multiple Recursive Ran-
dom Number Generators.” _Operations Research_, *47%(1), 159-164. ISSN 0030-364X, doi:10.1287/opre.47.1.159
<https://doi.org/10.1287/opre.47.1.159>.

See Also

doRNG, RNGseq

Examples

register parallel backend
library(doParallel)

cl <- makeCluster(2)
registerDoParallel(cl)

standard %dopar% loop are not reproducible
set.seed(123)

r1 <- foreach(i=1:4) %dopar%{ runif(1) }
set.seed(123)

r2 <- foreach(i=1:4) %dopar%{ runif(1) }
identical(rl, r2)

%dorng% loops _are_ reproducible
set.seed(123)

r1 <- foreach(i=1:4) %dorng%{ runif(1) }
set.seed(123)

doRNGversion 3

r2 <- foreach(i=1:4) %dorng%{ runif(1) 3}
identical(rl, r2)

alternative way of seeding

al <- foreach(i=1:4, .options.RNG=123) %dorng%{ runif(1) 3}
a2 <- foreach(i=1:4, .options.RNG=123) %dorng%{ runif(1) }
identical(al, a2) && identical(al, r1)

sequences of %dorng% loops _are_ reproducible
set.seed(123)

s1 <- foreach(i=1:4) %dorng%{ runif(1) }

s2 <- foreach(i=1:4) %dorng%{ runif(1) }
identical(s1, r1) && !identical(sl1, s2)

set.seed(123)

s1.2 <- foreach(i=1:4) %dorng%{ runif(1) }
s2.2 <- foreach(i=1:4) %dorng%{ runif(1) }
identical(s1, s1.2) && identical(s2, s2.2)

Non-invasive way of converting %dopar% loops into reproducible loops
registerDoRNG(123)

s3 <- foreach(i=1:4) %dopar%{ runif(1) }

s4 <- foreach(i=1:4) %dopar%{ runif(1) }

identical(s3, s1) && identical(s4, s2)

stopCluster(cl)

doRNGversion Back Compatibility Option for doRNG

Description

Sets the behaviour of %dorng% foreach loops from a given version number.

Usage

doRNGversion(x)

Arguments

X version number to switch to, or missing to get the currently active version num-
ber, or NULL to reset to the default behaviour, i.e. of the latest version.

4 doRNGversion

Value

a character string If x is missing this function returns the version number from the current behaviour.
If x is specified, the function returns the old value of the version number (invisible).

Behaviour changes in versions

1.4 The behaviour of doRNGseed, and therefore of %dorng% loops, changed in the case where the
current RNG was L’Ecuyer-CMRG. Using set . seed before a non-seeded loop used not to be
identical to seeding via .options.RNG. Another bug was that non-seeded loops would share
most of their RNG seed!

1.7.4 Prior to this version, in the case where the RNG had not been called yet, the first seeded
%dorng% loops would not give the identical results as subsequent loops despite using the same
seed (see https://github.com/renozao/doRNG/issues/12).

This has been fixed in version 1.7.4, where the RNG is called once (sample(NA)), whenever
the .Random.seed is not found in global environment.

Examples

Seeding when current RNG is L'Ecuyer-CMRG
RNGkind("L'Ecuyer")

doRNGversion("1.4")

in version >= 1.4 seeding behaviour changed to fix a bug
set.seed(123)

res <- foreach(i=1:3) %dorng% runif(1)

res2 <- foreach(i=1:3) %dorng% runif(1)

stopifnot(!identical(attr(res, 'rng')[2:3], attr(res2, 'rng')[1:2]1))
res3 <- foreach(i=1:3, .options.RNG=123) %dorng% runif(1)

stopifnot(identical(res, res3))

buggy behaviour in version < 1.4

doRNGversion("1.3")

res <- foreach(i=1:3) %dorng% runif(1)

res2 <- foreach(i=1:3) %dorng% runif(1)

stopifnot(identical(attr(res, 'rng')[2:3]1, attr(res2, 'rng')[1:2]1))
res3 <- foreach(i=1:3, .options.RNG=123) %dorng% runif(1)

stopifnot(!identical(res, res3))

restore default RNG
RNGkind("default”)

restore to current doRNG version
doRNGversion(NULL)

https://github.com/renozao/doRNG/issues/12

registerDoRNG 5

registerDoRNG Registering doRNG for Persistent Reproducible Parallel Foreach
Loops

Description

registerDoRNG registers the doRNG foreach backend. Subsequent %dopar% loops are then per-
formed using the previously registered foreach backend, but are internally performed as %dorng%
loops, making them fully reproducible.

Usage
registerDoRNG(seed = NULL, once = TRUE)

Arguments
seed a numerical seed to use (as a single or 6-length numerical value)
once a logical to indicate if the RNG sequence should be seeded at the beginning of
each loop or only at the first loop.
Details

Briefly, the RNG is set, before each iteration, with seeds for L’Ecuyer’s CMRG that overall generate
a reproducible sequence of statistically independent random streams.

Note that (re-)registering a foreach backend other than doRNG, after a call to registerDoRNG
disables doRNG — which then needs to be registered.

Value

The value returned by foreach::setDoPar

See Also
Y%dorng%

Examples

library(doParallel)
cl <- makeCluster(2)
registerDoParallel(cl)

One can make reproducible loops using the %dorng% operator
ri <- foreach(i=1:4, .options.RNG=1234) %dorng% { runif(1) }
or convert %dopar% loops using registerDoRNG
registerDoRNG(1234)

r2 <- foreach(i=1:4) %dopar% { runif(1) }

identical(rl, r2)

stopCluster(cl)

6 %dorng %

Registering another foreach backend disables doRNG
cl <- makeCluster(2)

registerDoParallel(cl)

set.seed(1234)

s1 <- foreach(i=1:4) %dopar% { runif(1) }
set.seed(1234)

s2 <- foreach(i=1:4) %dopar% { runif(1) }
identical(s1, s2)

doRNG is re-nabled by re-registering it

registerDoRNG()

set.seed(1234)

r3 <- foreach(i=1:4) %dopar% { runif(1) }

identical(r2, r3)

NB: the results are identical independently of the task scheduling
(r2 used 2 nodes, while r3 used 3 nodes)

argument ~once=FALSE~ reseeds doRNG's seed at the beginning of each loop
registerDoRNG(1234, once=FALSE)

r1 <- foreach(i=1:4) %dopar% { runif(1) }

r2 <- foreach(i=1:4) %dopar% { runif(1) }

identical(rl, r2)

Once doRNG is registered the seed can also be passed as an option to %dopar%
r1.2 <- foreach(i=1:4, .options.RNG=456) %dopar% { runif(1) }

r2.2 <- foreach(i=1:4, .options.RNG=456) %dopar% { runif(1) }

identical(r1.2, r2.2) && !identical(ri1.2, r1)

stopCluster(cl)

%dorng% Reproducible Parallel Foreach Backend

Description

%dorng% is a foreach operator that provides an alternative operator %dopar%, which enable repro-
ducible foreach loops to be performed.
Usage

obj %dorng% ex

Arguments

obj a foreach object as returned by a call to foreach.

ex the R expression to evaluate.

%dorng % 7

Value

%dorng% returns the result of the foreach loop. See foreach::%dopar%. The whole sequence of
RNG seeds is stored in the result object as an attribute. Use attr(res, 'rng') to retrieve it.

Global options
These options are for advanced users that develop ‘foreach backends:

* ’"doRNG.rg_change_warning_skip’: if set to a single logical FALSE/TRUE, it indicates whether
a warning should be thrown if the RNG seed is changed by the registered parallel backend (de-
fault=FALSE). Set it to TRUE if you know that running your backend will change the RNG state
and want to disable the warning. This option can also be set to a character vector that specifies
the name(s) of the backend(s) for which the warning should be skipped.

See Also

foreach, doParallel, registerDoParallel, doMPI

Examples

library(doParallel)
cl <- makeCluster(2)
registerDoParallel(cl)

standard %dopar% loops are _not_ reproducible
set.seed(1234)

s1 <~ foreach(i=1:4) %dopar% { runif(1) }
set.seed(1234)

s2 <- foreach(i=1:4) %dopar% { runif(1) }
identical(s1, s2)

single %dorng% loops are reproducible

r1 <- foreach(i=1:4, .options.RNG=1234) %dorng% { runif(1) }
r2 <- foreach(i=1:4, .options.RNG=1234) %dorng% { runif(1) }
identical(rl, r2)

the sequence os RNG seed is stored as an attribute
attr(ril, 'rng')

stop cluster
stopCluster(cl)

More examples can be found in demo ~doRNG™
Not run:
demo('doRNG")

End(Not run)

Index

* package
doRNG-package, 2
%dorng%, 5, 6

doMPI, 7
doParallel, 7
doRNG, 2
doRNG-package, 2
doRNGversion, 3

foreach, 6, 7
foreach: :%dopar%, 7
foreach: :setDoPar, 5

registerDoParallel, 7
registerDoRNG, 5
RNGseq, 2

	doRNG-package
	doRNGversion
	registerDoRNG
	dorng
	Index

