--- title: "UniFrac Calculations" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{UniFrac Calculations} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} resource_files: - '../man/figures/unifrac-tree.png' - '../man/figures/unifrac-weights.png' figures: fig.width: 6 fig.height: 2.75 --- # Introduction The different UniFrac algorithms are listed below, along with examples for calculating them.
# Input Data ```{r input_data, echo=FALSE} library(ecodive) counts <- matrix( data = c(0, 0, 9, 3, 3, 1, 4, 2, 8, 0), ncol = 2, dimnames = list(paste0('Species_', 1:5), c('Sample_A', 'Sample_B')) ) tree <- read_tree( underscores = TRUE, newick = " (((Species_1:0.8,Species_2:0.5):0.4,Species_3:0.9):0.2,(Species_4:0.7,Species_5:0.3):0.6);" ) L <- tree$edge.length A <- c(9,0,0,0,9,6,3,3) B <- c(7,5,1,4,2,8,8,0) # local({ # man/figures/unifrac-tree.png # # par(xpd = NA) # ape::plot.phylo( # x = tree, # direction = 'downwards', # srt = 90, # adj = 0.5, # no.margin = TRUE, # underscore = TRUE, # x.lim = c(0.5, 5.5) ) # # ape::edgelabels(tree$edge.length, bg = 'white', frame = 'none', adj = -0.4) # }) # # local({ # man/figures/unifrac-weights.png # # tree$edge.length <- c(1, 1, 1, 1, 2, 1, 2, 2) # # par(xpd = NA) # ape::plot.phylo( # x = tree, # direction = 'downwards', # srt = 90, # adj = 0.5, # no.margin = TRUE, # underscore = TRUE, # x.lim = c(.8, 6) ) # # ape::edgelabels(1:8, frame = 'circle') # # ape::edgelabels(paste('A =', A), bg = 'white', frame = 'none', adj = c(-0.4, -1.2)) # ape::edgelabels(paste('B =', B), bg = 'white', frame = 'none', adj = c(-0.4, 0.0)) # ape::edgelabels(paste('L =', L), bg = 'white', frame = 'none', adj = c(-0.3, 1.2)) # }) ``` * A numeric matrix with two samples and five species. * A phylogenetic tree for those five species.
Sample_A Sample_B
Species_1 `r counts[1,1]` `r counts[1,2]`
Species_2 `r counts[2,1]` `r counts[2,2]`
Species_3 `r counts[3,1]` `r counts[3,2]`
Species_4 `r counts[4,1]` `r counts[4,2]`
Species_5 `r counts[5,1]` `r counts[5,2]`
```{r input_data_tree, out.width = "100%", echo=FALSE} knitr::include_graphics('../man/figures/unifrac-tree.png') ```

# Definitions The branch indices (green circles) are used for ordering the $L$, $A$, and $B$ arrays. Values for $L$ are drawn from the input phylogenetic tree. Values for $A$ and $B$ are the total number of species observations descending from that branch; $A$ for Sample_A, and $B$ for Sample_B. ```{r definitions, fig.align = 'center', out.width = "75%", echo=FALSE} knitr::include_graphics('../man/figures/unifrac-weights.png') ```
$n = 8$ Number of branches
$A = \{`r A`\}$ Branch **weights** for Sample_A.
$B = \{`r B`\}$ Branch **weights** for Sample_B.
$A_T = 15$ Total observations for Sample_A.
$B_T = 15$ Total observations for Sample_B.
$L = \{`r L`\}$ The branch **lengths**.

# Unweighted * [Lozupone et al, 2005](https://doi.org/10.1128/AEM.71.12.8228-8235.2005): Unweighted UniFrac * R Package [ecodive](https://cran.r-project.org/package=ecodive): `unweighted_unifrac()` * R Package [abdiv](https://doi.org/10.32614/CRAN.package.abdiv): `unweighted_unifrac()` * R Package [phyloseq](https://doi.org/doi:10.18129/B9.bioc.phyloseq): `UniFrac(weighted=FALSE)` * [qiime2](https://qiime2.org/) `qiime diversity beta-phylogenetic --p-metric unweighted_unifrac` * [mothur](https://mothur.org/): `unifrac.unweighted()` First, transform A and B into presence (1) and absence (0) indicators.
\begin{align*} A &= \{`r A`\} \\ A' &= \{`r as.numeric(A > 0)`\} \end{align*} \begin{align*} B &= \{`r B`\} \\ B' &= \{`r as.numeric(B > 0)`\} \end{align*}
Then apply the formula: \begin{align*} U &= \displaystyle \frac{\sum_{i = 1}^{n} L_i(|A'_i - B'_i|)}{\sum_{i = 1}^{n} L_i(max(A'_i,B'_i))} \\ \\ U &= \displaystyle \frac{L_1(|A'_1-B'_1|) + L_2(|A'_2-B'_2|) + \cdots + L_n(|A'_n-B'_n|)}{L_1(max(A'_1,B'_1)) + L_2(max(A'_2,B'_2)) + \cdots + L_n(max(A'_n,B'_n))} \\ \\ U &= \displaystyle \frac{0.2(|1-1|) + 0.4(|0-1|) + \cdots + 0.3(|1-0|)}{0.2(max(1,1)) + 0.4(max(0,1)) + \cdots + 0.3(max(1,0))} \\ \\ U &= \displaystyle \frac{0.2(0) + 0.4(1) + 0.8(1) + 0.5(1) + 0.9(0) + 0.6(0) + 0.7(0) + 0.3(1)}{0.2(1) + 0.4(1) + 0.8(1) + 0.5(1) + 0.9(1) + 0.6(1) + 0.7(1) + 0.3(1)} \\ \\ U &= \displaystyle \frac{0.4 + 0.8 + 0.5 + 0.3}{0.2 + 0.4 + 0.8 + 0.5 + 0.9 + 0.6 + 0.7 + 0.3} \\ \\ U &= \displaystyle \frac{2}{4.4} \\ \\ U &= 0.4545455 \end{align*} # Weighted * [Lozupone et al, 2007](https://doi.org/10.1128/AEM.01996-06): Raw Weighted UniFrac * R Package [ecodive](https://cran.r-project.org/package=ecodive): `weighted_unifrac()` * R Package [abdiv](https://doi.org/10.32614/CRAN.package.abdiv): `weighted_unifrac()` * R Package [phyloseq](https://doi.org/doi:10.18129/B9.bioc.phyloseq): `UniFrac(weighted=TRUE, normalized=FALSE)` * [qiime2](https://qiime2.org/) `qiime diversity beta-phylogenetic --p-metric weighted_unifrac` \begin{align*} W &= \sum_{i = 1}^{n} L_i|\frac{A_i}{A_T} - \frac{B_i}{B_T}| \\ \\ W &= L_1|\frac{A_1}{A_T} - \frac{B_1}{B_T}| + L_2|\frac{A_2}{A_T} - \frac{B_2}{B_T}| + \cdots + L_n|\frac{A_n}{A_T} - \frac{B_n}{B_T}| \\ \\ W &= 0.2|\frac{9}{15} - \frac{7}{15}| + 0.4|\frac{0}{15} - \frac{5}{15}| + \cdots + 0.3|\frac{3}{15} - \frac{0}{15}| \\ \\ W &= 0.02\overline{6} + 0.1\overline{3} + 0.05\overline{3} + 0.1\overline{3} + 0.42 + 0.08 + 0.2\overline{3} + 0.06 \\ \\ W &= 1.14 \end{align*} # Normalized * [Lozupone et al, 2007](https://doi.org/10.1128/AEM.01996-06): Normalized Weighted UniFrac * R Package [ecodive](https://cran.r-project.org/package=ecodive): `weighted_normalized_unifrac()` * R Package [abdiv](https://doi.org/10.32614/CRAN.package.abdiv): `weighted_normalized_unifrac()` * R Package [phyloseq](https://doi.org/doi:10.18129/B9.bioc.phyloseq): `UniFrac(weighted=TRUE, normalized=TRUE)` * [qiime2](https://qiime2.org/) `qiime diversity beta-phylogenetic --p-metric weighted_normalized_unifrac` * [mothur](https://mothur.org/): `unifrac.weighted()` \begin{align*} N &= \displaystyle \frac {\sum_{i = 1}^{n} L_i|\frac{A_i}{A_T} - \frac{B_i}{B_T}|} {\sum_{i = 1}^{n} L_i(\frac{A_i}{A_T} + \frac{B_i}{B_T})} \\ \\ N &= \displaystyle \frac {L_1|\frac{A_1}{A_T} - \frac{B_1}{B_T}| + L_2|\frac{A_2}{A_T} - \frac{B_2}{B_T}| + \cdots + L_n|\frac{A_n}{A_T} - \frac{B_n}{B_T}|} {L_1(\frac{A_1}{A_T} + \frac{B_1}{B_T}) + L_2(\frac{A_2}{A_T} + \frac{B_2}{B_T}) + \cdots + L_n(\frac{A_n}{A_T} + \frac{B_n}{B_T})} \\ \\ N &= \displaystyle \frac {0.2|\frac{9}{15} - \frac{7}{15}| + 0.4|\frac{0}{15} - \frac{5}{15}| + \cdots + 0.3|\frac{3}{15} - \frac{0}{15}|} {0.2(\frac{9}{15} + \frac{7}{15}) + 0.4(\frac{0}{15} + \frac{5}{15}) + \cdots + 0.3(\frac{3}{15} + \frac{0}{15})} \\ \\ N &= \displaystyle \frac {0.02\overline{6} + 0.1\overline{3} + 0.05\overline{3} + 0.1\overline{3} + 0.42 + 0.08 + 0.2\overline{3} + 0.06} {0.21\overline{3} + 0.1\overline{3} + 0.05\overline{3} + 0.1\overline{3} + 0.66 + 0.56 + 0.51\overline{3} + 0.06} \\ \\ N &= \displaystyle \frac{1.14}{2.326667} \\ \\ N &= 0.4899713 \end{align*} # Generalized * [Chen et al. 2012](https://doi.org/10.1093/bioinformatics/bts342): Generalized UniFrac * R Package [ecodive](https://cran.r-project.org/package=ecodive): `generalized_unifrac(alpha = 0.5)` * R Package [abdiv](https://doi.org/10.32614/CRAN.package.abdiv): `generalized_unifrac(alpha = 0.5)` * R Package [GUniFrac](https://doi.org/10.32614/CRAN.package.GUniFrac): `GUniFrac(alpha = 0.5)` * [qiime2](https://qiime2.org/) `qiime diversity beta-phylogenetic --p-metric generalized_unifrac -a 0.5` \begin{align*} G &= \displaystyle \frac {\sum_{i = 1}^{n} L_i(\frac{A_i}{A_T} + \frac{B_i}{B_T})^{\alpha} |\displaystyle \frac {\frac{A_i}{A_T} - \frac{B_i}{B_T}} {\frac{A_i}{A_T} + \frac{B_i}{B_T}} |} {\sum_{i = 1}^{n} L_i(\frac{A_i}{A_T} + \frac{B_i}{B_T})^{\alpha}} \\ \\ G &= \displaystyle \frac { L_1(\frac{A_1}{A_T} + \frac{B_1}{B_T})^{0.5} |\displaystyle \frac {\frac{A_1}{A_T} - \frac{B_1}{B_T}} {\frac{A_1}{A_T} + \frac{B_1}{B_T}}| + \cdots + L_n(\frac{A_n}{A_T} + \frac{B_n}{B_T})^{0.5} |\displaystyle \frac {\frac{A_n}{A_T} - \frac{B_n}{B_T}} {\frac{A_n}{A_T} + \frac{B_n}{B_T}}| }{ L_1(\frac{A_1}{A_T} + \frac{B_1}{B_T})^{0.5} + \cdots + L_n(\frac{A_n}{A_T} + \frac{B_n}{B_T})^{0.5} } \\ \\ G &= \displaystyle \frac { 0.2(\frac{9}{15} + \frac{7}{15})^{0.5} |\displaystyle \frac {\frac{9}{15} - \frac{7}{15}} {\frac{9}{15} + \frac{7}{15}}| + \cdots + 0.3(\frac{3}{15} + \frac{0}{15})^{0.5} |\displaystyle \frac {\frac{3}{15} - \frac{0}{15}} {\frac{3}{15} + \frac{0}{15}}| }{ 0.2(\frac{9}{15} + \frac{7}{15})^{0.5} + \cdots + 0.3(\frac{3}{15} + \frac{0}{15})^{0.5} } \\ \\ G &\approx \displaystyle \frac {0.03 + 0.23 + 0.21 + 0.26 + 0.49 + 0.08 + 0.27 + 0.13} {0.21 + 0.23 + 0.21 + 0.26 + 0.77 + 0.58 + 0.60 + 0.13} \\ \\ G &= \displaystyle \frac{1.701419}{2.986235} \\ \\ G &= 0.569754 \end{align*} # Variance Adjusted * [Chang et al, 2011](https://doi.org/10.1186/1471-2105-12-118): Variance Adjusted Weighted (VAW) UniFrac * R Package [ecodive](https://cran.r-project.org/package=ecodive): `variance_adjusted_unifrac()` * R Package [abdiv](https://doi.org/10.32614/CRAN.package.abdiv): `variance_adjusted_unifrac()` * [qiime2](https://qiime2.org/) `qiime diversity beta-phylogenetic --p-metric weighted_normalized_unifrac --p-variance-adjusted` \begin{align*} V &= \displaystyle \frac {\sum_{i = 1}^{n} L_i\displaystyle \frac {|\frac{A_i}{A_T} - \frac{B_i}{B_T}|} {\sqrt{(A_i + B_i)(A_T + B_T - A_i - B_i)}} } {\sum_{i = 1}^{n} L_i\displaystyle \frac {\frac{A_i}{A_T} + \frac{B_i}{B_T}} {\sqrt{(A_i + B_i)(A_T + B_T - A_i - B_i)}} } \\ \\ V &= \displaystyle \frac { L_1\displaystyle \frac {|\frac{A_1}{A_T} - \frac{B_1}{B_T}|} {\sqrt{(A_1 + B_1)(A_T + B_T - A_1 - B_1)}} + \cdots + L_n\displaystyle \frac {|\frac{A_n}{A_T} - \frac{B_n}{B_T}|} {\sqrt{(A_n + B_n)(A_T + B_T - A_n - B_n)}} }{ L_1\displaystyle \frac {\frac{A_1}{A_T} + \frac{B_1}{B_T}} {\sqrt{(A_1 + B_1)(A_T + B_T - A_1 - B_1)}} + \cdots + L_n\displaystyle \frac {\frac{A_n}{A_T} + \frac{B_n}{B_T}} {\sqrt{(A_n + B_n)(A_T + B_T - A_n - B_n)}} } \\ \\ V &= \displaystyle \frac { 0.2\displaystyle \frac {|\frac{9}{15} - \frac{7}{15}|} {\sqrt{(9 + 7)(15 + 15 - 9 - 7)}} + \cdots + 0.3\displaystyle \frac {|\frac{3}{15} - \frac{0}{15}|} {\sqrt{(3 + 0)(15 + 15 - 3 - 0)}} }{ 0.2\displaystyle \frac {\frac{9}{15} + \frac{7}{15}} {\sqrt{(9 + 7)(15 + 15 - 9 - 7)}} + \cdots + 0.3\displaystyle \frac {\frac{3}{15} + \frac{0}{15}} {\sqrt{(3 + 0)(15 + 15 - 3 - 0)}} } \\ \\ V &\approx \displaystyle \frac {0.002 + 0.012 + 0.010 + 0.013 + 0.029 + 0.005 + 0.016 + 0.007} {0.014 + 0.012 + 0.010 + 0.013 + 0.046 + 0.037 + 0.036 + 0.007} \\ \\ V &= \displaystyle \frac{4.09389}{4.174402} \\ \\ V &= 0.9807128 \end{align*}