## ----results='hide'----------------------------------------------------------- set.seed(42) library("Matrix") library("lme4") library("ggplot2") library("eyetrackingR") data("word_recognition") data <- make_eyetrackingr_data(word_recognition, participant_column = "ParticipantName", trial_column = "Trial", time_column = "TimeFromTrialOnset", trackloss_column = "TrackLoss", aoi_columns = c('Animate','Inanimate'), treat_non_aoi_looks_as_missing = TRUE ) ## ----eval=FALSE--------------------------------------------------------------- # animate_aoi <- read.csv("./interest_areas_for_animate_aoi.csv") # # # Trial Left Top Right Bottom # # 1 FamiliarBird 500 100 900 500 # # 2 FamiliarBottle 400 200 800 600 # # 3 FamiliarCow 500 300 900 700 # # 4 FamiliarDog 300 100 700 500 # # 5 FamiliarHorse 500 200 900 600 # # 6 FamiliarSpoon 350 300 750 700 # # data <- add_aoi(data = data, aoi_dataframe = animate_aoi, # x_col = "GazeX", y_col = "GazeY", # aoi_name = "Animate", # x_min_col = "Left", x_max_col = "Right", y_min_col = "Top", y_max_col = "Bottom") ## ----------------------------------------------------------------------------- table(data$Animate) table(is.na(data$Animate)) # if all TRUE, then something went wrong. ## ----echo=FALSE--------------------------------------------------------------- data$Message <- with(data, ifelse(TimeFromTrialOnset==0, "TrialStart", ".")) data$ResponseWindowStart <- 15500 ## ----------------------------------------------------------------------------- data <- subset_by_window(data, window_start_msg = "TrialStart", msg_col = "Message", rezero= TRUE) ## ----------------------------------------------------------------------------- response_window <- subset_by_window(data, window_start_col = "ResponseWindowStart", rezero= FALSE, remove= TRUE) ## ----------------------------------------------------------------------------- response_window <- subset_by_window(response_window, window_end_time = 21000, rezero= FALSE, remove= TRUE) ## ----warning=FALSE------------------------------------------------------------ # analyze amount of trackloss by subjects and trials (trackloss <- trackloss_analysis(data = response_window)) response_window_clean <- clean_by_trackloss(data = response_window, trial_prop_thresh = .25) ## ----warning=FALSE------------------------------------------------------------ trackloss_clean <- trackloss_analysis(data = response_window_clean) (trackloss_clean_subjects <- unique(trackloss_clean[, c('ParticipantName','TracklossForParticipant')])) ## ----warning=FALSE------------------------------------------------------------ # get mean samples contributed per trials, with SD mean(1 - trackloss_clean_subjects$TracklossForParticipant) sd(1- trackloss_clean_subjects$TracklossForParticipant) ## ----warning=FALSE------------------------------------------------------------ # look at the NumTrials column (final_summary <- describe_data(response_window_clean, describe_column = 'Animate', group_columns = 'ParticipantName')) ## ----warning=FALSE------------------------------------------------------------ mean(final_summary$NumTrials) sd(final_summary$NumTrials) ## ----warning=FALSE------------------------------------------------------------ response_window_clean$Target <- as.factor( ifelse(test = grepl('(Spoon|Bottle)', response_window_clean$Trial), yes = 'Inanimate', no = 'Animate') )