Package ‘gistr’

October 13, 2022
Title Work with 'GitHub' 'Gists'

Description Work with 'GitHub' 'gists' from 'R’ (e.g.,
<https://en.wikipedia.org/wiki/GitHub#Gist>,
<https://docs.github.com/en/github/writing-on-github/creating-gists/>). A 'gist'
is simply one or more files with code/text/images/etc. This package allows
the user to create new 'gists', update 'gists' with new files, rename files,
delete files, get and delete 'gists’, star and 'un-star' 'gists', fork 'gists’,
open a 'gist' in your default browser, get embed code for a 'gist’, list
'gist' 'commits', and get rate limit information when 'authenticated'. Some
requests require authentication and some do not. 'Gists' website:
<https://gist.github.com/>.

Version 0.9.0
License MIT + file LICENSE

URL https://github.com/ropensci/gistr (devel),
https://docs.ropensci.org/gistr (website)

BugReports https://github.com/ropensci/gistr/issues
VignetteBuilder knitr

Encoding UTF-8

Language en-US

Imports jsonlite, crul, httr, magrittr, assertthat, knitr, rmarkdown,
dplyr

Suggests git2r, testthat

RoxygenNote 7.1.1

X-schema.org-applicationCategory Web

X-schema.org-keywords http, https, API, web-services, GitHub, GitHub
API, gist, gists, code, script, snippet

X-schema.org-isPartOf https://ropensci.org

NeedsCompilation no

Author Scott Chamberlain [aut, cre] (<https://orcid.org/0000-0003-1444-9135>),
Ramnath Vaidyanathan [aut],
Karthik Ram [aut]

https://en.wikipedia.org/wiki/GitHub#Gist
https://docs.github.com/en/github/writing-on-github/creating-gists/
https://gist.github.com/
https://github.com/ropensci/gistr
https://docs.ropensci.org/gistr
https://github.com/ropensci/gistr/issues
https://orcid.org/0000-0003-1444-9135

2 gistr-package

Maintainer Scott Chamberlain <myrmecocystus@gmail.com>
Repository CRAN
Date/Publication 2020-07-29 05:10:15 UTC

R topics documented:

gistr-package 2
add_files e 3
Drowse e e e 4
COMIMILSt ot i e e e e e e e e e e e e 4
Create_gisStS v v vt it e e e e e e e e e e 5
delete e e e 5
embed e e e 6
fork . . . e e e e 6
forks L e 7
GISt. . o e 8
ISES . . . e 9
gist_auth 10
QIS CTeAte o e e e e e e 11
gist_create_git e e e 14
gist_create_obj oL e e 17
QIS MAP e e e e 18
GISL_SAVE e 19
rate_limit e e e 20
TUIN . . vt e e e e e e e e e e e e e 20
STAT . . . o o e e e e e e e e e e e 21
tabl . L e e e e e 22
update e 24
Index 26
gistr-package R client for GitHub gists
Description

R client for GitHub gists.

Details

gistr allows you to peform actions on gists, including listing, forking, starring, creating, deleting,
updating, etc.

There are two ways to authorise gistr to work with your GitHub account:

* Generate a personal access token (PAT) athttps://docs.github.com/en/github/authenticating-to-github/
creating-a-personal-access-token and record it in the GITHUB_PAT envar.

https://docs.github.com/en/github/authenticating-to-github/creating-a-personal-access-token
https://docs.github.com/en/github/authenticating-to-github/creating-a-personal-access-token

add_files

* Interactively login into your GitHub account and authorise with OAuth.

Using the GITHUB_PAT is recommended.

Author(s)
Scott Chamberlain <myrmecocystus@gmail.com>
Ramnath Vaidyanathan <ramnath.vaidya@gmail.com>

Karthik Ram <karthik.ram@gmail.com>

add_files Add files to a gist object

Description

Add files to a gist object

Usage

add_files(gist, ...)

update_files(gist, ...)
delete_files(gist, ...)
rename_files(gist, ...)
Arguments
gist A gist object or something coerceable to a gist

Curl options passed on to verb-GET

Examples

Not run:
add_files("~/stuff.Rmd")
update_files()

delete_files()

rename_files()

End(Not run)

4 commits

browse Open a gist on GitHub

Description

Open a gist on GitHub

Usage

browse(gist, what = "html")

Arguments
gist A gist object or something that can be coerced to a gist object.
what One of html (default), json, forks, commits, or comments.
commits List gist commits
Description

List gist commits

Usage
commits(gist, page = NULL, per_page = 30, ...)
Arguments
gist A gist object or something coerceable to a gist
page (integer) Page number to return.
per_page (integer) Number of items to return per page. Default 30. Max 100.
Further named args to crul::verb-GET
Examples
Not run:

gists(OLL11] %>% commits()
gist(id = '1f399774e9ecc9153a6f') %>% commits(per_page = 5)

pass in a url
gist("https://gist.github.com/expersso/4ac33b9c00751fddc7f8") %>% commits

End(Not run)

create_gists 5

create_gists Create gists

Description
Creating gists in gistr can be done with any of three functions:

» gist_create() - Create gists from files or code blocks, using the GitHub HTTP API. Because
this function uses the GitHub HTTP API, it does not work for binary files. However, you can
get around this for images by using knitr’s hook to upload images to eg., imgur. In addition,
it’s difficult to include artifacts from the knit-ing process.

* gist_create_git() - Create gists from files or code blocks, using git. Because this function
uses git, you have more flexibility than with the above function: you can include any binary
files, and can easily upload all artifacts.

* gist_create_obj() - Create gists from R objects: data.frame, list, character string, matrix,
or numeric. Uses the GitHub HTTP API.

It may seem a bit odd to have three separate functions for creating gists. gist_create() was cre-
ated first, and was out for a bit, so when we had the idea to create gists via git (gist_create_git())
and from R objects (gist_create_obj()), it made sense to have a different API for creating gists
via the HTTP API, git, and from R objects. We could have thrown everything into gist_create(),
but it would have been a massive function, with far too many parameters.

delete Delete a gist

Description

Delete a gist

Usage
delete(gist, ...)
Arguments
gist A gist object or something coerceable to a gist
Curl options passed on to verb-GET
Examples
Not run:

gists("minepublic”)[[29]]1 %>% delete()

End(Not run)

fork

embed Get embed script for a gist

Description

Get embed script for a gist

Usage
embed(gist)

Arguments

gist A gist object or something that can be coerced to a gist object.

Examples

Not run:
gists(OLL[1]1] %>% embed()

pass in a url
gist("https://gist.github.com/expersso/4ac33b9c00751fddc7f8") %>% embed

End(Not run)

fork Fork a gist

Description

Fork a gist

Usage
fork(gist, ...)

Arguments

gist A gist object or something coerceable to a gist

Further named args to crul::verb-GET

Value

A gist class object

forks

Examples

Not run:
fork a gist
w <- gists()[[1]1]1 %>% fork()

browse to newly forked gist
browse (w)

End(Not run)

forks List forks on a gist

Description

List forks on a gist

Usage
forks(gist, page = NULL, per_page = 30, ...)
Arguments
gist A gist object or something coerceable to a gist
page (integer) Page number to return.
per_page (integer) Number of items to return per page. Default 30. Max 100.
Further named args to crul::verb-GET
Value

A list of gist class objects

Examples

Not run:
gist(id='1642874"') %>% forks(per_page=2)
gist(id = "8172796") %>% forks()

pass in a url
gist("https://gist.github.com/expersso/4ac33b9c00751fddc7f8") %>% forks

End(Not run)

8 gist

gist Get a gist

Description

Get a gist

Usage

gist(id, revision = NULL, ...)
as.gist(x)

Arguments

id (character) A gist id, or a gist URL
revision (character) A sha. optional
Curl options passed on to verb-GET

X Object to coerce. Can be an integer (gist id), string (gist id), a gist, or an list that
can be coerced to a gist.

Details

If a file is larger than ~1 MB, the content of the file given back is truncated, so you won’t get the
entire contents. In the return S3 object that’s printed, we tell you at the bottom whether each file
is truncated or not. If a file is, simply get the raw_url URL for the file (see example below), then
retrieve from that. If the file is very big, you may need to clone the file using git, etc.

Examples

Not run:
gist('f1403260eb92f5dfa7el")

as.gist('f1403260eb92f5dfa7el")
as.gist(10)
as.gist(gist('f1403260eb92f5dfa7el"))

get a specific revision of a gist

id <- 'cle2ch547d9f22bd314da50fe9c7b503"

gist(id, 'a5bc5c143beb697f23b2c320ff5a8dacf960bof3")
gist(id, 'b70d94a8222a4326dff46fc85bc69d@179bd1da2")
gist(id, '648bb44ab9ae59d57b4eabde7d85e24103717e8b")
gist(id, '0259b13c7653dc95e20193133bcf71811888cheb’)

from a url, or partial url

x <- "https://gist.github.com/expersso/4ac33b9c00751fddc7f8"
x <- "gist.github.com/expersso/4ac33b9c00751fddc7f8"

x <- "gist.github.com/4ac33b9c@0751fddc7f8"

gists 9

X <- "expersso/4ac33b9c00751fddc7f8"
as.gist(x)

ids <- sapply(gists(), "[[", "id")
gist(ids[1])
gist(ids[2])
gist(ids[31)
gist(ids[4])

gist(ids[1]) %>% browse()

If a gist file is > a certain size it is truncated

in this case, we let you know in the return object that it is truncated
##H# e.g.

(bigfile <- gist(id = "b74b878fd7d9176a4c52"))

then get the raw_url, and retrieve the file

url <- bigfile$files$ plossmall. json $raw_url

End(Not run)

gists List gists

Description

List public gists, your own public gists, all your gists, by gist id, or query by date.

Usage
gists(what = "public”, since = NULL, page = NULL, per_page = 30, ...)
Arguments
what (character) What gists to return. One of public, minepublic, mineall, or starred.
If an id is given for a gist, this parameter is ignored.
since (character) A timestamp in ISO 8601 format: YYYY-MM-DDTHH:MM:SSZ.
Only gists updated at or after this time are returned.
page (integer) Page number to return.
per_page (integer) Number of items to return per page. Default 30. Max 100.
Curl options passed on to verb-GET
Details

When what = "mineall”, we use getOption("github.username") internally to get your GitHub
user name. Make sure to set your GitHub user name as an R option like options(github.username
= "foobar") in your .Rprofile file. If we can’t find you’re user name, we’ll stop with an error.

10 gist_auth

Examples

Not run:

Public gists

gists()

gists(per_page=2)

gists(page=3)

Public gists created since X time
gists(since="'2014-05-26T00:00:00Z")
Your public gists
gists('minepublic')
gists('minepublic', per_page=2)

Your private and public gists
gists('mineall')

Your starred gists
gists('starred')

pass in curl options
gists(per_page=1, verbose=TRUE)

End(Not run)

gist_auth Authorize with GitHub.

Description

This function is run automatically to allow gistr to access your GitHub account.

Usage

gist_auth(app = gistr_app, reauth = FALSE)

Arguments
app Anhttr: :oauth_app() for GitHub. The default uses an application gistr_oauth
created by Scott Chamberlain.
reauth (logical) Force re-authorization?
Details

There are two ways to authorise gistr to work with your GitHub account:

» Generate a personal access token with the gist scope selected, and set it as the GITHUB_PAT
environment variable per session using Sys.setenv or across sessions by adding it to your
.Renviron file or similar. See https://help.github.com/articles/creating-an-access-token-for-
command-line-use for help

* Interactively login into your GitHub account and authorise with OAuth.

Using GITHUB_PAT is recommended.

gist_create 11

Examples

Not run:
gist_auth()

End(Not run)

gist_create Create a gist

Description

Create a gist

Usage

gist_create(
files = NULL,
description = ""
public = TRUE,
browse = TRUE,

’

code = NULL,
filename = "code.R",
knit = FALSE,

knitopts = list(),
renderopts = list(),
include_source = FALSE,
imgur_inject = FALSE,
rmarkdown = FALSE,

Arguments

files Files to upload. this or code param must be passed

description (character) Brief description of gist (optional)

public (logical) Whether gist is public (default: TRUE)

browse (logical) To open newly create gist in default browser (default: TRUE)

code Pass in any set of code. This can be a single R object, or many lines of code
wrapped in quotes, then curly brackets (see examples below). this or files
param must be passed

filename Name of the file to create, only used if code parameter is used. Default to
code.R

knit (logical) Knit code before posting as a gist? If the file has a .Rmd or .Rnw

extension, we run the file with knit, and if it has a .R extension, then we use
render

12 gist_create

knitopts, renderopts
(list) List of variables passed on to knit, or render

include_source (logical) Only applies if knit=TRUE. Include source file in the gist in addition to
the knitted output.

imgur_inject (logical) Inject imgur_upload into your .Rmd file to upload files to https://
imgur.com/. This will be ignored if the file is a sweave/latex file because the
rendered pdf can’t be uploaded anyway. Default: FALSE

rmarkdown (logical) If TRUE, use rmarkdown: : render () instead of knitr::knit() to ren-
der the document.

Further args passed on to verb-POST

See Also

gist_create_obj(), gist_create_git()

Examples

Not run:

file <- tempfile()

cat("hello world”, file = file)
gist_create(files=file, description='a new cool gist')

filel <- tempfile()

file2 <- tempfile()

cat("foo bar”, file = filel)

cat("foo bar"”, file = file2)

gist_create(files=c(filel, file2), description="'spocc demo files')

include any code by passing to the code parameter
gist_create(code={"

x <- letters

numbers <- runif(10)

numbers

)

Knit an .Rmd file before posting as a gist
file <- system.file("examples”, "stuff.Rmd", package = "gistr")
gist_create(file, description='a new cool gist', knit=TRUE)

file <- system.file("examples”, "plots.Rmd", package = "gistr")
gist_create(file, description='some plots', knit=TRUE)

an .Rnw file

file <- system.file("examples”, "rnw_example.Rnw", package = "gistr")
gist_create(file)

gist_create(file, knit=TRUE)

Knit code input before posting as a gist
gist_create(code={"
\\\{r}

x <- letters

https://imgur.com/
https://imgur.com/

gist_create 13

(numbers <- runif(8))

[NENEN

'}, knit=TRUE)

url <- "https://raw.githubusercontent.com/ropensci/geojsonio/master/inst/examples/zillow_or.geojson"
json <- crul::HttpClient$new(url)s$get()$parse("UTF-8")
gist_create(code = json, filename = "zillow_or.geojson")

Knit and include source file, so both files are in the gist
file <- system.file("examples”, "stuff.Rmd", package = "gistr")
gist_create(file, knit=TRUE, include_source=TRUE)

gist_create(code={"
\\\{r}

x <- letters

(numbers <- runif(8))

[NENEN

'}, filename="code.Rmd", knit=TRUE, include_source=TRUE)

Uploading images created during knit process

using imgur - if you're file uses imgur or similar, you're good
file <- system.file("examples”, "plots_imgur.Rmd", package = "gistr")
cat(readlLines(file), sep = "\n") # peek at file

gist_create(file, knit=TRUE)

if not, GitHub doesn't allow upload of binary files via the HTTP API
(which gistr uses) - so see gist_create_git(), which uses git

file <- system.file("examples”, "plots.Rmd", package = "gistr")
gist_create(file, knit=TRUE, imgur_inject = TRUE)

works with ggplot2 as well

file <- system.file("examples”, "ggplot_imgur.Rmd"”, package = "gistr")
gist_create(file, knit=TRUE)

Render “.R‘ files

file <- system.file("examples”, "examplel.R", package = "gistr")

cat(readlLines(file), sep = "\n") # peek at file

gist_create(file, knit = TRUE)

gist_create(file, knit = TRUE, include_source = TRUE)

many files

(filel <- system.file("examples”, "examplel.R", package = "gistr"))

(file2 <- system.file("examples”, "example2.R", package = "gistr"))

cat(readlLines(filel), sep = "\n") # peek at file

cat(readLines(file2), sep = "\n") # peek at file

gist_create(files=list(filel, file2), knit = TRUE)

three at once, some .R and some .Rmd

file3 <- system.file("examples”, "plots_imgur.Rmd"”, package = "gistr")

gist_create(files=list(filel, file2, file3), knit = TRUE)

gist_create(files=list(filel, file2, file3), knit = TRUE,
include_source = TRUE)

Use rmarkdown::render instead of knitr::knit

file <- system.file("examples”, "rmarkdown_eg.Rmd", package = "gistr")

gist_create(file, knit = TRUE, rmarkdown = TRUE, imgur_inject = TRUE,
renderopts = list(output_format = "md_document”))

14 gist_create_git

End(Not run)

gist_create_git Create a gist via git instead of the GitHub Gists HTTP API

Description

Create a gist via git instead of the GitHub Gists HTTP API

Usage

gist_create_git(
files = NULL,
description = "",
public = TRUE,
browse = TRUE,

knit = FALSE,
code = NULL,
filename = "code.R",

knitopts = list(),
renderopts = list(),
include_source = FALSE,
artifacts = FALSE,
imgur_inject = FALSE,
git_method = "ssh",

sleep = 1,
)
Arguments

files Files to upload. this or code param must be passed

description (character) Brief description of gist (optional)

public (logical) Whether gist is public (default: TRUE)

browse (logical) To open newly create gist in default browser (default: TRUE)

knit (logical) Knit code before posting as a gist? If the file has a .Rmd or .Rnw
extension, we run the file with knit, and if it has a .R extension, then we use
render

code Pass in any set of code. This can be a single R object, or many lines of code
wrapped in quotes, then curly brackets (see examples below). this or files
param must be passed

filename Name of the file to create, only used if code parameter is used. Default to

code.R
knitopts, renderopts

(list) List of variables passed on to knit, or render

gist_create_git 15

include_source (logical) Only applies if knit=TRUE. Include source file in the gist in addition to
the knitted output.

artifacts (logical/character) Include artifacts or not. If TRUE, includes all artifacts. Or
you can pass in a file extension to only upload artifacts of certain file exensions.
Default: FALSE

imgur_inject (logical) Inject imgur_upload into your .Rmd file to upload files to https://
imgur.com/. This will be ignored if the file is a sweave/latex file because the
rendered pdf can’t be uploaded anyway. Default: FALSE

git_method (character) One of ssh (default) or https. If a remote already exists, we use that
remote, and this parameter is ignored.

sleep (integer) Seconds to sleep after creating gist, but before collecting metadata on
the gist. If uploading a lot of stuff, you may want to set this to a higher value,
otherwise, you may not get accurate metadata for your gist. You can of course
always refresh afterwards by calling gist with your gist id.

Further args passed on to verb-POST

Details

Note that when browse=TRUE there is a slight delay in when we open up the gist in your default
browser and when the data will display in the gist. We could have this function sleep a while and
guess when it will be ready, but instead we open your gist right after we’re done sending the data to
GitHub. Make sure to refresh the page if you don’t see your content right away.

Likewise, the object that is returned from this function call may not have the updated and correct
file information. You can retrieve that easily by calling gist () with the gist id.

This function uses git instead of the HTTP API, and thus requires the R package git2r. If you
don’t have git2r installed, and try to use this function, it will stop and tell you to install git2r.

This function using git is better suited than gist_create() for use cases involving:
* Big files - The GitHub API allows only files of up to 1 MB in size. Using git we can get
around that limit.
* Binary files - Often artifacts created are binary files like . png. The GitHub API doesn’t allow
transport of binary files, but we can do that with git.
Another difference between this function and gist_create() is that this function can collect all
artifacts coming out of a knit process.

If a gist is somehow deleted, or the remote changes, when you try to push to the same gist again,
everything should be fine. We now use tryCatch on the push attempt, and if it fails, we’ll add a
new remote (which means a new gist), and push again.

See Also

gist_create(), gist_create_obj()

https://imgur.com/
https://imgur.com/

16 gist_create_git

Examples

Not run:

prepare a directory and a file

unlink("~/gitgist"”, recursive = TRUE)

dir.create("~/gitgist")

file <- system.file("examples”, "stuff.md"”, package = "gistr")
writeLines(readLines(file), con = "~/gitgist/stuff.md")

create a gist
gist_create_git(files = "~/gitgist/stuff.md")

more than one file can be passed in

unlink("~/gitgist2"”, recursive = TRUE)

dir.create("~/gitgist2")

file.copy(file, "~/gitgist2/")

cat("hello world”, file = "~/gitgist2/hello_world.md")
list.files("~/gitgist2")

gist_create_git(c("~/gitgist2/stuff.md”, "~/gitgist2/hello_world.md"))

Include all files in a directory
unlink("~/gitgist3"”, recursive = TRUE)
dir.create("~/gitgist3")

cat("foo bar”, file="~/gitgist3/foobar.txt")
cat("hello”, file="~/gitgist3/hello.txt")
list.files("~/gitgist3")
gist_create_git("~/gitgist3")

binary files

png <- system.file("examples”, "file.png", package = "gistr")
unlink("~/gitgist4"”, recursive = TRUE)
dir.create("~/gitgist4")

file.copy(png, "~/gitgist4/")

list.files("~/gitgist4")

gist_create_git(files = "~/gitgist4/file.png")

knit files first, then push up

note: by default we don't upload images, but you can do that,
see next example

rmd <- system.file("examples”, "plots.Rmd", package = "gistr")
unlink("~/gitgist5"”, recursive = TRUE)

dir.create("~/gitgist5")

file.copy(rmd, "~/gitgist5/")

list.files("~/gitgist5")
gist_create_git("~/gitgist5/plots.Rmd”, knit = TRUE)

collect all/any artifacts from knitting process

arts <- system.file("examples”, "artifacts_egl.Rmd", package = "gistr")
unlink("~/gitgist6"”, recursive = TRUE)

dir.create("~/gitgist6")

file.copy(arts, "~/gitgist6/")

list.files("~/gitgist6")
gist_create_git("~/gitgist6/artifacts_egl.Rmd”, knit = TRUE,

gist_create_obj 17

artifacts = TRUE)

from a code block
gist_create_git(code={"
x <- letters

numbers <- runif(8)
numbers

[1] 0.3229318 0.5933054 0.7778408 0.3898947 0.1309717 0.7501378 0.3206379 0.3379005
'}, filename="my_cool_code.R")

Use https instead of ssh

png <- system.file("examples”, "file.png"”, package = "gistr")
unlink("~/gitgist7", recursive = TRUE)

dir.create("~/gitgist7")

file.copy(png, "~/gitgist7/")

list.files("~/gitgist7")

gist_create_git(files = "~/gitgist7/file.png", git_method = "https")

End(Not run)

gist_create_obj Create a gist from an R object

Description

Create a gist from an R object

Usage

gist_create_obj(
x = NULL,
description = "",
public = TRUE,
browse = TRUE,
pretty = TRUE,

filename = "file.txt"”,
)
Arguments
X An R object, any of data.frame, matrix, list, character, numeric
description (character) Brief description of gist (optional)
public (logical) Whether gist is public (default: TRUE)
browse (logical) To open newly create gist in default browser (default: TRUE)
pretty (logical) For data.frame and matrix objects, create a markdown table. If FALSE,

pushes up json. (default: TRUE)

18 gist_map

filename Name of the file to create. Default: file. txt

Further args passed on to crul::verb-POST

Details

This function is specifically for going from R objects to a gist, whereas gist_create() is for going
from files or executing code

See Also

gist_create(), gist_create_git()

Examples

Not run:

data.frame

by default makes pretty table in markdown format
row.names(mtcars) <- NULL

gist_create_obj(mtcars)

gist_create_obj(iris)

or just push up json

gist_create_obj(mtcars, pretty = FALSE)

matrix
gist_create_obj(as.matrix(mtcars))

list

gist_create_obj(apply(mtcars, 1, as.list))
character

gist_create_obj("hello, world")

numeric

gist_create_obj(runif(10))

Assign a specific file name
gist_create_obj("
header2

hey there!”, filename = "my_markdown.md")

End(Not run)

gist_map Opens a full screen map after uploading a geojson file

Description

Takes a gist object and a input geojson file name and renders fullscreen map

Usage

gist_map(x, browse = TRUE)

gist_save 19

Arguments
X An object of class gist generated by gist_create() or gist_create_obj()
browse Default: TRUE. Set to FALSE if you don’t want to automatically browse to the
URL.
Examples
Not run:
file <- system.file("examples”, "ecoengine_eg.geojson”, package = "gistr")

gist_id <- gist_create(file, browse = FALSE)
gist_map(gist_id)

End(Not run)

gist_save Save gist files to disk

Description

Save gist files to disk

Usage

n o n

gist_save(gist, path = ".")

gist_open(x)

Arguments
gist A gist object or something coerceable to a gist
path Root path to write to, a directory, not a file b/c a gist can contain many files. A
folder is created with name of the gist id within this root directory. File names
will be the same as given in the gist.
X An object of class gist_files (the output from gist_save()
Details

gist_save: files are written into a new folder, named by the gist id, e.g., a65ac7e56b7b3f746913
gist_open: opens files in your editor/R GUI. Internally, uses file.edit() to open files, using
getOption("editor") to open the files. If you’re in R.app or RStudio, or other IDE’s, files will
open in the IDE (I think).

Value

An object of class gist_files, S3 object containing file paths

20 run

Examples

Not run:

gist("a65ac7e56b7b3f746913") %>% gist_save()

gist("ab5ac7e56b7b3f746913") %>% gist_save() %>% gist_open()

gist("https://gist.github.com/expersso/4ac33b9c00751fddc7f8") %>%
gist_save()

End(Not run)

rate_limit Get rate limit information

Description

Get rate limit information

Usage

rate_limit(...)

Arguments

Named args to crul::verb-GET

Examples

Not run:
rate_limit()

End(Not run)

run Run a .Rmd file

Description

Run a .Rmd file

Usage

run(x, filename = "code.R", knitopts = list())

star 21

Arguments
X Input, one of: code wrapped in curly brackets and quotes, a file path to an .Rmd
file, or a gist.
filename Name of the file to create, only used if code parameter is used. Default to
code.R
knitopts (list) List of variables passed on to knitr: :knit()
Value

A path, unless a gist object is passed in, in which case a gist object is returned.

Examples

Not run:

run a local file

file <- system.file("examples”, "stuff.Rmd"”, package = "gistr")
run(file) %>% gist_create

run code

run({"

\\\{r}

x <- letters

(numbers <- runif(8))

[NENEN

'}) %>% gist_create

run a file from a gist, has to get file first
gists('minepublic')[[2]1] %>% run() %>% update()

End(Not run)

star Star a gist

Description

Star a gist

Usage
star(gist, ...)
unstar(gist, ...)

star_check(gist, ...)

22

Arguments

gist

Value

A gist object or something that can be coerced to a gist object.

Curl options passed on to verb-GET

A message, and a gist object, the same one input to the function.

Examples

Not run:

id <- '4ac33b9c00751fddc7f8"

gist(id) %>%
gist(id) %>%
gist(id) %>%
gist(id) %>%
gist(id) %>%
gist(id) %>%

star() %>%

star()

star_check()
unstar()

unstar() %>% star()
star_check()

star_check()

pass in a url

x <= "https://gist.github.com/expersso/4ac33b9c00751fddc7f8"
gist(x) %>% star

gist(x) %>% unstar

End(Not run)

tabl

tabl

Make a table from gist or commit class or a list of either

Description

Make a table from gist or commit class or a list of either

Usage
tabl(x,

>

tabl_data(x)

Arguments

X

Either a gist or commit class object or a list of either

Ignored

tabl 23

Details

For commits we return a single data.frame. For gists, we always return a list so that we are returning
data consistently, regardless of variable return data. So you can always index to the main data.frame
with gist metadata and file info by doing result$data, and likewise for forks result$forks and
history result$history

Value

A data.frame or list of data.frame’s

Examples

Not run:

from a gist object

X <- as.gist('f1403260eb92f5dfa7el")
res <- tabl(x)

res$data

res$forks

res$history

from a list

ss <- gists('minepublic')

tabl(ss[1:3])

lapply(tabl(ss[1:3]), "[[", "data")

index to data slots, but also make single data.frame

tabl_data(tabl(ss[1:3]))

manipulate with dplyr

library("dplyr")

tabl_data(tabl(ss[1:301)) %>%
select(id, description, owner_login) %>%
filter(grepl("gist gist gist”, description))

commits
x <= gists()[[2]] %>% commits()
tabl(x[[1]1)

many
x <- sapply(gists(per_page = 100), commits)
tabl(x) %>%
select(id, login, change_status.total, url) %>%
filter(change_status.total > 50)

pass in a url
gist("https://gist.github.com/expersso/4ac33b9c00751fddc7f8") %>% tabl
many

gg <- gists()

(urls <- vapply(gg, "CL", "", "html_url"))

lapply(urls[1:5], as.gist) %>% tabl()

gist with forks and history
gist('1642874') %>% tabl

24 update

gist with history, no forks
gist('c96d2e453c95d0166408') %>% tabl

End(Not run)

update Update/modify a gist

Description

Update/modify a gist
Usage

update(gist, description = gist$description, ...)
Arguments

gist A gist object or something coerceable to a gist

description (character) Brief description of gist (optional)

Curl options passed on to verb-GET

Value

an object of class gist

Examples
Not run:
filel <- system.file("examples”, "alm.md", package = "gistr")
file2 <- system.file("examples”, "zoo.json", package = "gistr")

add new files

gists(what = "minepublic”)[[3]1] %>%
add_files(filel, file2) %>%
update()

update existing files
file name has to match to current name
gists(what = "minepublic”)[[3]1] %>%
update_files(filel) %>%
update()

delete existing files
again, file name has to match to current name
gists(what = "minepublic”)[[3]1] %>%
delete_files(filel, file2) %>%

update()

update

rename existing files
For some reason, this operation has to upload the content too
first name is old file name with path (must match), and second is
new file name (w/o path)
add first
gists(what = "minepublic”)[[3]1] %>%
add_files(filel, file2) %>%
update()
then rename
gists(what = "minepublic”)[[3]1] %>%
rename_files(list(filel, "newfile.md")) %>%
update()
you can pass in many renames
gists(what = "minepublic”)[[3]1] %>%
rename_files(list(filel, "what.md"), list(file2, "new.json")) %>%
update()

End(Not run)

25

Index

* package
gistr-package, 2

add_files, 3
as.gist (gist), 8

browse, 4

commits, 4
create_gists, 5
crul::verb-GET, 4, 6, 7, 20
crul::verb-POST, I8

delete, 5
delete_files (add_files), 3

embed, 6

file.edit(), 19
fork, 6
forks, 7

gist, 8

gist(), 15

gist_auth, 10
gist_create, 11
gist_create(), 5, 15,18, 19
gist_create_git, 14
gist_create_git(), 5,12, 18
gist_create_obj, 17

gist_create_obj(), 5, 12,15, 19

gist_map, 18

gist_open (gist_save), 19
gist_save, 19
gist_save(), 19

gistr (gistr-package), 2
gistr-package, 2
gists, 9

httr::oauth_app(), 10

imgur_upload, 12, 15

knit, 11, 12, 14
knitr::knit(), 12,21

rate_limit, 20
rename_files (add_files), 3
render, 11, 12, 14
rmarkdown: :render (), 12
run, 20

star, 21
star_check (star), 21

tabl, 22
tabl_data (tabl), 22

unstar (star), 21
update, 24
update_files (add_files), 3

	gistr-package
	add_files
	browse
	commits
	create_gists
	delete
	embed
	fork
	forks
	gist
	gists
	gist_auth
	gist_create
	gist_create_git
	gist_create_obj
	gist_map
	gist_save
	rate_limit
	run
	star
	tabl
	update
	Index

