## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>", #fig.path = "", warning = FALSE, message = FALSE ) ## ----setup-------------------------------------------------------------------- library(implicitMeasures) ## ----------------------------------------------------------------------------- data("raw_data") # explore the dataframe str(raw_data) # explore the levels of the blockcode variable to identify the IAT blocks levels(raw_data$blockcode) ## ----eval = T----------------------------------------------------------------- iat_cleandata <- clean_iat(raw_data, sbj_id = "Participant", block_id = "blockcode", mapA_practice = "practice.iat.Milkbad", mapA_test = "test.iat.Milkbad", mapB_practice = "practice.iat.Milkgood", mapB_test = "test.iat.Milkgood", latency_id = "latency", accuracy_id = "correct", trial_id = "trialcode", trial_eliminate = c("reminder", "reminder1"), demo_id = "blockcode", trial_demo = "demo") ## ----------------------------------------------------------------------------- str(iat_cleandata) ## ----------------------------------------------------------------------------- iat_data <- iat_cleandata[[1]] head(iat_data) ## ----------------------------------------------------------------------------- dscore <- compute_iat(iat_data, Dscore = "d3") str(dscore) ## ----------------------------------------------------------------------------- descript_d(dscore) # Data frame containing IAT Ds ## ----------------------------------------------------------------------------- descript_d(dscore, # Data frame containing IAT Ds latex = TRUE) # obtain the code for latex tables ## ----------------------------------------------------------------------------- IAT_rel(dscore) ## ----fig.align='center', fig.width=6, fig.cap="d_point() function with default settings"---- d_point(dscore) # Data frame containing IAT D scores ## ----fig.align='center', fig.width=6, fig.cap="d_point() function with settings change"---- d_point(dscore, # dataframe containing IAT Ds order_sbj = "D-decreasing", # change respondents order x_values = FALSE, # remove respondents' labels include_stats = TRUE, # include descriptive statistics col_point = "lightskyblue") # change points color ## ----fig.align='center', fig.width=6, fig.cap="d_density() function with default settings"---- d_density(dscore) # dataframe containing IAT Dscores ## ----sampleSettings, fig.align='center', fig.width=6, fig.cap="\\label{fig:sampleSettings}d_density() function with settings change"---- d_density(dscore, # dataframe containing IAT Dscores graph = "boxplot", # change graphical representation include_stats = TRUE) # include descriptive statistics ## ----------------------------------------------------------------------------- multi_scores <- multi_dscore(iat_data, # object with class "iat_clean" ds = "error-inflation") # string specifying the # algorithms to compute ## ----------------------------------------------------------------------------- multi_d <- multi_scores[[1]] head(multi_d) str(multi_d) ## ----fig.align='center', fig.width=6, fig.cap="Multiple IAT D scores representation"---- multi_scores[[2]]