Package ‘infer’

June 26, 2025

Type Package
Title Tidy Statistical Inference
Version 1.0.9

Description The objective of this package is to perform inference using
an expressive statistical grammar that coheres with the tidy design
framework.

License MIT + file LICENSE
URL https://github.com/tidymodels/infer, https://infer.tidymodels.org/

BugReports https://github.com/tidymodels/infer/issues
Depends R (>=4.1)

Imports broom, cli, dplyr (>= 0.7.0), generics, ggplot2 (>=3.5.2),
glue (>=1.3.0), grDevices, lifecycle, magrittr, methods,
patchwork, purrr, rlang (>= 0.2.0), tibble, tidyr, vctrs (>=
0.6.5)

Suggests covr, devtools (>= 1.12.0), fs, knitr, nycflights13, parsnip,
rmarkdown, stringr, testthat (>= 3.0.0), vdiffr (>= 1.0.0)

VignetteBuilder knitr
Config/Needs/website tidyverse/tidytemplate
Config/testthat/edition 3
Config/usethis/last-upkeep 2025-04-25
Encoding UTF-8

LazyData true

RoxygenNote 7.3.2

NeedsCompilation no

Author Andrew Bray [aut],
Chester Ismay [aut] (ORCID: <https://orcid.org/0000-0003-2820-2547>),
Evgeni Chasnovski [aut] (ORCID:
<https://orcid.org/0000-0002-1617-4019>),
Simon Couch [aut, cre] (ORCID: <https://orcid.org/0000-0001-5676-5107>),
Ben Baumer [aut] (ORCID: <https://orcid.org/0000-0002-3279-0516>),

1

https://github.com/tidymodels/infer
https://infer.tidymodels.org/
https://github.com/tidymodels/infer/issues
https://orcid.org/0000-0003-2820-2547
https://orcid.org/0000-0002-1617-4019
https://orcid.org/0000-0001-5676-5107
https://orcid.org/0000-0002-3279-0516

Mine Cetinkaya-Rundel [aut] (ORCID:
<https://orcid.org/0000-0001-6452-2420>),

Ted Laderas [ctb] (ORCID: <https://orcid.org/0000-0002-6207-7068>),

Nick Solomon [ctb],

Johanna Hardin [ctb],

Albert Y. Kim [ctb] (ORCID: <https://orcid.org/0000-0001-7824-306X>),

Neal Fultz [ctb],

Doug Friedman [ctb],

Richie Cotton [ctb] (ORCID: <https://orcid.org/0000-0003-2504-802X>),

Brian Fannin [ctb]

Maintainer Simon Couch <simon.couch@posit.co>
Repository CRAN
Date/Publication 2025-06-26 17:50:02 UTC

Contents

ASSUIME . . v v v v v v e
calculate L e e
chisq_stat
chisg_test e e e e
deprecated L.
fitinfer e e
GEMETALE . . . v v v i e
get_confidence_intervalo
get_p_value
85 ¢ e e e e e e e e e e e
hypothesize
Infer e e e e
ODSEIVE . . . vt ot e e e e e e
printinfer L
PIOP_LESt . . . o o e e
rep_sample_n e e e
shade _confidence interval
shade_p_value L
specify . . .o e e

To>T0 . . . e e e e

Index

Contents

https://orcid.org/0000-0001-6452-2420
https://orcid.org/0000-0002-6207-7068
https://orcid.org/0000-0001-7824-306X
https://orcid.org/0000-0003-2504-802X

assume 3

assume Define a theoretical distribution

Description

This function allows the user to define a null distribution based on theoretical methods. In many
infer pipelines, assume() can be used in place of generate() and calculate() to create a null
distribution. Rather than outputting a data frame containing a distribution of test statistics calculated
from resamples of the observed data, assume () outputs a more abstract type of object just contain-
ing the distributional details supplied in the distribution and df arguments. However, assume()
output can be passed to visualize(), get_p_value(), and get_confidence_interval() in the
same way that simulation-based distributions can.

To define a theoretical null distribution (for use in hypothesis testing), be sure to provide a null
hypothesis via hypothesize (). To define a theoretical sampling distribution (for use in confidence
intervals), provide the output of specify(). Sampling distributions (only implemented for t and
z) lie on the scale of the data, and will be recentered and rescaled to match the corresponding stat
given in calculate() to calculate the observed statistic.

Usage
assume(x, distribution, df = NULL, ...)
Arguments
X The output of specify() or hypothesize(), giving the observed data, vari-

able(s) of interest, and (optionally) null hypothesis.

n on non

distribution The distribution in question, as a string. One of "F", "Chisq", "t", or "z".

df Optional. The degrees of freedom parameter(s) for the distribution supplied,
as a numeric vector. For distribution = "F", this should have length two (e.g.
c(10, 3)). For distribution ="Chisq"” or distribution ="t", this should
have length one. For distribution ="z", this argument is not required. The
package will supply a message if the supplied df argument is different from
recognized values. See the Details section below for more information.

Currently ignored.

Details

Note that the assumption being expressed here, for use in theory-based inference, only extends to
distributional assumptions: the null distribution in question and its parameters. Statistical infer-
ence with infer, whether carried out via simulation (i.e. based on pipelines using generate() and
calculate()) or theory (i.e. with assume()), always involves the condition that observations are
independent of each other.

infer only supports theoretical tests on one or two means via the t distribution and one or two
proportions via the z.

For tests comparing two means, if n1 is the group size for one level of the explanatory variable, and
n2 is that for the other level, infer will recognize the following degrees of freedom (df) arguments:

4 assume

e min(n1-1,n2-1)
*nl+n2-2
* The "parameter” entry of the analogous stats: :t.test() call

e The "parameter” entry of the analogous stats: :t.test() call with var.equal = TRUE

By default, the package will use the "parameter” entry of the analogous stats::t.test() call
with var.equal = FALSE (the default).

Value

An infer theoretical distribution that can be passed to helpers like visualize(), get_p_value(),
and get_confidence_interval().

Examples

construct theoretical distributions -------------------—--------————-

F distribution
with the “partyid™ explanatory variable
gss |>
specify(age ~ partyid) |>
assume(distribution = "F")

Chi-squared goodness of fit distribution
on the ~finrela™ variable
gss |>
specify(response = finrela) |>
hypothesize(null = "point”,
p = c("far below average” = 1/6,
"below average"” = 1/6,
"average" = 1/6,
"above average" = 1/6,
"far above average” = 1/6,
"DK" = 1/6)) |>
assume("Chisq")

Chi-squared test of independence
on the ~finrela® and “sex” variables

gss |>
specify(formula = finrela ~ sex) |>
assume(distribution = "Chisq")

T distribution

gss |>
specify(age ~ college) |>
assume("t")

Z distribution

gss |>
specify(response = sex, success = "female") |>
assume("z")

calculate

Not run:
each of these distributions can be passed to infer helper
functions alongside observed statistics!

for example, a 1-sample t-test ---------———-————-——-—m—m—m———— o

calculate the observed statistic
obs_stat <- gss |>
specify(response = hours) |>
hypothesize(null = "point”, mu = 40) |>
calculate(stat = "t")

construct a null distribution

null_dist <- gss |>
specify(response = hours) |>
assume("t")

juxtapose them visually
visualize(null_dist) +
shade_p_value(obs_stat, direction = "both")

calculate a p-value
get_p_value(null_dist, obs_stat, direction = "both")

or, an F test ----———------------————

calculate the observed statistic
obs_stat <- gss |>
specify(age ~ partyid) |>
hypothesize(null = "independence”) |>
calculate(stat = "F")

construct a null distribution
null_dist <- gss |>
specify(age ~ partyid) |>
assume(distribution = "F")

juxtapose them visually
visualize(null_dist) +

shade_p_value(obs_stat, direction = "both")

calculate a p-value
get_p_value(null_dist, obs_stat, direction = "both")

End(Not run)

calculate Calculate summary statistics

6 calculate
Description
Given the output of specify() and/or hypothesize(), this function will return the observed statis-
tic specified with the stat argument. Some test statistics, such as Chisq, t, and z, require a null
hypothesis. If provided the output of generate(), the function will calculate the supplied stat for
each replicate.
Learn more in vignette("infer").
Usage
calculate(
X ’
stat = c("mean”, "median"”, "sum”, "sd", "prop", "count”, "diff in means”,
"diff in medians”, "diff in props”, "Chisq"”, "F", "slope"”, "correlation”, "t", "z",
"ratio of props”, "odds ratio”, "ratio of means”),
order
)
Arguments
X The output from generate() for computation-based inference or the output
from hypothesize() piped in to here for theory-based inference.
stat A string giving the type of the statistic to calculate. Current options include
"mean”, "median”, "sum”, "sd", "prop”, "count”, "diff in means”, "diff
inmedians”, "diff in props”, "Chisq"” (or "chisq"), "F" (or "f"), "t", "z",
"ratio of props”, "slope”, "odds ratio”, "ratio of means”, and "correlation”.
infer only supports theoretical tests on one or two means via the "t" distribu-
tion and one or two proportions via the "z".
order A string vector of specifying the order in which the levels of the explanatory
variable should be ordered for subtraction (or division for ratio-based statistics),
where order =c("first"”, "second”) means ("first"” - "second"), or the
analogue for ratios. Needed for inference on difference in means, medians, pro-
portions, ratios, t, and z statistics.
To pass options like na. rm = TRUE into functions like mean(), sd(), etc. Can also
be used to supply hypothesized null values for the "t" statistic or additional
arguments to stats: :chisq.test().
Value

A tibble containing a stat column of calculated statistics.

Missing levels in small samples

In some cases, when bootstrapping with small samples, some generated bootstrap samples will have
only one level of the explanatory variable present. For some test statistics, the calculated statistic
in these cases will be NaN. The package will omit non-finite values from visualizations (with a
warning) and raise an error in p-value calculations.

calculate 7

Reproducibility

When using the infer package for research, or in other cases when exact reproducibility is a priority,
be sure the set the seed for R’s random number generator. infer will respect the random seed
specified in the set. seed() function, returning the same result when generate()ing data given an
identical seed. For instance, we can calculate the difference in mean age by college degree status
using the gss dataset from 10 versions of the gss resampled with permutation using the following
code.

set.seed(1)

gss |>
specify(age ~ college) |>
hypothesize(null = "independence”) |>
generate(reps = 5, type = "permute"”) |>
calculate("diff in means”, order = c("degree"”, "no degree"))

Response: age (numeric)

Explanatory: college (factor)
Null Hypothesis: indepe...

A tibble: 5 x 2

replicate stat

<int> <dbl>
1 1 -0.531
2 2 -2.35
3 3 0.764
#H 4 4 0.280
5 5 0.350

Setting the seed to the same value again and rerunning the same code will produce the same result.

set the seed
set.seed(1)

gss |>
specify(age ~ college) |>
hypothesize(null = "independence”) |>
generate(reps = 5, type = "permute"”) |>
calculate("diff in means”, order = c("degree"”, "no degree"))

Response: age (numeric)

Explanatory: college (factor)
Null Hypothesis: indepe...

A tibble: 5 x 2

replicate stat

it <int> <dbl>
1 1 -0.531
2 2 -2.35

3 3 0.764

8 calculate

4
5

s
(SR
w N
o]
[}

Please keep this in mind when writing infer code that utilizes resampling with generate().

See Also

visualize(), get_p_value(), and get_confidence_interval() to extract value from this func-
tion’s outputs.

Other core functions: generate(), hypothesize(), specify()

Examples

calculate a null distribution of hours worked per week under
the null hypothesis that the mean is 40
gss |>

specify(response = hours) |>

hypothesize(null = "point”, mu = 40) |>

generate(reps = 200, type = "bootstrap"”) |>

calculate(stat = "mean”)

calculate the corresponding observed statistic

gss |>
specify(response = hours) |>
calculate(stat = "mean")

calculate a null distribution assuming independence between age
of respondent and whether they have a college degree

gss |>
specify(age ~ college) |>
hypothesize(null = "independence”) |>
generate(reps = 200, type = "permute”) |>
calculate("diff in means"”, order = c("degree”, "no degree"))

calculate the corresponding observed statistic

gss |>
specify(age ~ college) |>
calculate("diff in means”, order = c("degree”, "no degree"))

some statistics require a null hypothesis
gss |>
specify(response = hours) |>
hypothesize(null = "point”, mu = 40) |>
calculate(stat = "t")

more in-depth explanation of how to use the infer package
Not run:
vignette("infer")

End(Not run)

chisq_stat

chisg_stat Tidy chi-squared test statistic
Description
@description
Usage
chisqg_stat(x, formula, response = NULL, explanatory = NULL, ...)
Arguments
X A data frame that can be coerced into a tibble.
formula A formula with the response variable on the left and the explanatory on the right.
Alternatively, a response and explanatory argument can be supplied.
response The variable name in x that will serve as the response. This is an alternative to
using the formula argument.
explanatory The variable name in x that will serve as the explanatory variable. This is an
alternative to using the formula argument.
Additional arguments for chisq.test().
Details

A shortcut wrapper function to get the observed test statistic for a chisq test. Uses chisq.test(),
which applies a continuity correction. This function has been deprecated in favor of the more
general observe().

See Also

Other wrapper functions: chisq_test(), observe(), prop_test(), t_stat(), t_test()

Other functions for calculating observed statistics: observe(), t_stat()

Examples

chi-squared test statistic for test of independence
of college completion status depending and one's

self-identified income class

chisq_stat(gss, college ~ finrela)

chi-squared test statistic for a goodness of fit
test on whether self-identified income class
follows a uniform distribution

chisqg_stat(gss,

response = finrela,
p = c("far below average” = 1/6,

"below average"” = 1/6,

10 chisq_test

"average" = 1/6,

"above average" = 1/6,
"far above average” = 1/6,
"DK" = 1/6))

chisqg_test Tidy chi-squared test

Description

A tidier version of chisq.test() for goodness of fit tests and tests of independence.

Usage
chisq_test(x, formula, response = NULL, explanatory = NULL, ...)
Arguments
X A data frame that can be coerced into a tibble.
formula A formula with the response variable on the left and the explanatory on the right.
Alternatively, a response and explanatory argument can be supplied.
response The variable name in x that will serve as the response. This is an alternative to
using the formula argument.
explanatory The variable name in x that will serve as the explanatory variable. This is an
alternative to using the formula argument.
Additional arguments for chisq.test().
See Also

Other wrapper functions: chisg_stat(), observe(), prop_test(), t_stat(), t_test()

Examples

chi-squared test of independence for college completion
status depending on one's self-identified income class
chisq_test(gss, college ~ finrela)

chi-squared goodness of fit test on whether self-identified
income class follows a uniform distribution
chisq_test(gss,
response = finrela,
p = c("far below average” = 1/6,
"below average” = 1/6,
"average" = 1/6,
"above average" = 1/6,
"far above average” = 1/6,
"DK" = 1/6))

deprecated 11

deprecated Deprecated functions and objects

Description

These functions and objects should no longer be used. They will be removed in a future release of
infer.

Usage

conf_int(x, level = 0.95, type = "percentile”, point_estimate = NULL)

p_value(x, obs_stat, direction)

Arguments
X See the non-deprecated function.
level See the non-deprecated function.
type See the non-deprecated function.

point_estimate See the non-deprecated function.

obs_stat See the non-deprecated function.
direction See the non-deprecated function.
See Also

get_p_value(), get_confidence_interval(), generate()

fit.infer Fit linear models to infer objects

Description

Given the output of an infer core function, this function will fit a linear model using stats: :glm()
according to the formula and data supplied earlier in the pipeline. If passed the output of specify()
or hypothesize(), the function will fit one model. If passed the output of generate(), it will fit
a model to each data resample, denoted in the replicate column. The family of the fitted model
depends on the type of the response variable. If the response is numeric, fit() will use family
= "gaussian” (linear regression). If the response is a 2-level factor or character, fit() will use
family = "binomial” (logistic regression). To fit character or factor response variables with more
than two levels, we recommend parsnip: :multinom_reg().

infer provides a fit "method" for infer objects, which is a way of carrying out model fitting as
applied to infer output. The "generic," imported from the generics package and re-exported from
this package, provides the general form of fit() that points to infer’s method when called on an
infer object. That generic is also documented here.

Learn more in vignette("infer").

12 fit.infer

Usage
S3 method for class 'infer'
fit(object, ...)
Arguments
object Output from an infer function—likely generate () or specify()—which spec-

ifies the formula and data to fit a model to.

Any optional arguments to pass along to the model fitting function. See stats: :glm()
for more information.

Details

Randomization-based statistical inference with multiple explanatory variables requires careful con-
sideration of the null hypothesis in question and its implications for permutation procedures. Infer-
ence for partial regression coefficients via the permutation method implemented in generate() for
multiple explanatory variables, consistent with its meaning elsewhere in the package, is subject to
additional distributional assumptions beyond those required for one explanatory variable. Namely,
the distribution of the response variable must be similar to the distribution of the errors under the
null hypothesis’ specification of a fixed effect of the explanatory variables. (This null hypothesis is
reflected in the variables argument to generate(). By default, all of the explanatory variables
are treated as fixed.) A general rule of thumb here is, if there are large outliers in the distributions
of any of the explanatory variables, this distributional assumption will not be satisfied; when the
response variable is permuted, the (presumably outlying) value of the response will no longer be
paired with the outlier in the explanatory variable, causing an outsize effect on the resulting slope
coefficient for that explanatory variable.

More sophisticated methods that are outside of the scope of this package requiring fewer—or less
strict—distributional assumptions exist. For an overview, see "Permutation tests for univariate or
multivariate analysis of variance and regression" (Marti J. Anderson, 2001), doi:10.1139/cjfas583-
626.

Value

A tibble containing the following columns:

* replicate: Only supplied if the input object had been previously passed to generate(). A
number corresponding to which resample of the original data set the model was fitted to.

* term: The explanatory variable (or intercept) in question.

» estimate: The model coefficient for the given resample (replicate) and explanatory vari-
able (term).

Reproducibility

When using the infer package for research, or in other cases when exact reproducibility is a priority,
be sure the set the seed for R’s random number generator. infer will respect the random seed
specified in the set. seed() function, returning the same result when generate()ing data given an
identical seed. For instance, we can calculate the difference in mean age by college degree status

https://doi.org/10.1139/cjfas-58-3-626
https://doi.org/10.1139/cjfas-58-3-626

fit.infer 13

using the gss dataset from 10 versions of the gss resampled with permutation using the following
code.

set.seed(1)

gss |>
specify(age ~ college) |>
hypothesize(null = "independence”) |>
generate(reps = 5, type = "permute"”) |>
calculate("diff in means”, order = c("degree”, "no degree"))

Response: age (numeric)

Explanatory: college (factor)
Null Hypothesis: indepe...

A tibble: 5 x 2

replicate stat

<int> <dbl>
#H# 1 1 -0.531
#H 2 2 -2.35

3 3 0.764
4 4 0.280
5 5 0.350

Setting the seed to the same value again and rerunning the same code will produce the same result.

set the seed
set.seed(1)

gss |>
specify(age ~ college) |>
hypothesize(null = "independence"”) |>
generate(reps = 5, type = "permute"”) |>
calculate("diff in means”, order = c("degree"”, "no degree"))

Response: age (numeric)

Explanatory: college (factor)
Null Hypothesis: indepe...

A tibble: 5 x 2

replicate stat

<int> <dbl>
1 1 -0.531
#H 2 2 -2.35

3 3 0.764
4 4 0.280
5 5 0.350

Please keep this in mind when writing infer code that utilizes resampling with generate().

14 generate

Examples

fit a linear model predicting number of hours worked per
week using respondent age and degree status.
observed_fit <- gss |>

specify(hours ~ age + college) |>

fitQ

observed_fit

fit 100 models to resamples of the gss dataset, where the response
“hours™ is permuted in each. note that this code is the same as
the above except for the addition of the ~“generate™ step.
null_fits <- gss [|>

specify(hours ~ age + college) |>

hypothesize(null = "independence") |>
generate(reps = 100, type = "permute”) |>
fitQ

null_fits

for logistic regression, just supply a binary response variable!

(this can also be made explicit via the ~family™ argument in ...)
gss |>

specify(college ~ age + hours) |>

fitQ

more in-depth explanation of how to use the infer package
Not run:
vignette("infer")

End(Not run)

generate Generate resamples, permutations, or simulations

Description

Generation creates a simulated distribution from specify(). In the context of confidence intervals,
this is a bootstrap distribution based on the result of specify(). In the context of hypothesis testing,
this is a null distribution based on the result of specify() and hypothesize().

Learn more in vignette("infer").

Usage

generate(x, reps = 1, type = NULL, variables = !!response_expr(x), ...)

generate 15

Arguments
X A data frame that can be coerced into a tibble.
reps The number of resamples to generate.
type The method used to generate resamples of the observed data reflecting the null
hypothesis. Currently one of "bootstrap”, "permute”, or "draw” (see below).
variables If type = "permute”, a set of unquoted column names in the data to permute
(independently of each other). Defaults to only the response variable. Note that
any derived effects that depend on these columns (e.g., interaction effects) will
also be affected.
Currently ignored.
Value

A tibble containing reps generated datasets, indicated by the replicate column.

Generation Types

The type argument determines the method used to create the null distribution.

* bootstrap: A bootstrap sample will be drawn for each replicate, where a sample of size equal
to the input sample size is drawn (with replacement) from the input sample data.

» permute: For each replicate, each input value will be randomly reassigned (without replace-
ment) to a new output value in the sample.

e draw: A value will be sampled from a theoretical distribution with parameter p specified in
hypothesize() for each replicate. This option is currently only applicable for testing on
one proportion. This generation type was previously called "simulate”, which has been
superseded.

Reproducibility

When using the infer package for research, or in other cases when exact reproducibility is a priority,
be sure the set the seed for R’s random number generator. infer will respect the random seed
specified in the set. seed() function, returning the same result when generate()ing data given an
identical seed. For instance, we can calculate the difference in mean age by college degree status
using the gss dataset from 10 versions of the gss resampled with permutation using the following
code.

set.seed(1)

gss |>
specify(age ~ college) |>
hypothesize(null = "independence"”) |>
generate(reps = 5, type = "permute"”) |>

calculate("diff in means”, order = c("degree"”, "no degree"))

16 generate

Response: age (numeric)

Explanatory: college (factor)
Null Hypothesis: indepe...

A tibble: 5 x 2

replicate stat

<int> <dbl>
1 1 -0.531
#H 2 2 -2.35

#H# 3 3 0.764
#H 4 4 0.280
5 5 0.350

Setting the seed to the same value again and rerunning the same code will produce the same result.

set the seed
set.seed(1)

gss |>
specify(age ~ college) |>
hypothesize(null = "independence"”) |>
generate(reps = 5, type = "permute"”) |>
calculate("diff in means”, order = c("degree”, "no degree"))

Response: age (numeric)

Explanatory: college (factor)
Null Hypothesis: indepe...
A tibble: 5 x 2

replicate stat

<int> <dbl>
1 1 -0.531
#H 2 2 -2.35

#H 3 3 0.764
#H 4 4 0.280
5 5 0.350

Please keep this in mind when writing infer code that utilizes resampling with generate().

See Also

Other core functions: calculate(), hypothesize(), specify()

Examples

generate a null distribution by taking 200 bootstrap samples
gss |>

specify(response = hours) |>

hypothesize(null = "point”, mu = 40) |>

generate(reps = 200, type = "bootstrap”)

get_confidence_interval 17

generate a null distribution for the independence of
two variables by permuting their values 200 times

gss |>
specify(partyid ~ age) |>
hypothesize(null = "independence") |>

generate(reps = 200, type = "permute”)

generate a null distribution via sampling from a

binomial distribution 200 times

gss |>

specify(response = sex, success = "female"”) |>
hypothesize(null = "point”, p = .5) |>
generate(reps = 200, type = "draw") [>
calculate(stat = "z")

more in-depth explanation of how to use the infer package
Not run:

vignette("infer")

End(Not run)

get_confidence_interval
Compute confidence interval

Description

Compute a confidence interval around a summary statistic. Both simulation-based and theoretical
methods are supported, though only type = "se” is supported for theoretical methods.

Learn more in vignette("infer").

Usage

get_confidence_interval(x, level = 0.95, type = NULL, point_estimate = NULL)

get_ci(x, level = 0.95, type = NULL, point_estimate = NULL)

Arguments
X A distribution. For simulation-based inference, a data frame containing a distri-
bution of calculate()d statistics or fit()ted coefficient estimates. This object
should have been passed to generate () before being supplied or calculate()
to fit(). For theory-based inference, output of assume(). Distributions for
confidence intervals do not require a null hypothesis via hypothesize().
level A numerical value between 0 and 1 giving the confidence level. Default value is

0.95.

18 get_confidence_interval

type A string giving which method should be used for creating the confidence in-
terval. The default is "percentile” with "se” corresponding to (multiplier *
standard error) and "bias-corrected” for bias-corrected interval as other op-
tions.

point_estimate A data frame containing the observed statistic (in a calculate()-based work-
flow) or observed fit (in a fit()-based workflow). This object is likely the out-
put of calculate() or fit() and need not to have been passed to generate().
Set to NULL by default. Must be provided if typeis "se” or "bias-corrected”.

Details

A null hypothesis is not required to compute a confidence interval. However, including hypothesize ()
in a pipeline leading to get_confidence_interval() will not break anything. This can be useful
when computing a confidence interval using the same distribution used to compute a p-value.

Theoretical confidence intervals (i.e. calculated by supplying the output of assume() to the x
argument) require that the point estimate lies on the scale of the data. The distribution defined in
assume () will be recentered and rescaled to align with the point estimate, as can be shown in the
output of visualize() when paired with shade_confidence_interval(). Confidence intervals
are implemented for the following distributions and point estimates:

e distribution="t": point_estimate should be the output of calculate() with stat =
"mean” or stat = "diff in means"

e distribution="z": point_estimate should be the output of calculate() with stat =
"prop” or stat = "diff in props”
Value

A tibble containing the following columns:

* term: The explanatory variable (or intercept) in question. Only supplied if the input had been
previously passed to fit().

* lower_ci, upper_ci: The lower and upper bounds of the confidence interval, respectively.

Aliases

get_ci() isanalias of get_confidence_interval(). conf_int() is a deprecated alias of get_confidence_interval().

See Also

Other auxillary functions: get_p_value()

Examples

boot_dist <- gss |>
We're interested in the number of hours worked per week
specify(response = hours) |>
Generate bootstrap samples
generate(reps = 1000, type = "bootstrap”) |>
Calculate mean of each bootstrap sample

get_confidence_interval

calculate(stat = "mean")

boot_dist |>
Calculate the confidence interval around the point estimate
get_confidence_interval(
At the 95% confidence level; percentile method
level = 0.95

for type = "se"” or type = "bias-corrected” we need a point estimate
sample_mean <- gss |>

specify(response = hours) |>

calculate(stat = "mean")

boot_dist |>
get_confidence_interval(
point_estimate = sample_mean,
At the 95% confidence level

level = 0.95,
Using the standard error method
type = "se"

using a theoretical distribution ---------------------——---——— -

define a sampling distribution

sampling_dist <- gss |>
specify(response = hours) |>
assume("t")

get the confidence interval---note that the
point estimate is required here
get_confidence_interval(

sampling_dist,

level = .95,

point_estimate = sample_mean

)
using a model fitting workflow -------------------———-

fit a linear model predicting number of hours worked per
week using respondent age and degree status.
observed_fit <- gss |>

specify(hours ~ age + college) |>

fitQ

observed_fit

fit 100 models to resamples of the gss dataset, where the response
“hours™ is permuted in each. note that this code is the same as
the above except for the addition of the ~generate™ step.
null_fits <- gss [|>

specify(hours ~ age + college) |>

19

20 get_p_value
hypothesize(null = "independence") |>
generate(reps = 100, type = "permute”) |>
fit()
null_fits
get_confidence_interval(
null_fits,
point_estimate = observed_fit,
level = .95
)
more in-depth explanation of how to use the infer package
Not run:
vignette("infer")
End(Not run)
get_p_value Compute p-value
Description
Compute a p-value from a null distribution and observed statistic.
Learn more in vignette("infer").
Usage
get_p_value(x, obs_stat, direction)
Default S3 method:
get_p_value(x, obs_stat, direction)
get_pvalue(x, obs_stat, direction)
S3 method for class 'infer_dist'
get_p_value(x, obs_stat, direction)
Arguments

X A null distribution. For simulation-based inference, a data frame containing a
distribution of calculate()d statistics or fit()ted coefficient estimates. This
object should have been passed to generate () before being supplied or calculate()
to fit(). For theory-based inference, the output of assume().

obs_stat A data frame containing the observed statistic (in a calculate()-based work-
flow) or observed fit (in a fit()-based workflow). This object is likely the out-
put of calculate() or fit() and need not to have been passed to generate().

get_p_value 21

direction A character string. Options are "less”, "greater”, or "two-sided”. Can also
use "left”, "right”, "both"”, "two_sided”, or "two sided"”, "two.sided".

Value

A tibble containing the following columns:

* term: The explanatory variable (or intercept) in question. Only supplied if the input had been
previously passed to fit().

* p_value: A value in [0, 1] giving the probability that a statistic/coefficient as or more extreme
than the observed statistic/coefficient would occur if the null hypothesis were true.

Aliases

get_pvalue() is an alias of get_p_value(). p_value is a deprecated alias of get_p_value().

Zero p-value

Though a true p-value of 0 is impossible, get_p_value() may return O in some cases. This is due to
the simulation-based nature of the {infer} package; the output of this function is an approximation
based on the number of reps chosen in the generate() step. When the observed statistic is very
unlikely given the null hypothesis, and only a small number of reps have been generated to form
a null distribution, it is possible that the observed statistic will be more extreme than every test
statistic generated to form the null distribution, resulting in an approximate p-value of 0. In this
case, the true p-value is a small value likely less than 3/reps (based on a poisson approximation).

In the case that a p-value of zero is reported, a warning message will be raised to caution the user
against reporting a p-value exactly equal to 0.

See Also

Other auxillary functions: get_confidence_interval()

Examples

using a simulation-based null distribution -------------------—---———-

find the point estimate---mean number of hours worked per week
point_estimate <- gss |>

specify(response = hours) |>

calculate(stat = "mean")

starting with the gss dataset
gss |>
...we're interested in the number of hours worked per week
specify(response = hours) |>
hypothesizing that the mean is 40
hypothesize(null = "point”, mu = 40) |>
generating data points for a null distribution
generate(reps = 1000, type = "bootstrap”) |>
finding the null distribution
calculate(stat = "mean") |>

22

gss

get_p_value(obs_stat = point_estimate, direction = "two-sided")
using a theoretical null distribution --------------———-------oo

calculate the observed statistic
obs_stat <- gss |>
specify(response = hours) |>
hypothesize(null = "point”, mu = 40) |>
calculate(stat = "t")

define a null distribution

null_dist <- gss |>
specify(response = hours) |>
assume("t")

calculate a p-value
get_p_value(null_dist, obs_stat, direction = "both")

using a model fitting workflow —-------------——m-——mmmmmm oo

fit a linear model predicting number of hours worked per
week using respondent age and degree status.
observed_fit <- gss |>

specify(hours ~ age + college) |>

fitQ)

observed_fit

fit 100 models to resamples of the gss dataset, where the response
“hours™ is permuted in each. note that this code is the same as
the above except for the addition of the ~“generate™ step.
null_fits <- gss |>

specify(hours ~ age + college) |>

hypothesize(null = "independence”) |>
generate(reps = 100, type = "permute”) |>
fit()
null_fits
get_p_value(null_fits, obs_stat = observed_fit, direction = "two-sided")

more in-depth explanation of how to use the infer package
Not run:
vignette("infer")

End(Not run)

gss Subset of data from the General Social Survey (GSS).

hypothesize 23

Description

The General Social Survey is a high-quality survey which gathers data on American society and
opinions, conducted since 1972. This data set is a sample of 500 entries from the GSS, spanning
years 1973-2018, including demographic markers and some economic variables. Note that this data
is included for demonstration only, and should not be assumed to provide accurate estimates relating
to the GSS. However, due to the high quality of the GSS, the unweighted data will approximate the
weighted data in some analyses.

Usage

gss

Format
A tibble with 500 rows and 11 variables:

year year respondent was surveyed

age age at time of survey, truncated at 89

sex respondent’s sex (self-identified)

college whether on not respondent has a college degree, including junior/community college
partyid political party affiliation

hompop number of persons in household

hours number of hours worked in week before survey, truncated at 89

income total family income

class subjective socioeconomic class identification

finrela opinion of family income

weight survey weight

Source

https://gss.norc.org

hypothesize Declare a null hypothesis

Description

Declare a null hypothesis about variables selected in specify().

Learn more in vignette("infer").

Usage
hypothesize(x, null, p = NULL, mu = NULL, med = NULL, sigma = NULL)
hypothesise(x, null, p = NULL, mu = NULL, med = NULL, sigma = NULL)

https://gss.norc.org

24 hypothesize

Arguments

X A data frame that can be coerced into a tibble.

n o n

null The null hypothesis. Options include "independence”, "point”, and "paired
independence”.

e independence: Should be used with both a response and explanatory
variable. Indicates that the values of the specified response variable are
independent of the associated values in explanatory.

* point: Should be used with only a response variable. Indicates that a point
estimate based on the values in response is associated with a parameter.
Sometimes requires supplying one of p, mu, med, or sigma.

* paired independence: Should be used with only a response variable
giving the pre-computed difference between paired observations. Indicates
that the order of subtraction between paired values does not affect the re-
sulting distribution.

p The true proportion of successes (a number between 0 and 1). To be used with
point null hypotheses when the specified response variable is categorical.

mu The true mean (any numerical value). To be used with point null hypotheses
when the specified response variable is continuous.

med The true median (any numerical value). To be used with point null hypotheses
when the specified response variable is continuous.

sigma The true standard deviation (any numerical value). To be used with point null
hypotheses.

Value

A tibble containing the response (and explanatory, if specified) variable data with parameter infor-
mation stored as well.

See Also

Other core functions: calculate(), generate(), specify()

Examples

hypothesize independence of two variables

gss |>

specify(college ~ partyid, success = "degree") |>
hypothesize(null = "independence")

hypothesize a mean number of hours worked per week of 40
gss |>

specify(response = hours) |>

hypothesize(null = "point”, mu = 40)

more in-depth explanation of how to use the infer package
Not run:
vignette("infer")

infer 25

End(Not run)

infer infer: a grammar for statistical inference

Description

The objective of this package is to perform statistical inference using a grammar that illustrates the
underlying concepts and a format that coheres with the tidyverse.

Details

For an overview of how to use the core functionality, see vignette("infer")

Author(s)

Maintainer: Simon Couch <simon. couch@posit.co> (ORCID)
Authors:

* Andrew Bray <abray@reed. edu>

* Chester Ismay <chester.ismay@gmail.com> (ORCID)

* Evgeni Chasnovski <evgeni.chasnovski@gmail.com> (ORCID)
¢ Ben Baumer <ben.baumer@gmail.com> (ORCID)

* Mine Cetinkaya-Rundel <mine@stat.duke.edu> (ORCID)

Other contributors:

¢ Ted Laderas <tedladeras@gmail.com> (ORCID) [contributor]

¢ Nick Solomon <nick.solomon@datacamp.com> [contributor]

¢ Johanna Hardin <Jo.Hardin@pomona.edu> [contributor]

e Albert Y. Kim <albert.ys.kim@gmail.com> (ORCID) [contributor]
¢ Neal Fultz <nfultz@gmail.com> [contributor]

* Doug Friedman <doug.nhp@gmail.com> [contributor]

¢ Richie Cotton <richie@datacamp.com> (ORCID) [contributor]

¢ Brian Fannin <captain@pirategrunt.com> [contributor]

See Also
Useful links:

* https://github.com/tidymodels/infer
e https://infer.tidymodels.org/
* Report bugs at https://github.com/tidymodels/infer/issues

https://orcid.org/0000-0001-5676-5107
https://orcid.org/0000-0003-2820-2547
https://orcid.org/0000-0002-1617-4019
https://orcid.org/0000-0002-3279-0516
https://orcid.org/0000-0001-6452-2420
https://orcid.org/0000-0002-6207-7068
https://orcid.org/0000-0001-7824-306X
https://orcid.org/0000-0003-2504-802X
https://github.com/tidymodels/infer
https://infer.tidymodels.org/
https://github.com/tidymodels/infer/issues

26

observe

observe

Calculate observed statistics

Description

This function is a wrapper that calls specify(), hypothesize(), and calculate() consecutively
that can be used to calculate observed statistics from data. hypothesize() will only be called if a
point null hypothesis parameter is supplied.

Learn more in vignette("infer").

Usage

observe(
X,
formula,

response = NULL,

explanatory = NULL,
success = NULL,

null = NULL,
p = NULL,
mu = NULL,
med = NULL,
sigma = NULL,
stat = c("mean”, "median"”, "sum”, "sd", "prop", "count”, "diff in means”,
"diff in medians”, "diff in props”, "Chisq”, "F", "slope”, "correlation”, "t",
"ratio of props”, "odds ratio”),
order = NULL,
)
Arguments
X A data frame that can be coerced into a tibble.
formula A formula with the response variable on the left and the explanatory on the right.
Alternatively, a response and explanatory argument can be supplied.
response The variable name in x that will serve as the response. This is an alternative to
using the formula argument.
explanatory The variable name in x that will serve as the explanatory variable. This is an
alternative to using the formula argument.
success The level of response that will be considered a success, as a string. Needed
for inference on one proportion, a difference in proportions, and corresponding
Z stats.
null The null hypothesis. Options include "independence”, "point”, and "paired

independence”.

non

z

’

observe 27

¢ independence: Should be used with both a response and explanatory
variable. Indicates that the values of the specified response variable are
independent of the associated values in explanatory.

* point: Should be used with only a response variable. Indicates that a point
estimate based on the values in response is associated with a parameter.
Sometimes requires supplying one of p, mu, med, or sigma.

* paired independence: Should be used with only a response variable
giving the pre-computed difference between paired observations. Indicates
that the order of subtraction between paired values does not affect the re-
sulting distribution.

p The true proportion of successes (a number between 0 and 1). To be used with
point null hypotheses when the specified response variable is categorical.

mu The true mean (any numerical value). To be used with point null hypotheses
when the specified response variable is continuous.

med The true median (any numerical value). To be used with point null hypotheses
when the specified response variable is continuous.

sigma The true standard deviation (any numerical value). To be used with point null
hypotheses.

stat A string giving the type of the statistic to calculate. Current options include

n

"mean”, "median”, "sum”, "sd", "prop”, "count”, "diff in means"”, "diff
inmedians”, "diff in props”, "Chisq” (or "chisqg"), "F" (or "f"), "t", "z",
"ratio of props”, "slope”, "odds ratio”, "ratio of means"”, and "correlation”.
infer only supports theoretical tests on one or two means via the "t" distribu-

tion and one or two proportions via the "z".

order A string vector of specifying the order in which the levels of the explanatory
variable should be ordered for subtraction (or division for ratio-based statistics),
where order = c("first"”, "second”) means ("first"” - "second"), or the
analogue for ratios. Needed for inference on difference in means, medians, pro-
portions, ratios, t, and z statistics.

To pass options like na. rm = TRUE into functions like mean(), sd(), etc. Can also
be used to supply hypothesized null values for the "t" statistic or additional
arguments to stats: :chisq.test().

Value

A 1-column tibble containing the calculated statistic stat.

See Also

Other wrapper functions: chisq_stat(), chisq_test(), prop_test(), t_stat(), t_test()

Other functions for calculating observed statistics: chisq_stat(), t_stat()

Examples

calculating the observed mean number of hours worked per week
gss |>
observe(hours ~ NULL, stat = "mean”)

28 print.infer
equivalently, calculating the same statistic with the core verbs
gss |>

specify(response = hours) |>
calculate(stat = "mean"”)
calculating a t statistic for hypothesized mu = 4@ hours worked/week
gss |>
observe(hours ~ NULL, stat = "t"”, null = "point”, mu = 40)
equivalently, calculating the same statistic with the core verbs
gss |>
specify(response = hours) |>
hypothesize(null = "point”, mu = 40) |>
calculate(stat = "t")
similarly for a difference in means in age based on whether
the respondent has a college degree
observe(
gss,
age ~ college,
stat = "diff in means”,
order = c("degree”, "no degree")
)
equivalently, calculating the same statistic with the core verbs
gss |>
specify(age ~ college) |>
calculate("diff in means”, order = c("degree”, "no degree"))
for a more in-depth explanation of how to use the infer package
Not run:
vignette("infer")
End(Not run)
print.infer Print methods

Description
Print methods

Usage

S3 method for class 'infer'
print(x, ...)

S3 method for class 'infer_layer'

prop_test 29

print(x, ...)

S3 method for class 'infer_dist'

print(x, ...)
Arguments
X An object of class infer, i.e. output from specify() or hypothesize(), or of
class infer_layer,i.e. output from shade_p_value() or shade_confidence_interval().
Arguments passed to methods.
prop_test Tidy proportion test
Description

A tidier version of prop.test() for equal or given proportions.

Usage

prop_test(
X7
formula,
response = NULL,
explanatory = NULL,
p = NULL,
order = NULL,
alternative = "two-sided”,
conf_int = TRUE,
conf_level = 0.95,
success = NULL,
correct = NULL,

z = FALSE,
)
Arguments
X A data frame that can be coerced into a tibble.
formula A formula with the response variable on the left and the explanatory on the right.
Alternatively, a response and explanatory argument can be supplied.
response The variable name in x that will serve as the response. This is an alternative to
using the formula argument.
explanatory The variable name in x that will serve as the explanatory variable. This is an

alternative to using the formula argument.

30 prop._test

p A numeric vector giving the hypothesized null proportion of success for each
group.

order A string vector specifying the order in which the proportions should be sub-
tracted, where order = c("first"”, "second”) means "first” - "second”. Ig-

nored for one-sample tests, and optional for two sample tests.

alternative Character string giving the direction of the alternative hypothesis. Options are
"two-sided” (default), "greater”, or "less". Only used when testing the null
that a single proportion equals a given value, or that two proportions are equal;
ignored otherwise.

conf_int A logical value for whether to include the confidence interval or not. TRUE by
default.

conf_level A numeric value between 0 and 1. Default value is 0.95.

success The level of response that will be considered a success, as a string. Only used

when testing the null that a single proportion equals a given value, or that two
proportions are equal; ignored otherwise.

correct A logical indicating whether Yates’ continuity correction should be applied where
possible. If z = TRUE, the correct argument will be overwritten as FALSE. Oth-
erwise defaults to correct = TRUE.

z A logical value for whether to report the statistic as a standard normal deviate
or a Pearson’s chi-square statistic. z2 is distributed chi-square with 1 degree of
freedom, though note that the user will likely need to turn off Yates’ continuity
correction by setting correct = FALSE to see this connection.

Additional arguments for prop.test().

Details

When testing with an explanatory variable with more than two levels, the order argument as used
in the package is no longer well-defined. The function will thus raise a warning and ignore the value
if supplied a non-NULL order argument.

The columns present in the output depend on the output of both prop. test () and broom: : glance.htest().
See the latter’s documentation for column definitions; columns have been renamed with the follow-

ing mapping:
e chisq_df = parameter
* p_value =p.value
* lower_ci =conf.low

* upper_ci =conf.high

See Also

Other wrapper functions: chisq_stat(), chisg_test(), observe(), t_stat(), t_test()

rep_sample_n 31

Examples

two-sample proportion test for difference in proportions of
college completion by respondent sex
prop_test(gss,

college ~ sex,

order = c("female”, "male"))

one-sample proportion test for hypothesized null
proportion of college completion of .2
prop_test(gss,

college ~ NULL,

p=.2

report as a z-statistic rather than chi-square
and specify the success level of the response
prop_test(gss,

college ~ NULL,

success = "degree”,
p=.2
z = TRUE)
rep_sample_n Perform repeated sampling

Description

These functions extend the functionality of dplyr: :sample_n() and dplyr::slice_sample() by
allowing for repeated sampling of data. This operation is especially helpful while creating sampling
distributions—see the examples below!

Usage

rep_sample_n(tbl, size, replace = FALSE, reps = 1, prob = NULL)

rep_slice_sample(
.data,
n = NULL,
prop = NULL,
replace = FALSE,
weight_by = NULL,
reps = 1

Arguments

tbl, .data Data frame of population from which to sample.

32

size, n, prop

replace
reps

prob, weight_by

Details

rep_sample_n

size and n refer to the sample size of each sample. The size argument to
rep_sample_n() is required, while in rep_slice_sample() sample size de-
faults to 1 if not specified. prop, an argument to rep_slice_sample(), refers to
the proportion of rows to sample in each sample, and is rounded down in the case
that prop * nrow(.data) is not an integer. When using rep_slice_sample(),
please only supply one of n or prop.

Should samples be taken with replacement?
Number of samples to take.

A vector of sampling weights for each of the rows in .data—must have length
equal to nrow(.data). For weight_by, this may also be an unquoted column
name in .data.

rep_sample_n() and rep_slice_sample() are designed to behave similar to their dplyr counter-
parts. As such, they have at least the following differences:

* In case replace = FALSE having size bigger than number of data rows in rep_sample_n()
will give an error. In rep_slice_sample() having such n or prop > 1 will give warning and
output sample size will be set to number of rows in data.

Note that the dplyr: :sample_n() function has been superseded by dplyr::slice_sample().

Value

A tibble of size reps x n rows corresponding to reps samples of size n from .data, grouped by

replicate.

Examples

library(dplyr)
library(ggplot2)
library(tibble)

take 1000 samples of size n = 50, without replacement

slices <- gss |>

rep_slice_sample(n = 50, reps = 1000)

slices

compute the proportion of respondents with a college
degree in each replicate
p_hats <- slices |>

group_by(replicate) |>

summarize(prop_college = mean(college == "degree"))

plot sampling distribution
ggplot(p_hats, aes(x = prop_college)) +

geom_density()
labs(
x = "p_hat”,

+

y = "Number of samples”,

shade_confidence_interval 33

title = "Sampling distribution of p_hat”
)

sampling with probability weights. Note probabilities are automatically
renormalized to sum to 1
df <- tibble(
id = 1:5,
letter = factor(c("a", "b", "c", "d", "e"))
)

rep_slice_sample(df, n = 2, reps = 5, weight_by = c(.5, .4, .3, .2, .1))

alternatively, pass an unquoted column name in ~.data™ as “weight_by~
df <- df |> mutate(wts = c(.5, .4, .3, .2, .1))

rep_slice_sample(df, n = 2, reps = 5, weight_by = wts)

shade_confidence_interval
Add information about confidence interval

Description

shade_confidence_interval() plots a confidence interval region on top of visualize() output.
The output is a ggplot2 layer that can be added with +. The function has a shorter alias, shade_ci().

Learn more in vignette("infer").

Usage

shade_confidence_interval(
endpoints,
color = "mediumaquamarine”,
fill = "turquoise”,

shade_ci(endpoints, color = "mediumaquamarine”, fill = "turquoise”, ...)

Arguments

endpoints The lower and upper bounds of the interval to be plotted. Likely, this will be the
output of get_confidence_interval(). For calculate()-based workflows,
this will be a 2-element vector or a 1 x 2 data frame containing the lower and
upper values to be plotted. For fit()-based workflows, a (p + 1) x 3 data
frame with columns term, lower_ci, and upper_ci, giving the upper and lower
bounds for each regression term. For use in visualizations of assume () output,
this must be the output of get_confidence_interval().

34 shade_confidence_interval

color A character or hex string specifying the color of the end points as a vertical lines
on the plot.
fill A character or hex string specifying the color to shade the confidence interval.

If NULL then no shading is actually done.

Other arguments passed along to ggplot2 functions.

Value

If added to an existing infer visualization, a ggplot2 object displaying the supplied intervals on top
of its corresponding distribution. Otherwise, an infer_layer list.

See Also

Other visualization functions: shade_p_value()

Examples

find the point estimate---mean number of hours worked per week
point_estimate <- gss |>

specify(response = hours) |>

calculate(stat = "mean")

...and a bootstrap distribution

boot_dist <- gss |>
...we're interested in the number of hours worked per week
specify(response = hours) |>
generating data points
generate(reps = 1000, type = "bootstrap”) |>
finding the distribution from the generated data
calculate(stat = "mean"”)

find a confidence interval around the point estimate
ci <- boot_dist |>
get_confidence_interval(point_estimate = point_estimate,
at the 95% confidence level

level = .95,
using the standard error method
type = "se")

and plot it!

boot_dist |>
visualize() +
shade_confidence_interval(ci)

or just plot the bounds

boot_dist |>
visualize() +
shade_confidence_interval(ci, fill = NULL)

you can shade confidence intervals on top of

shade_confidence_interval

theoretical distributions, too---the theoretical
distribution will be recentered and rescaled to
align with the confidence interval
sampling_dist <- gss |>

specify(response = hours) |>

assume(distribution = "t")

visualize(sampling_dist) +
shade_confidence_interval(ci)

to visualize distributions of coefficients for multiple
explanatory variables, use a ~fit() -based workflow

fit 1000 linear models with the “hours™ variable permuted
null_fits <- gss [|>
specify(hours ~ age + college) |>

hypothesize(null = "independence”) |>
generate(reps = 1000, type = "permute”) |>
fitQ

null_fits

fit a linear model to the observed data
obs_fit <- gss |>

specify(hours ~ age + college) |>

fit()

obs_fit

get confidence intervals for each term
conf_ints <-
get_confidence_interval(
null fits,
point_estimate = obs_fit,
level = .95
)

visualize distributions of coefficients
generated under the null
visualize(null_fits)

add a confidence interval shading layer to juxtapose
the null fits with the observed fit for each term
visualize(null_fits) +

shade_confidence_interval (conf_ints)

more in-depth explanation of how to use the infer package
Not run:
vignette("infer")

End(Not run)

35

36 shade_p_value

shade_p_value Shade histogram area beyond an observed statistic

Description

shade_p_value() plots a p-value region on top of visualize() output. The output is a ggplot2
layer that can be added with +. The function has a shorter alias, shade_pvalue().

Learn more in vignette("infer").

Usage
shade_p_value(obs_stat, direction, color = "red2", fill = "pink”, ...)
shade_pvalue(obs_stat, direction, color = "red2", fill = "pink"”, ...)
Arguments
obs_stat The observed statistic or estimate. For calculate()-based workflows, this will
be a 1-element numeric vector or a 1 x 1 data frame containing the observed
statistic. For fit()-based workflows, a (p + 1) x 2 data frame with columns
term and estimate giving the observed estimate for each term.
direction A string specifying in which direction the shading should occur. Options are
"less", "greater”, or "two-sided”. Can also give "left"”, "right"”, "both",
"two_sided"”, "two sided”, or "two.sided"”. If NULL, the function will not
shade any area.
color A character or hex string specifying the color of the observed statistic as a verti-
cal line on the plot.
fill A character or hex string specifying the color to shade the p-value region. If
NULL, the function will not shade any area.
Other arguments passed along to ggplot2 functions. For expert use only.
Value

If added to an existing infer visualization, a ggplot2 object displaying the supplied statistic on top
of its corresponding distribution. Otherwise, an infer_layer list.

See Also

Other visualization functions: shade_confidence_interval()

shade_p_value 37

Examples

find the point estimate---mean number of hours worked per week
point_estimate <- gss |>

specify(response = hours) |>

hypothesize(null = "point”, mu = 40) |>

calculate(stat = "t")

...and a null distribution
null_dist <- gss [>
...we're interested in the number of hours worked per week

specify(response = hours) |>

hypothesizing that the mean is 40
hypothesize(null = "point”, mu = 40) |>

generating data points for a null distribution
generate(reps = 1000, type = "bootstrap”) |>

estimating the null distribution
calculate(stat = "t")

shade the p-value of the point estimate
null_dist [>
visualize() +
shade_p_value(obs_stat = point_estimate, direction = "two-sided")

you can shade confidence intervals on top of
theoretical distributions, too!
null_dist_theory <- gss |>
specify(response = hours) |>
assume(distribution = "t")

null_dist_theory |>
visualize() +
shade_p_value(obs_stat = point_estimate, direction = "two-sided")

to visualize distributions of coefficients for multiple
explanatory variables, use a ~fit() -based workflow

fit 1000 linear models with the “hours™ variable permuted
null_fits <- gss |>
specify(hours ~ age + college) |>

hypothesize(null = "independence") |>
generate(reps = 1000, type = "permute”) |>
fitQ

null_fits

fit a linear model to the observed data
obs_fit <- gss |>

specify(hours ~ age + college) |>

fit()

obs_fit

38 specify

visualize distributions of coefficients
generated under the null
visualize(null_fits)

add a p-value shading layer to juxtapose the null
fits with the observed fit for each term
visualize(null_fits) +

shade_p_value(obs_fit, direction = "both")

the direction argument will be applied

to the plot for each term

visualize(null_fits) +
shade_p_value(obs_fit, direction = "left")

more in-depth explanation of how to use the infer package
Not run:
vignette("infer")

End(Not run)

specify Specify response and explanatory variables

Description

specify() is used to specify which columns in the supplied data frame are the relevant response
(and, if applicable, explanatory) variables. Note that character variables are converted to factors.

Learn more in vignette("infer").

Usage

specify(x, formula, response = NULL, explanatory = NULL, success = NULL)

Arguments

X A data frame that can be coerced into a tibble.

formula A formula with the response variable on the left and the explanatory on the right.
Alternatively, a response and explanatory argument can be supplied.

response The variable name in x that will serve as the response. This is an alternative to
using the formula argument.

explanatory The variable name in x that will serve as the explanatory variable. This is an
alternative to using the formula argument.

success The level of response that will be considered a success, as a string. Needed

for inference on one proportion, a difference in proportions, and corresponding
Z stats.

t stat 39

Value

A tibble containing the response (and explanatory, if specified) variable data.

See Also

Other core functions: calculate(), generate(), hypothesize()

Examples

specifying for a point estimate on one variable
gss |>
specify(response = age)

specify a relationship between variables as a formula...
gss |>
specify(age ~ partyid)

...or with named arguments!
gss |>
specify(response = age, explanatory = partyid)

more in-depth explanation of how to use the infer package
Not run:

vignette("infer")

End(Not run)

t_stat Tidy t-test statistic

Description

A shortcut wrapper function to get the observed test statistic for a t test. This function has been
deprecated in favor of the more general observe().

Usage

t_stat(
X,
formula,
response = NULL,
explanatory = NULL,

order = NULL,
alternative = "two-sided”,
mu = @,

conf_int = FALSE,
conf_level = 0.95,

40 t stat
Arguments
X A data frame that can be coerced into a tibble.
formula A formula with the response variable on the left and the explanatory on the right.
Alternatively, a response and explanatory argument can be supplied.
response The variable name in x that will serve as the response. This is an alternative to
using the formula argument.
explanatory The variable name in x that will serve as the explanatory variable. This is an
alternative to using the formula argument.
order A string vector of specifying the order in which the levels of the explanatory
variable should be ordered for subtraction, where order = c("first"”, "second”)
means ("first" - "second").
alternative Character string giving the direction of the alternative hypothesis. Options are
"two-sided” (default), "greater”, or "less".
mu A numeric value giving the hypothesized null mean value for a one sample test
and the hypothesized difference for a two sample test.
conf_int A logical value for whether to include the confidence interval or not. TRUE by
default.
conf_level A numeric value between 0 and 1. Default value is 0.95.
Pass in arguments to infer functions.
See Also

Other wrapper functions: chisq_stat(), chisq_test(), observe(), prop_test(), t_test()

Other functions for calculating observed statistics: chisq_stat(), observe()

Examples

library(tidyr)

t test statistic for true mean number of hours worked
per week of 40
gss [>

t_stat(response = hours, mu = 40)

t test statistic for number of hours worked per week
by college degree status
gss |>
tidyr::drop_na(college) |>
t_stat(formula = hours ~ college,
order = c("degree”, "no degree"),
alternative = "two-sided")

t test

41

t_test

Tidy t-test

Description

A tidier version of t.test() for two sample tests.

Usage

t_test(
X,
formula,

response = NULL,
explanatory = NULL,

order = NULL,
alternative = "two-sided”,
mu = 0,

conf_int = TRUE,
conf_level = 0.95,

Arguments

X

formula

response

explanatory

order

alternative

mu

conf_int

conf_level

A data frame that can be coerced into a tibble.

A formula with the response variable on the left and the explanatory on the right.
Alternatively, a response and explanatory argument can be supplied.

The variable name in x that will serve as the response. This is an alternative to
using the formula argument.

The variable name in x that will serve as the explanatory variable. This is an
alternative to using the formula argument.

A string vector of specifying the order in which the levels of the explanatory
variable should be ordered for subtraction, where order = c("first"”, "second")
means ("first"” - "second").

Character string giving the direction of the alternative hypothesis. Options are
"two-sided” (default), "greater”, or "less".

A numeric value giving the hypothesized null mean value for a one sample test
and the hypothesized difference for a two sample test.

A logical value for whether to include the confidence interval or not. TRUE by
default.

A numeric value between 0 and 1. Default value is 0.95.

For passing in other arguments to t.test().

42 visualize

See Also

Other wrapper functions: chisg_stat(), chisq_test(), observe(), prop_test(), t_stat()

Examples

library(tidyr)

t test for number of hours worked per week
by college degree status
gss |>
tidyr::drop_na(college) |>
t_test(formula = hours ~ college,
order = c("degree”, "no degree"),
alternative = "two-sided")

see vignette("infer"”) for more explanation of the
intuition behind the infer package, and vignette("t_test")
for more examples of t-tests using infer

visualize Visualize statistical inference

Description

Visualize the distribution of the simulation-based inferential statistics or the theoretical distribution
(or both!).

Learn more in vignette("infer").

Usage
visualize(data, bins = 15, method = "simulation”, dens_color = "black”", ...)
visualise(data, bins = 15, method = "simulation”, dens_color = "black”, ...)
Arguments
data A distribution. For simulation-based inference, a data frame containing a distri-
bution of calculate()d statistics or fit()ted coefficient estimates. This object
should have been passed to generate() before being supplied or calculate()
to fit (). For theory-based inference, the output of assume().
bins The number of bins in the histogram.
method A string giving the method to display. Options are "simulation”, "theoretical”,

or "both” with "both"” corresponding to "simulation” and "theoretical”.
If data is the output of assume(), this argument will be ignored and default to
"theoretical”.

dens_color A character or hex string specifying the color of the theoretical density curve.

visualize 43

Additional arguments passed along to functions in ggplot2. Formethod = "simulation”,
stat_bin(), and for method = "theoretical”, geom_path(). Some values
may be overwritten by infer internally.

Details

In order to make the visualization workflow more straightforward and explicit, visualize() now
only should be used to plot distributions of statistics directly. A number of arguments related to
shading p-values and confidence intervals are now deprecated in visualize() and should now
be passed to shade_p_value() and shade_confidence_interval(), respectively. visualize()
will raise a warning if deprecated arguments are supplied.

Value

For calculate()-based workflows, a ggplot showing the simulation-based distribution as a his-
togram or bar graph. Can also be used to display theoretical distributions.

For assume ()-based workflows, a ggplot showing the theoretical distribution.

For fit()-based workflows, a patchwork object showing the simulation-based distributions as
a histogram or bar graph. The interface to adjust plot options and themes is a bit different for
patchwork plots than ggplot2 plots. The examples highlight the biggest differences here, but see
patchwork: :plot_annotation() and patchwork::&.gg for more details.

See Also

shade_p_value(), shade_confidence_interval().

Examples

generate a null distribution
null_dist <- gss |>
we're interested in the number of hours worked per week
specify(response = hours) |>
hypothesizing that the mean is 40
hypothesize(null = "point”, mu = 40) |>
generating data points for a null distribution
generate(reps = 1000, type = "bootstrap”) |>
calculating a distribution of means
calculate(stat = "mean")

or a bootstrap distribution, omitting the hypothesize() step,
for use in confidence intervals
boot_dist <- gss |>

specify(response = hours) |>

generate(reps = 1000, type = "bootstrap”) |>

calculate(stat = "mean”)

we can easily plot the null distribution by piping into visualize
null_dist |>

visualize()

we can add layers to the plot as in ggplot, as well...

44

find the point estimate---mean number of hours worked per week
point_estimate <- gss |>

specify(response = hours) |>

calculate(stat = "mean")

find a confidence interval around the point estimate
ci <- boot_dist |>
get_confidence_interval (point_estimate = point_estimate,
at the 95% confidence level

level = .95,
using the standard error method
type = "se")

display a shading of the area beyond the p-value on the plot
null_dist [>

visualize() +

shade_p_value(obs_stat = point_estimate, direction = "two-sided")

...or within the bounds of the confidence interval
null_dist |>

visualize() +

shade_confidence_interval(ci)

plot a theoretical sampling distribution by creating
a theory-based distribution with ~assume()~
sampling_dist <- gss |>

specify(response = hours) |>

assume(distribution = "t")

visualize(sampling_dist)

you can shade confidence intervals on top of

theoretical distributions, too---the theoretical

distribution will be recentered and rescaled to

align with the confidence interval

visualize(sampling_dist) +
shade_confidence_interval(ci)

to plot both a theory-based and simulation-based null distribution,
use a theorized statistic (i.e. one of t, z, F, or Chisq)
and supply the simulation-based null distribution
null_dist_t <- gss [>
specify(response = hours) |>
hypothesize(null = "point”, mu = 40) |>
generate(reps = 1000, type = "bootstrap”) |>
calculate(stat = "t")

obs_stat <- gss |>
specify(response = hours) |>
hypothesize(null = "point"”, mu = 40) |>
calculate(stat = "t")

visualize

%>% 45

visualize(null_dist_t, method = "both")

visualize(null_dist_t, method = "both") +
shade_p_value(obs_stat, "both")

to visualize distributions of coefficients for multiple
explanatory variables, use a ~fit() -based workflow

fit 1000 models with the “hours™ variable permuted
null_fits <- gss [|>
specify(hours ~ age + college) |>

hypothesize(null = "independence") |>
generate(reps = 1000, type = "permute”) |>
fitQ

null_fits

visualize distributions of resulting coefficients
visualize(null_fits)

the interface to add themes and other elements to patchwork

plots (outputted by “visualize™ when the inputted data

is from the “fit()~ function) is a bit different than adding

them to ggplot2 plots.

library(ggplot2)

to add a ggplot2 theme to a ~“calculate() -based visualization, use ~+°
null_dist |> visualize() + theme_dark()

to add a ggplot2 theme to a ~fit() -based visualization, use ~&

null_fits |> visualize() & theme_dark()

More in-depth explanation of how to use the infer package
Not run:
vignette("infer")

End(Not run)

%>% Pipe

Description

Like {dplyr}, {infer} also uses the pipe (|>) function from magrittr to turn function composition
into a series of iterative statements.

46 %>%

Arguments

lhs, rhs Inference functions and the initial data frame.

Index

* auxillary functions
get_confidence_interval, 17
get_p_value, 20

* core functions
calculate, 5
generate, 14
hypothesize, 23
specify, 38

+ datasets
gss, 22

* functions for calculating observed

statistics
chisqg_stat, 9
observe, 26
t_stat, 39

x visualization functions
shade_confidence_interval, 33
shade_p_value, 36

* wrapper functions
chisqg_stat, 9
chisqg_test, 10
observe, 26
prop_test, 29
t_stat, 39
t_test, 41

%>%, 45

assume, 3
assume(), 17, 18, 20, 33,42, 43

broom: :glance.htest(), 30

calculate, 5, 16, 24, 39
calculate(), 3, 17, 18, 20, 26, 33, 36, 42, 43
chisq.test(), 9, 10
chisqg_stat, 9, 10, 27, 30, 40, 42
chisq_test, 9, 10, 27, 30, 40, 42

conf_int (deprecated), 11

deprecated, 11

47

dplyr::sample_n(), 31, 32
dplyr::slice_sample(), 31, 32

fit(), 17, 18, 20, 21, 33, 36,42, 43
fit.infer, 11

generate, 8, 14, 24, 39
generate(), 3,6, 11, 12,17, 18, 20, 42
get_ci (get_confidence_interval), 17
get_confidence_interval, 17, 21
get_confidence_interval(), 3, 4,8, 11, 33
get_p_value, 18, 20
get_p_value(), 3, 4,8, 11

get_pvalue (get_p_value), 20

gss, 22

hypothesise (hypothesize), 23
hypothesize, 8, 16, 23, 39
hypothesize(), 3,6, 11, 15,17, 18, 26, 29

infer, 25
infer-package (infer), 25

mean(), 6, 27

observe, 9, 10, 26, 30, 40, 42
observe(), 9, 39

p_value (deprecated), 11
parsnip::multinom_reg(), 11
patchwork: :&.gg, 43

patchwork: :plot_annotation(), 43
print.infer, 28

print.infer_dist (print.infer), 28
print.infer_layer (print.infer), 28
prop.test(), 29, 30
prop_test, 9, 10, 27, 29, 40, 42

rep_sample_n, 31
rep_slice_sample (rep_sample_n), 31

sdQ), 6,27

48 INDEX

shade_ci (shade_confidence_interval), 33
shade_confidence_interval, 33, 36
shade_confidence_interval(), I8, 29, 43
shade_p_value, 34, 36
shade_p_value(), 29, 43

shade_pvalue (shade_p_value), 36
specify, 8, 16, 24, 38
specify(), 3,6, 11, 12,23, 26, 29
stats::chisq.test(), 6,27
stats::glm(), 11, 12

t.test(), 41

t_stat, 9, 10, 27, 30, 39, 42

t_test, 9, 10, 27, 30, 40, 41

tibble, 9, 10, 12, 15, 18, 21, 24, 26, 29, 38,
40, 41

visualise (visualize), 42
visualize, 42
visualize(), 3,4, 8, 18, 33, 36,43

	assume
	calculate
	chisq_stat
	chisq_test
	deprecated
	fit.infer
	generate
	get_confidence_interval
	get_p_value
	gss
	hypothesize
	infer
	observe
	print.infer
	prop_test
	rep_sample_n
	shade_confidence_interval
	shade_p_value
	specify
	t_stat
	t_test
	visualize
	>
	Index

