Package ‘lattice’

April 2, 2025
Version 0.22-7
Date 2025-03-31
Priority recommended
Title Trellis Graphics for R

Description A powerful and elegant high-level data visualization
system inspired by Trellis graphics, with an emphasis on
multivariate data. Lattice is sufficient for typical graphics needs,
and is also flexible enough to handle most nonstandard requirements.
See ?Lattice for an introduction.

Depends R (>=4.0.0)

Suggests KernSmooth, MASS, latticeExtra, colorspace
Imports grid, grDevices, graphics, stats, utils
Enhances chron, zoo

LazyLoad yes

LazyData yes

License GPL (>=2)

URL https://lattice.r-forge.r-project.org/

BugReports https://github.com/deepayan/lattice/issues
NeedsCompilation yes

Author Deepayan Sarkar [aut, cre] (<https://orcid.org/0000-0003-4107-1553>),
Felix Andrews [ctb],
Kevin Wright [ctb] (documentation),
Neil Klepeis [ctb],
Johan Larsson [ctb] (miscellaneous improvements),
Zhijian (Jason) Wen [cph] (filled contour code),
Paul Murrell [ctb],
Stefan Eng [ctb] (violin plot improvements),
Achim Zeileis [ctb] (modern colors),
Alexandre Courtiol [ctb] (generics for larrows, Ipolygon, Irect and
Isegments)

https://lattice.r-forge.r-project.org/
https://github.com/deepayan/lattice/issues
https://orcid.org/0000-0003-4107-1553

Maintainer Deepayan Sarkar <deepayan.sarkar@r-project.org>
Repository CRAN
Date/Publication 2025-04-02 15:40:02 UTC

Contents

Contents
A_O1_Lattice o o e e 3
B_00_xyplot e e 6
B_Ol_xyplot.ts e 25
B_02_barchart.table 28
B_03_histogram e e e e e 30
B_O4_qgmath e 35
B_05_qq. . - -« o e e 38
B_06_levelplot e 40
B_O07_cloud e 46
B_O8_splom 52
B_09_tmd e 55
B_10_xfs e 57
B_ll_oneway e 58
C_Ol_trellis.device o o v i i e e 59
C_02a_standard.theme 61
C_02b_trellis.par.get e 63
C_O03_simpleTheme 66
C_04_]attice.optionS v vt e e e e e e e 67
C_O5_print.trellis e 69
C_06_update.trellis e e 73
C_O7_shingles. e e e 76
D_draw.colorkey 78
D_drawkey e 78
D _level.colors e e 79
D_make.groups 80
D_simpleKey 81
D_strip.default 83
D_trellis.object 85
E_ interaction 86
F_l_panelbarchart e 93
F_l_panelbwplot e 95
F_1_panelcloud. e 97
F_1_panel.densityplot. e 102
F_l_paneldotplot e 103
F_l_panelhistogram 104
F_1_panellevelplot e 105
F_1_panelpairs o e e e e e e 108
F_l_panelparallel 111
F_1 _panel.qgmath 112
F_1_panelstripplot e e e 114
F_l_panel.xyplot e 115

A_01 Lattice 3

F 2 Ilnes e e 118
F_2 panelfunctions. e 122
F_2 panelloess e 126
F_2_panel.qgmathline 127
F_2_panel.smoothScatter 128
F_2 panelspline e e e 129
F_2_panel.superpose e e 131
F_2 panel.violin e 133
F_3_prepanel.default 135
F_3_prepanel.functions 136
G axisdefault e 138
G_banking e e 141
G_latticeParseFormula e 143
G_packet.panel.default oL 144
G_panel.axis 145
G_panelnumber. L. 147
G_ROWS . . . 148
G_utilities.3d e e e e e 149
H_ barley e e 150
H_environmental L 151
H _ethanol e 152
H_melanoma e 154
H_singer. e e 155
H_USMortality e 156
LISet . . . e e e 158
Index 159
A_Q1_Lattice Lattice Graphics
Description

The lattice add-on package is an implementation of Trellis graphics for R. It is a powerful and
elegant high-level data visualization system with an emphasis on multivariate data. It is designed
to meet most typical graphics needs with minimal tuning, but can also be easily extended to handle
most nonstandard requirements.

Details

Trellis Graphics, originally developed for S and S-PLUS at the Bell Labs, is a framework for data
visualization developed by R. A. Becker, W. S. Cleveland, et al, extending ideas presented in Cleve-
land’s 1993 book Visualizing Data. The Lattice API is based on the original design in S, but extends
it in many ways.

The Lattice user interface primarily consists of several ‘high-level’ generic functions (listed below
in the “See Also” section), each designed to create a particular type of display by default. Although
the functions produce different output, they share many common features, reflected in several com-
mon arguments that affect the resulting displays in similar ways. These arguments are extensively

4 A_01_Lattice

(sometimes only) documented in the help page for xyplot, which also includes a discussion of
the important topics of conditioning and control of the Trellis layout. Features specific to other
high-level functions are documented in their respective help pages.

Lattice employs an extensive system of user-controllable settings to determine the look and feel of
the displays it produces. To learn how to use and customize the graphical parameters used by lattice,
see trellis.par.set. For other settings, see lattice.options. The default graphical settings
are (potentially) different for different graphical devices. To learn how to initialize new devices
with the desired settings or change the settings of the current device, see trellis.device.

It is usually unnecessary, but sometimes important to be able to plot multiple lattice plots on a single
page. Such capabilities are described in the print.trellis help page. See update.trellis to
learn about manipulating a "trellis” object. Tools to augment lattice plots after they are drawn
(including locator-like functionality) are described in the trellis. focus help page.

The online documentation accompanying the package is complete, and effort has been made to
present the help pages in a logical sequence, so that one can learn how to use lattice by reading
the PDF reference manual available at https://cran.r-project.org/package=lattice. How-
ever, the format in which the online documentation is written and the breadth of topics covered
necessarily makes it somewhat terse and less than ideal as a first introduction. For a more gentle
introduction, a book on lattice is available as part of Springer’s ‘Use R’ series; see the “References”
section below.

Note

High-level lattice functions like xyplot are different from traditional R graphics functions in that
they do not perform any plotting themselves. Instead, they return an object, of class "trellis”,
which has to be then print-ed or plot-ted to create the actual plot. Due to R’s automatic printing
rule, it is usually not necessary to explicitly carry out the second step, and lattice functions appear
to behave like their traditional counterparts. However, the automatic plotting is suppressed when
the high-level functions are called inside another function (most often source) or in other contexts
where automatic printing is suppressed (e.g., for or while loops). In such situations, an explicit
call to print or plot is required.

The lattice package is based on the Grid graphics engine and requires the grid add-on package.
One consquence of this is that it is not (readily) compatible with traditional R graphics tools. In
particular, changing par () settings usually has no effect on Lattice plots; lattice provides its own
interface for querying and modifying an extensive set of graphical and non-graphical settings.

Author(s)

Deepayan Sarkar <Deepayan.Sarkar@R-project.org>

References

Sarkar, Deepayan (2008) Lattice: Multivariate Data Visualization with R, Springer. ISBN: 978-0-
387-75968-5 http://1mdvr.r-forge.r-project.org/
Cleveland, William .S. (1993) Visualizing Data, Hobart Press, Summit, New Jersey.

Becker, R. A. and Cleveland, W. S. and Shyu, M. J. (1996). “The Visual Design and Control of
Trellis Display”, Journal of Computational and Graphical Statistics, 5(2), 123-155.

https://cran.r-project.org/package=lattice
http://lmdvr.r-forge.r-project.org/

A_01 Lattice 5

Bell Lab’s Trellis Page contains several documents outlining the use of Trellis graphics; these pro-

vide a holistic introduction to the Trellis paradigm: http://web.archive.org/web/20081020164041/
http://cm.bell-labs.com/cm/ms/departments/sia/project/trellis/display.writing.html

See Also

The following is a list of high-level functions in the lattice package and their default displays. In all
cases, the actual display is produced by the so-called “panel” function, which has a suitable default,
but can be substituted by an user defined function to create customized displays. In many cases,
the default panel function will itself have many optional arguments to customize its output. The
default panel functions are named as “panel.” followed by the name of the corresponding high-
level function; i.e., the default panel function for xyplot is panel.xyplot, the one for histogram
is panel.histogram, etc. Each default panel function has a separate help page, linked from the
help pages of the corresponding high-level function. Although documented separately, arguments
to these panel functions can be supplied directly to the high-level functions, which will pass on the
arguments appropriately.

Univariate:

barchart: Bar plots.

bwplot: Box-and-whisker plots.
densityplot: Kernel density estimates.
dotplot: Cleveland dot plots.
histogram: Histograms.

ggmath: Theretical quantile plots.

stripplot: One-dimensional scatterplots.
Bivariate:

gq: Quantile plots for comparing two distributions.

xyplot: Scatterplots and time-series plots (and potentially a lot more).
Trivariate:

levelplot: Level plots (similar to image plots).
contourplot: Contour plots.
cloud: Three-dimensional scatter plots.

wireframe: Three-dimensional surface plots (similar to persp plots).
Hypervariate:

splom: Scatterplot matrices.

parallel: Parallel coordinate plots.
Miscellaneous:

rfs: Residual and fitted value plots (also see oneway).

tmd: Tukey Mean-Difference plots.

http://web.archive.org/web/20081020164041/http://cm.bell-labs.com/cm/ms/departments/sia/project/trellis/display.writing.html
http://web.archive.org/web/20081020164041/http://cm.bell-labs.com/cm/ms/departments/sia/project/trellis/display.writing.html

6 B_00_xyplot

In addition, there are several panel functions that do little by themselves, but can be useful compo-
nents of custom panel functions. These are documented in panel. functions. Lattice also provides
a collection of convenience functions that correspond to the traditional graphics primitives lines,
points, etc. These are implemented using Grid graphics, but try to be as close to the traditional
versions as possible in terms of their argument list. These functions have names like 11ines or
panel.lines and are often useful when writing (or porting from S-PLUS code) nontrivial panel
functions.

Finally, many useful enhancements that extend the Lattice system are available in the latticeExtra
package.

Examples
Not run:

Show brief history of changes to lattice, including
a summary of new features.

RShowDoc ("NEWS", package = "lattice")

End(Not run)

B_00_xyplot Common Bivariate Trellis Plots

Description

This help page documents several commonly used high-level Lattice functions. xyplot produces
bivariate scatterplots or time-series plots, bwplot produces box-and-whisker plots, dotplot pro-
duces Cleveland dot plots, barchart produces bar plots, and stripplot produces one-dimensional
scatterplots. All these functions, along with other high-level Lattice functions, respond to a com-
mon set of arguments that control conditioning, layout, aspect ratio, legends, axis annotation, and
many other details in a consistent manner. These arguments are described extensively in this help
page, and should be used as the reference for other high-level functions as well.

For control and customization of the actual display in each panel, the help page of the respective
default panel function will often be more informative. In particular, these help pages describe many
arguments commonly used when calling the corresponding high-level function but are specific to

them.

Usage
xyplot(x, data, ...)
dotplot(x, data, ...)
barchart(x, data, ...)
stripplot(x, data, ...)
bwplot(x, data, ...)

S3 method for class 'formula'

B_00_xyplot

xyplot(x,
data,
allow.multiple = is.null(groups) || outer,
outer = !is.null(groups),

auto.key = lattice.getOption("default.args"”)$auto.key,

aspect = "fill",

panel = lattice.getOption("panel.xyplot”),

prepanel = NULL,

scales = list(),

strip = TRUE,

groups = NULL,

xlab,

xlim,

ylab,

ylim,

drop.unused.levels = lattice.getOption("drop.unused.levels"),
lattice.options = NULL,

default.scales,

default.prepanel = lattice.getOption("prepanel.default.xyplot”),
subscripts = !is.null(groups),

subset = TRUE)

S3 method for class 'data.frame'
xyplot(x, data = NULL, formula = data, ...)

S3 method for class 'formula’
dotplot(x,
data,
panel = lattice.getOption("panel.dotplot"”),
default.prepanel = lattice.getOption("prepanel.default.dotplot”),

)

S3 method for class 'data.frame'
dotplot(x, data = NULL, formula = data, ...)

S3 method for class 'formula’
barchart(x,
data,
panel = lattice.getOption("panel.barchart”),
default.prepanel = lattice.getOption("prepanel.default.barchart”),
box.ratio = 2,

.

S3 method for class 'data.frame'
barchart(x, data = NULL, formula = data, ...)

S3 method for class 'formula’

8 B_00_xyplot

stripplot(x,
data,
panel = lattice.getOption("panel.stripplot”),
default.prepanel = lattice.getOption("prepanel.default.stripplot”),
L)

S3 method for class 'data.frame'
stripplot(x, data = NULL, formula = data, ...)

S3 method for class 'formula'
bwplot(x,
data,
allow.multiple = is.null(groups) || outer,
outer = FALSE,
auto.key = lattice.getOption("default.args"”)$auto.key,
aspect = "fill",
panel = lattice.getOption("”panel.bwplot”),
prepanel = NULL,
scales = list(),
strip = TRUE,
groups = NULL,
xlab,
xlim,
ylab,
ylim,
box.ratio = 1,
horizontal = NULL,
drop.unused.levels = lattice.getOption("drop.unused.levels”),
lattice.options = NULL,
default.scales,
default.prepanel = lattice.getOption("prepanel.default.bwplot”),
subscripts = !is.null(groups),
subset = TRUE)

S3 method for class 'data.frame'

bwplot(x, data = NULL, formula = data, ...)
Arguments
X All high-level function in lattice are generic. x is the object on which method

dispatch is carried out.

For the "formula” methods, x must be a formula describing the primary vari-
ables (used for the per-panel display) and the optional conditioning variables
(which define the subsets plotted in different panels) to be used in the plot. Con-
ditioning is described in the “Details” section below.

For the functions documented here, the formula is generally of the form y ~ x

B_00_xyplot

| g1 *g2=* ... (or equivalently, y ~ x | g1 + g2+ ...), indicating that plots of
y (on the y-axis) versus x (on the x-axis) should be produced conditional on
the variables g1, g2, Here x and y are the primary variables, and g1, g2,

. are the conditioning variables. The conditioning variables may be omitted
to give a formula of the form y ~ x, in which case the plot will consist of a
single panel with the full dataset. The formula can also involve expressions, e.g.,
sqrt(), log(), etc. See the data argument below for rules regarding evaluation
of the terms in the formula.

With the exception of xyplot, the functions documented here may also be
supplied a formula of the form ~ x | g1 * g2 x In that case, y defaults to
names(x) if x is named, and a factor with a single level otherwise.

Cases where x is not a formula is handled by appropriate methods. The numeric
methods are equivalent to a call with no left hand side and no conditioning vari-
ables in the formula. For barchart and dotplot, non-trivial methods exist for
tables and arrays, documented at barchart. table.

The conditioning variables g1, g2, ... must be either factors or shingles. Shin-
gles provide a way of using numeric variables for conditioning; see the help
page of shingle for details. Like factors, they have a "levels” attribute, which
is used in producing the conditional plots. If necessary, numeric conditioning
variables are converted to shingles using the shingle function; however, using
equal.count may be more appropriate in many cases. Character variables are
coerced to factors.

Extended formula interface: As a useful extension of the interface described
above, the primary variable terms (both the LHS y and RHS x) may consist of
multiple terms separated by a ‘+’ sign, e.g., y1 + y2 ~x | a *x b. This formula
would be taken to mean that the user wants to plot both y1 ~x | a * b and y2
~x | a*b, but with the y1 ~ x and y2 ~ x superposed in each panel. The two
groups will be distinguished by different graphical parameters. This is essen-
tially what the groups argument (see below) would produce, if y1 and y2 were
concatenated to produce a longer vector, with the groups argument being an
indicator of which rows come from which variable. In fact, this is exactly what
is done internally using the reshape function. This feature cannot be used in
conjunction with the groups argument.

To interpret y1 + y2 as a sum, one can either set allow.multiple=FALSE or use
I(yl+y2).

A variation on this feature is when the outer argument is set to TRUE. In that
case, the plots are not superposed in each panel, but instead separated into dif-
ferent panels (as if a new conditioning variable had been added).

Primary variables: The x and y variables should both be numeric in xyplot,
and an attempt is made to coerce them if not. However, if either is a factor, the
levels of that factor are used as axis labels. In the other four functions docu-
mented here, exactly one of x and y should be numeric, and the other a factor
or shingle. Which of these will happen is determined by the horizontal argu-
ment — if horizontal=TRUE, then y will be coerced to be a factor or shingle,
otherwise x. The default value of horizontal is FALSE if x is a factor or shin-
gle, TRUE otherwise. (The functionality provided by horizontal=FALSE is not
S-compatible.)

10

data

formula

allow.multiple

outer

box.ratio

horizontal

B_00_xyplot

Note that the x argument used to be called formula in earlier versions (when
the high-level functions were not generic and the formula method was essen-
tially the only method). This is no longer allowed. It is recommended that this
argument not be named in any case, but instead be the first (unnamed) argument.

For the formula methods, a data frame (or more precisely, anything that is a
valid envir argument in eval, e.g., a list or an environment) containing values
for any variables in the formula, as well as groups and subset if applicable. If
not found in data, or if data is unspecified, the variables are looked for in the
environment of the formula. For other methods (where x is not a formula), data
is usually ignored, often with a warning if it is explicitly specified.

The formula to be used for the "data.frame"” methods. See documentation for
argument x for details.

Logical flag specifying whether the extended formula interface described above
should be in effect. Defaults to TRUE whenever sensible.

Logical flag controlling what happens with formulas using the extended inter-
face described above (see the entry for x for details). Defaults to FALSE, except
when groups is explicitly specified or grouping does not make sense for the
default panel function.

Applicable to barchart and bwplot. Specifies the ratio of the width of the
rectangles to the inter-rectangle space. See also the box.width argument in the
respective default panel functions.

Logical flag applicable to bwplot, dotplot, barchart, and stripplot. Deter-
mines which of x and y is to be a factor or shingle (y if TRUE, x otherwise).
Defaults to FALSE if x is a factor or shingle, TRUE otherwise. This argument
is used to process the arguments to these high-level functions, but more impor-
tantly, it is passed as an argument to the panel function, which is expected to use
it as appropriate.

A potentially useful component of scales in this case may be abbreviate =
TRUE, in which case long labels which would usually overlap will be abbreviated.
scales could also contain a minlength argument in this case, which would be
passed to the abbreviate function.

Common arguments: The following arguments are common to all the functions documented here,
as well as most other high-level Trellis functions. These are not documented elsewhere, except to
override the usage given here.

panel

Once the subset of rows defined by each unique combination of the levels of
the grouping variables are obtained (see “Details”), the corresponding x and
y variables (or other variables, as appropriate, in the case of other high-level
functions) are passed on to be plotted in each panel. The actual plotting is
done by the function specified by the panel argument. The argument may be
a function object or a character string giving the name of a predefined func-
tion. Each high-level function has its own default panel function, named as
“panel.” followed by the name of the corresponding high-level function (e.g.,
panel.xyplot, panel.barchart, etc).

Much of the power of Trellis Graphics comes from the ability to define cus-
tomized panel functions. A panel function appropriate for the functions de-
scribed here would usually expect arguments named x and y, which would be

B_00_xyplot

11

provided by the conditioning process. It can also have other arguments. It is
useful to know in this context that all arguments passed to a high-level Lattice
function (such as xyplot) that are not recognized by it are passed through to
the panel function. It is thus generally good practice when defining panel func-
tions to allow a . . . argument. Such extra arguments typically control graphical
parameters, but other uses are also common. See documentation for individual
panel functions for specifics.

Note that unlike in S-PLUS, it is not guaranteed that panel functions will be
supplied only numeric vectors for the x and y arguments; they can be factors as
well (but not shingles). Panel functions need to handle this case, which in most
cases can be done by simply coercing them to numeric.

Technically speaking, panel functions must be written using Grid graphics func-
tions. However, knowledge of Grid is usually not necessary to construct new
custom panel functions, as there are several predefined panel functions which
can help; for example, panel.grid, panel.loess, etc. There are also some
grid-compatible replacements of commonly used traditional graphics functions
useful for this purpose. For example, lines can be replaced by 1lines (or
equivalently, panel.lines). Note that traditional graphics functions like 1ines
will not work in a lattice panel function.

One case where a bit more is required of the panel function is when the groups
argument is not NULL. In that case, the panel function should also accept argu-
ments named groups and subscripts (see below for details). A useful panel
function predefined for use in such cases is panel.superpose, which can be
combined with different panel.groups functions to determine what is plotted
for each group. See the “Examples” section for an interaction plot constructed
in this way. Several other panel functions can also handle the groups argument,
including the default ones for xyplot, barchart, dotplot, and stripplot.
Even when groups is not present, the panel function can have subscripts as a
formal argument. In either case, the subscripts argument passed to the panel
function are the indices of the x and y data for that panel in the original data,
BEFORE taking into account the effect of the subset argument. Note that
groups remains unaffected by any subsetting operations, so groups[subscripts]
gives the values of groups that correspond to the data in that panel.

This interpretation of subscripts does not hold when the extended formula
interface is in use (i.e., when allow.multiple is in effect). A comprehensive
description would be too complicated (details can be found in the source code of
the function latticeParseFormula), but in short, the extended interface works
by creating an artificial grouping variable that is longer than the original data
frame, and consequently, subscripts needs to refer to rows beyond those in
the original data. To further complicate matters, the artificial grouping variable
is created after any effect of subset, in which case subscripts may have no
relationship with corresponding rows in the original data frame.

One can also use functions called panel.number and packet.number, repre-
senting panel order and packet order respectively, inside the panel function
(as well as the strip function or while interacting with a lattice display using
trellis.focus etc). Both provide a simple integer index indicating which
panel is currently being drawn, but differ in how the count is calculated. The
panel number is a simple incremental counter that starts with 1 and is incre-

12

aspect

groups

auto.key

B_00_xyplot

mented each time a panel is drawn. The packet number on the other hand in-
dexes the combination of levels of the conditioning variables that is represented
by that panel. The two indices coincide unless the order of conditioning vari-
ables is permuted and/or the plotting order of levels within one or more con-
ditioning variables is altered (using perm.cond and index. cond respectively),
in which case packet.number gives the index corresponding to the ‘natural’
ordering of that combination of levels of the conditioning variables.

panel.xyplot has an argument called type which is worth mentioning here
because it is quite frequently used (and as mentioned above, can be passed to
xyplot directly). In the event that a groups variable is used, panel.xyplot
calls panel.superpose, arguments of which can also be passed directly to
xyplot. Panel functions for bwplot and friends should have an argument called
horizontal to account for the cases when x is the factor or shingle.

This argument controls the physical aspect ratio of the panels, which is usually
the same for all the panels. It can be specified as a ratio (vertical size/horizontal
size) or as a character string. In the latter case, legitimate values are "fill”
(the default) which tries to make the panels as big as possible to fill the available
space; "xy", which computes the aspect ratio based on the 45 degree banking
rule (see banking); and "iso" for isometric scales, where the relation between
physical distance on the device and distance in the data scale are forced to be
the same for both axes.

If a prepanel function is specified and it returns components dx and dy, these
are used for banking calculations. Otherwise, values from the default prepanel
function are used. Not all default prepanel functions produce sensible banking
calculations.

A variable or expression to be evaluated in data, expected to act as a group-
ing variable within each panel, typically used to distinguish different groups by
varying graphical parameters like color and line type. Formally, if groups is
specified, then groups along with subscripts is passed to the panel function,
which is expected to handle these arguments. For high level functions where
grouping is appropriate, the default panel functions can handle grouping.

It is very common to use a key (legend) when a grouping variable is specified.
See entries for key, auto.key and simpleKey for how to draw a key.

A logical, or a list containing components to be used as arguments to simpleKey.
The default can be set using lattice.options.

auto.key = TRUE is equivalent to auto.key = 1ist (), in which case simpleKey
is called with a set of default arguments (which may depend on the relevant high-
level function). Most valid components to the key argument can be specified in
this manner, as simpleKey will simply add unrecognized arguments to the list it
produces.

auto.key is typically used to automatically produce a suitable legend in con-
junction with a grouping variable. If auto.key = TRUE, a suitable legend will
be drawn if a groups argument is also provided, and not otherwise. In list
form, auto.key will modify the default legend thus produced. For example,

auto.key=list(columns = 2) will create a legend split into two columns (columns

is documented in the entry for key).

B_00_xyplot

prepanel

strip

13

More precisely, if auto.key is not FALSE, groups is non-null, and there is no
key or legend argument specified in the call, a key is created with simpleKey
with levels(groups) as the first (text) argument. (Note: this may not work
in all high-level functions, but it does work for the ones where grouping makes
sense with the default panel function). If auto.key is provided as a list and
includes a text component, then that is used instead as the text labels in the
key, and the key is drawn even if groups is not specified.

Note that simpleKey uses the default settings (see trellis.par.get) to deter-
mine the graphical parameters in the key, so the resulting legend will be mean-
ingful only if the same settings are used in the plot as well. The par.settings
argument, possibly in conjunction with simpleTheme, may be useful to tem-
porarily modify the default settings for this purpose.

One disadvantage to using key (or even simpleKey) directly is that the graph-
ical parameters used in the key are absolutely determined at the time when the
"trellis"” object is created. Consequently, if a plot once created is re-plot-
ted with different settings, the original parameter settings will be used for the
key even though the new settings are used for the actual display. However, with
auto.key, the key is actually created at plotting time, so the settings will match.

A function that takes the same arguments as the panel function and returns a
list, possibly containing components named x1im, ylim, dx, and dy (and less
frequently, xat and yat). The return value of a user-supplied prepanel func-
tion need not contain all these components; in case some are missing, they are
replaced by the component-wise defaults.

The x1im and ylim components are similar to the high level x1im and ylim ar-
guments (i.e., they are usually a numeric vector of length 2 defining a range,
or a character vector representing levels of a factor). If the x1im and ylim ar-
guments are not explicitly specified (possibly as components in scales) in the
high-level call, then the actual limits of the panels are guaranteed to include the
limits returned by the prepanel function. This happens globally if the relation
component of scales is "same”, and on a per-panel basis otherwise.

The dx and dy components are used for banking computations in case aspect
is specified as "xy". See documentation of banking for details.

If x1imor ylimis a character vector (which is appropriate when the correspond-
ing variable is a factor), this implicitly indicates that the scale should include
the first n integers, where n is the length of x1im or ylim, as the case may be.
The elements of the character vector are used as the default labels for these n
integers. Thus, to make this information consistent between panels, the x1im or
ylim values should represent all the levels of the corresponding factor, even if
some are not used within that particular panel.

In such cases, an additional component xat or yat may be returned by the
prepanel function, which should be a subset of 1:n, indicating which of the
n values (levels) are actually represented in the panel. This is useful when cal-
culating the limits with relation="free" or relation="sliced"” in scales.

The prepanel function is responsible for providing a meaningful return value
when the x, y (etc.) variables are zero-length vectors. When nothing else is
appropriate, values of NA should be returned for the x1im and y1im components.

A logical flag or function. If FALSE, strips are not drawn. Otherwise, strips

14

x1lab

ylab

scales

B_00_xyplot

are drawn using the strip function, which defaults to strip.default. See
documentation of strip.default to see the arguments that are available to the
strip function. This description also applies to the strip.left argument (see
... below), which can be used to draw strips on the left of each panel (useful
for wide short panels, e.g., in time-series plots).

Character or expression (or a "grob") giving label(s) for the x-axis. Generally
defaults to the expression for x in the formula defining the plot. Can be specified
as NULL to omit the label altogether. Finer control is possible, as described in
the entry for main, with the modification that if the 1abel component is omitted
from the list, it is replaced by the default x1ab.

Character or expression (or "grob") giving label for the y-axis. Generally de-
faults to the expression for y in the formula defining the plot. Finer control is
possible, see entries for main and x1ab.

Generally a list determining how the x- and y-axes (tick marks and labels) are
drawn. The list contains parameters in name=value form, and may also contain
two other lists called x and y of the same form (described below). Components
of x and y affect the respective axes only, while those in scales affect both.
When parameters are specified in both lists, the values in x or y are used. Note
that certain high-level functions have defaults that are specific to a particular
axis (e.g., bwplot has alternating=FALSE for the categorical axis only); these
can only be overridden by an entry in the corresponding component of scales.

As a special exception, scales (or its x and y components) can also be a char-
acter string, in which case it is interpreted as the relation component.

The possible components are :

relation A character string that determines how axis limits are calculated for
each panel. Possible values are "same” (default), "free” and "sliced”.
For relation="same", the same limits, usually large enough to encompass
all the data, are used for all the panels. For relation="free", limits for
each panel is determined by just the points in that panel. Behavior for
relation="sliced" is similar, except that the length (max - min) of the
scales are constrained to remain the same across panels.
The determination of what axis limits are suitable for each panel can be
controlled by the prepanel function, which can be overridden by x1im,
ylimor scales$limits (except when relation="sliced"”, in which case
explicitly specified limits are ignored with a warning). When relation
is "free"”, xlim or ylim can be a list, in which case it is treated as if its
components were the limit values obtained from the prepanel calculations
for each panel (after being replicated if necessary).

tick.number An integer, giving the suggested number of intervals between
ticks. This is ignored for a factor, shingle, or character vector, for in these
cases there is no natural rule for leaving out some of the labels. But see
x1lim.

draw A logical flag, defaulting to TRUE, that determines whether to draw the
axis (i.e., tick marks and labels) at all.

alternating Usually a logical flag specifying whether axis labels should al-
ternate from one side of the group of panels to the other. For finer control,

B_00_xyplot

15

alternating can also be a vector (replicated to be as long as the number
of rows or columns per page) consisting of the following numbers
* 0: do not draw tick labels
¢ 1: bottom/left
* 2: top/right
* 3: both.
alternating applies only when relation="same". The default is TRUE,
or equivalently, c(1, 2)
limits Same as x1imand ylim.
at The location of tick marks along the axis (in native coordinates), or a list as
long as the number of panels describing tick locations for each panel.
labels Vector of labels (characters or expressions) to go along with at. Can
also be a list like at.
cex A numeric multiplier to control character sizes for axis labels. Can be a
vector of length 2, to control left/bottom and right/top labels separately.
font, fontface, fontfamily Specifies the font to be used for axis labels.
lineheight Specifies the line height parameter (height of line as a multiple of
the size of text); relevant for multi-line labels. (This is currently ignored for
cloud.)
tck Usually a numeric scalar controlling the length of tick marks. Can also be
a vector of length 2, to control the length of left/bottom and right/top tick
marks separately.
col Color of tick marks and labels.
rot Angle (in degrees) by which the axis labels are to be rotated. Can be a
vector of length 2, to control left/bottom and right/top axes separately.
abbreviate A logical flag, indicating whether to abbreviate the labels using
the abbreviate function. Can be useful for long labels (e.g., in factors),
especially on the x-axis.
minlength Argument passed to abbreviate if abbreviate=TRUE.
log Controls whether the corresponding variable (x or y) will be log trans-
formed before being passed to the panel function. Defaults to FALSE, in
which case the data are not transformed. Other possible values are any num-
ber that works as a base for taking logarithm, TRUE (which is equivalent to
10), and "e" (for the natural logarithm). As a side effect, the corresponding
axis is labeled differently. Note that this is in reality a transformation of
the data, not the axes. Other than the axis labeling, using this feature is no
different than transforming the data in the formula; e.g., scales=1list(x =
list(log=12)) is equivalentto y ~ log2(x).
See entry for equispaced.log below for details on how to control axis
labeling.
equispaced.log A logical flag indicating whether tick mark locations should
be equispaced when ‘log scales’ are in use. Defaults to TRUE.
Tick marks are always labeled in the original (untransformed) scale, but this
makes the choice of tick mark locations nontrivial. If equispaced.log is
FALSE, the choice made is similar to how log scales are annotated in tradi-
tional graphics. If TRUE, tick mark locations are chosen as ‘pretty’ equis-
paced values in the transformed scale, and labeled in the form "base*loc”,

16

subscripts

subset

x1lim

ylim

B_00_xyplot

where base is the base of the logarithm transformation, and loc are the
locations in the transformed scale.
See also xscale.components. logpower in the latticeExtra package.
format The format to use for POSIXct variables. See strptime for descrip-
tion of valid values.
axs A character string, "r" (default) or "i"”. In the latter case, the axis limits
are calculated as the exact data range, instead of being padded on either
side. (May not always work as expected.)

Note that much of the function of scales is accomplished by pscales in splom.

A logical flag specifying whether or not a vector named subscripts should be
passed to the panel function. Defaults to FALSE, unless groups is specified, or
if the panel function accepts an argument named subscripts. This argument is
useful if one wants the subscripts to be passed on even if these conditions do not
hold; a typical example is when one wishes to augment a Lattice plot after it has
been drawn, e.g., using panel.identify.

An expression that evaluates to a logical or integer indexing vector. Like groups,
it is evaluated in data. Only the resulting rows of data are used for the plot.
If subscripts is TRUE, the subscripts provided to the panel function will be in-
dices referring to the rows of data prior to the subsetting. Whether levels of
factors in the data frame that are unused after the subsetting will be dropped
depends on the drop.unused. levels argument.

Normally a numeric vector (or a DateTime object) of length 2 giving left and
right limits for the x-axis, or a character vector, expected to denote the levels of
x. The latter form is interpreted as a range containing c(1, length(xlim)), with
the character vector determining labels at tick positions 1:1ength(x1lim).

x1im could also be a list, with as many components as the number of panels (re-
cycled if necessary), with each component as described above. This is meaning-
ful only when scalesxrelation is "free”, in which case these are treated
as if they were the corresponding limit components returned by prepanel calcu-
lations.

Similar to x1im, applied to the y-axis.

drop.unused.levels

default.scales

A logical flag indicating whether the unused levels of factors will be dropped,
usually relevant when a subsetting operation is performed or an interaction is
created. Unused levels are usually dropped, but it is sometimes appropriate to
suppress dropping to preserve a useful layout. For finer control, this argument
could also be list containing components cond and data, both logical, indicating
desired behavior for conditioning variables and primary variables respectively.
The default is given by lattice.getOption("drop.unused.levels”), which
is initially set to TRUE for both components. Note that this argument does not
control dropping of levels of the groups argument.

A list giving the default values of scales for a particular high-level function.
This is rarely of interest to the end-user, but may be helpful when defining other
functions that act as a wrapper to one of the high-level Lattice functions.

default.prepanel

A function or character string giving the name of a function that serves as the
(component-wise) fallback prepanel function when the prepanel argument is

B_00_xyplot

lattice.options

17

not specified, or does not return all necessary components. The main purpose
of this argument is to enable the defaults to be overridden through the use of
lattice.options.

A list that could be supplied to lattice.options. These options are applied
temporarily for the duration of the call, after which the settings revert back to
what they were before. The options are retained along with the object and reused
during plotting. This enables the user to attach options settings to the trellis
object itself rather than change the settings globally. See also the par.settings
argument described below for a similar treatment of graphical settings.

Further arguments, usually not directly processed by the high-level functions
documented here, but instead passed on to other functions. Such arguments can
be broadly categorized into two types: those that affect all high-level Lattice
functions in a similar manner, and those that are meant for the specific panel
function being used.

The first group of arguments are processed by a common, unexported function
called trellis.skeleton. These arguments affect all high-level functions, but
are only documented here (except to override the behaviour described here).
All other arguments specified in a high-level call, specifically those neither de-
scribed here nor in the help page of the relevant high-level function, are passed
unchanged to the panel function used. By convention, the default panel function
used for any high-level function is named as “panel.” followed by the name
of the high-level function; for example, the default panel function for bwplot is
panel.bwplot. In practical terms, this means that in addition to the help page
of the high-level function being used, the user should also consult the help page
of the corresponding panel function for arguments that may be specified in the
high-level call.

The effect of the first group of common arguments are as follows:

as.table: A logical flag that controls the order in which panels should be dis-
played: if FALSE (the default), panels are drawn left to right, bottom to top
(as in a graph); if TRUE, left to right, top to bottom (as in a table).

between: A list with components x and y (both usually O by default), nu-
meric vectors specifying the space between the panels (units are character
heights). x and y are repeated to account for all panels in a page and any
extra components are ignored. The result is used for all pages in a multi
page display. In other words, it is not possible to use different between
values for different pages.

key: A list that defines a legend to be drawn on the plot. This list is used as an
argument to the draw. key function, which produces a "grob" (grid object)
eventually plotted by the print method for "trellis” objects. The structure
of the legend is constrained in the ways described below.
Although such a list can be and often is created explicitly, it is also possible
to generate such a list using the simpleKey function; the latter is more
convenient but less flexible. The auto.key argument can be even more
convenient for the most common situation where legends are used, namely,
in conjunction with a grouping variable. To use more than one legend, or
to have arbitrary legends not constrained by the structure imposed by key,
use the legend argument.

18

B_00_xyplot

The position of the key can be controlled in either of two possible ways. If
a component called space is present, the key is positioned outside the plot
region, in one of the four sides, determined by the value of space, which
can be one of "top”, "bottom”, "left” and "right”. Alternatively, the
key can be positioned inside the plot region by specifying components X,
y and corner. x and y determine the location of the corner of the key
given by corner, which is usually one of ¢(0,0), c(1,0), c(1,1) and
c(0,1), which denote the corners of the unit square. Fractional values are
also allowed, in which case x and y determine the position of an arbitrary
point inside (or outside for values outside the unit interval) the key.

x and y should be numbers between 0 and 1, giving coordinates with re-
spect to the “display area”. Depending on the value of the "legend.bbox"
option (see lattice.getOption), this can be either the full figure region
("full"), or just the region that bounds the panels and strips ("panel”).
The key essentially consists of a number of columns, possibly divided into
blocks, each containing some rows. The contents of the key are deter-
mined by (possibly repeated) components named "rectangles”, "lines”,
"points” or "text"”. Each of these must be lists with relevant graphi-
cal parameters (see later) controlling their appearance. The key list itself
can contain graphical parameters, these would be used if relevant graphical
components are omitted from the other components.

The length (number of rows) of each such column (except "text"s) is taken
to be the largest of the lengths of the graphical components, including the
ones specified outside (see the entry for rep below for details on this). The
"text" component must have a character or expression vector as its first
component, to be used as labels. The length of this vector determines the
number of rows.

The graphical components that can be included in key and also in the com-
ponents named "text”, "lines”, "points” and "rectangles” (as appro-
priate) are:

* cex=1 (text, lines, points)

* col="black" (text, rectangles, lines, points)
e alpha=1 (text, rectangles, lines, points)
e fill="transparent” (lines, points)

e 1ty=1 (lines)

e 1wd=1 (lines, points)

* font=1 (text, points)

» fontface (text, points)

e fontfamily (text, points)

* pch=8 (lines, points)

¢ adj=0 (text)

e type="1" (lines)

* size=5 (rectangles, lines)

* height=1 (rectangles)

e lineheight=1 (text)

* angle=0 (rectangles, but ignored)

B_00_xyplot

19

e density=-1 (rectangles, but ignored)

In addition, the component border can be included inside the "rect” com-
ponent to control the border color of the rectangles; when specified at the
top level, border controls the border of the entire key (see below).

angle and density are unimplemented. size determines the width of
columns of rectangles and lines in character widths. type is relevant for
lines; "1" denotes a line, "p" denotes a point, and "b" and "0" both de-
note both together. height gives heights of rectangles as a fraction of the
default.

Other possible components of key are:

reverse.rows Logical flag, defaulting to FALSE. If TRUE, all components
are reversed after being replicated (the details of which may depend
on the value of rep). This is useful in certain situations, e.g., with
a grouped barchart with stack = TRUE with the categorical variable
on the vertical axis, where the bars in the plot will usually be ordered
from bottom to top, but the corresponding legend will have the levels
from top to bottom unless reverse. rows = TRUE. Note that in this case,
unless all columns have the same number or rows, they will no longer
be aligned.

between Numeric vector giving the amount of space (character widths)
surrounding each column (split equally on both sides).

title String or expression giving a title for the key.

rep Logical flag, defaults to TRUE. By default, it is assumed that all columns
in the key (except the " text"s) will have the same number of rows, and
all components are replicated to be as long as the longest. This can be
suppressed by specifying rep=FALSE, in which case the length of each
column will be determined by components of that column alone.

cex.title Zoom factor for the title.

lines.title The amount of vertical space to be occupied by the title in
lines (in multiples of itself). Defaults to 2.

padding.text The amount of space (padding) to be used above and below
each row containing text, in multiples of the default, which is currently
0.2 * "lines”. This padding is in addition to the normal height of
any row that contains text, which is the minimum amount necessary to
contain all the text entries.

background Background color for the legend. Defaults to the global back-
ground color.

alpha.background An alpha transparency value between 0 and 1 for the
background.

border Either a color for the border, or a logical flag. In the latter case, the
border color is black if border is TRUE, and no border is drawn if it is
FALSE (the default).

transparent=FALSE Logical flag, whether legend should have a transpar-
ent background.

just A character or numeric vector of length one or two giving horizontal

and vertical justification for the placement of the legend. See grid. layout

for more precise details.

B_00_xyplot

columns The number of column-blocks (drawn side by side) the legend is
to be divided into.

between.columns Space between column blocks, in addition to between.

divide Number of point symbols to divide each line when type is "b" or
"0" in lines.

legend: The legend argument can be useful if one wants to place more than one
key. It also allows the use of arbitrary "grob"s (grid objects) as legends.
If used, legend must be a list, with an arbitrary number of components.
Each component must be named one of "left”, "right”, "top", "bottom",
or "inside". The name "inside" can be repeated, but not the others. This
name will be used to determine the location for that component, and is sim-
ilar to the space component of key. If key (or colorkey for levelplot
and wireframe) is specified, their space component must not conflict with
the name of any component of legend.
Each component of 1egend must have a component called fun. This can be
a "grob”, or a function (or the name of a function) that produces a "grob”
when called. If this function expects any arguments, they must be sup-
plied as a list in another component called args. For components named
"inside”, there can be additional components called x, y and corner,
which work in the same way as for key.

page: A function of one argument (page number) to be called after drawing
each page. The function must be ‘grid-compliant’, and is called with the
whole display area as the default viewport.

xlab.top, ylab.right: Labels for the x-axis on top, and y-axis on the right.
Similar to x1ab and ylab, but less commonly used.

main: Typically a character string or expression describing the main title to be
placed on top of each page. Defaults to NULL.
main (as well as x1ab, ylab and sub) is usually a character string or an ex-
pression that gets used as the label, but can also be a list that controls further
details. Expressions are treated as specification of LaTeX-like markup as
described in plotmath. The label can be a vector, in which case the compo-
nents will be spaced out horizontally (or vertically for ylab). This feature
can be used to provide column or row labels rather than a single axis label.
When main (etc.) is a list, the actual label should be specified as the 1label
component (which may be unnamed if it is the first component). The label
can be missing, in which case the default will be used (x1ab and ylab usu-
ally have defaults, but main and sub do not). Further named arguments are
passed on to textGrob; this can include arguments controlling positioning
like just and rot as well as graphical parameters such as col and font
(see gpar for a full list).
main, sub, xlab, ylab, xlab.top, and ylab.right can also be arbitrary
"grob"s (grid graphical objects).

sub: Character string or expression (or a list or "grob”) for a subtitle to be
placed at the bottom of each page. See entry for main for finer control
options.

par.strip.text: A list of parameters to control the appearance of strip text.
Notable components are col, cex, font, and 1ines. The first three control

B_00_xyplot

21

graphical parameters while the last is a means of altering the height of the
strips. This can be useful, for example, if the strip labels (derived from
factor levels, say) are double height (i.e., contains "\n"-s) or if the default
height seems too small or too large.
Additionally, the lineheight component can control the space between
multiple lines. The labels can be abbreviated when shown by specifying
abbreviate = TRUE, in which case the components minlength and dot
(passed along to the abbreviate function) can be specified to control the
details of how this is done.

layout: In general, a conditioning plot in Lattice consists of several panels
arranged in a rectangular array, possibly spanning multiple pages. layout
determines this arrangement.
layout is a numeric vector of length 2 or 3 giving the number of columns,
rows, and pages (optional) in a multipanel display. By default, the number
of columns is the number of levels of the first conditioning variable and the
number of rows is the number of levels of the second conditioning vari-
able. If there is only one conditioning variable, the default layout vector is
c(0@,n), where n is the number of levels of the given vector. Any time the
first value in the layout vector is O, the second value is used as the desired
number of panels per page and the actual layout is computed from this, tak-
ing into account the aspect ratio of the panels and the device dimensions
(via par("din")). If NA is specified for the number of rows or columns
(but not both), that dimension will be filled out according to the number of
panels.
The number of pages is by default set to as many as is required to plot all the
panels, and so rarely needs to be specified. However, in certain situations
the default calculation may be incorrect, and in that case the number of
pages needs to be specified explicitly.

skip: A logical vector (default FALSE), replicated to be as long as the number of
panels (spanning all pages). For elements that are TRUE, the corresponding
panel position is skipped; i.e., nothing is plotted in that position. The panel
that was supposed to be drawn there is now drawn in the next available
panel position, and the positions of all the subsequent panels are bumped
up accordingly. This may be useful for arranging plots in an informative
manner.

strip.left: strip.left can be used to draw strips on the left of each panel,
which can be useful for wide short panels, as in time-series (or similar)
plots. See the entry for strip for detailed usage.

xlab.default, ylab.default: Fallback default for x1ab and ylab when they
are not specified. If NULL, the defaults are parsed from the Trellis formula.
This is rarely useful for the end-user, but can be helpful when developing
new Lattice functions.

xscale.components, yscale.components: Functions that determine axis an-
notation for the x and y axes respectively. See documentation for xscale.components.default,
the default values of these arguments, to learn more.

axis: Function responsible for drawing axis annotation. See documentation for
axis.default, the default value of this argument, to learn more.

perm.cond: An integer vector, a permutation of 1:n, where n is the number

22

B_00_xyplot

of conditioning variables. By default, the order in which panels are drawn
depends on the order of the conditioning variables specified in the formula.
perm.cond can modify this order. If the trellis display is thought of as an n-
dimensional array, then during printing, its dimensions are permuted using
perm.cond as the perm argument does in aperm.

index.cond: Whereas perm. cond permutes the dimensions of the multidimen-

par.

sional array of panels, index.cond can be used to subset (or reorder) mar-
gins of that array. index.cond can be a list or a function, with behavior in
each case described below.

The panel display order within each conditioning variable depends on the
order of their levels. index.cond can be used to choose a ‘subset’ (in the
R sense) of these levels, which is then used as the display order for that
variable. If index.cond is a list, it has to be as long as the number of
conditioning variables, and the i-th component has to be a valid indexing
vector for levels(g_i), where g_i is the i-th conditioning variable in the
plot (note that these levels may not contain all levels of the original vari-
able, depending on the effects of the subset and drop.unused.levels
arguments). In particular, this indexing may repeat levels, or drop some
altogether. The result of this indexing determines the order of panels within
that conditioning variable. To keep the order of a particular variable un-
changed, the corresponding component must be set to TRUE.

Note that the components of index.cond are interpreted in the order of the
conditioning variables in the original call, and is not affected by perm. cond.
Another possibility is to specify index.cond as a function. In this case,
this function is called once for each panel, potentially with all arguments
that are passed to the panel function for that panel. (More specifically,
if this function has a ... argument, then all panel arguments are passed,
otherwise, only named arguments that match are passed.) If there is only
one conditioning variable, the levels of that variable are then sorted so that
these values are in ascending order. For multiple conditioning variables,
the order for each variable is determined by first taking the average over all
other conditioning variables.

Although they can be supplied in high-level function calls directly, it is

more typical to use perm. cond and index. cond to update an existing "trellis”

object, thus allowing it to be displayed in a different arrangement without
re-calculating the data subsets that go into each panel. In the update.trellis
method, both can be set to NULL, which reverts these back to their defaults.

settings: A list that could be supplied to trellis.par.set. When the
resulting object is plotted, these options are applied temporarily for the
duration of the plotting, after which the settings revert back to what they
were before. This enables the user to attach some display settings to the
trellis object itself rather than change the settings globally. See also the
lattice.options argument described above for a similar treatment of
non-graphical options.

plot.args: A list containing possible arguments to plot.trellis, which will

be used by the plot or print methods when drawing the object, unless
overridden explicitly. This enables the user to attach such arguments to the
trellis object itself. Partial matching is not performed.

B_00_xyplot 23

Details

The high-level functions documented here, as well as other high-level Lattice functions, are generic,
with the formula method usually doing the most substantial work. The structure of the plot that is
produced is mostly controlled by the formula (implicitly in the case of the non-formula methods).
For each unique combination of the levels of the conditioning variables g1, g2, ..., a separate
“packet” is produced, consisting of the points (x,y) for the subset of the data defined by that
combination. The display can be thought of as a three-dimensional array of panels, consisting of
one two-dimensional matrix per page. The dimensions of this array are determined by the layout
argument. If there are no conditioning variables, the plot produced consists of a single packet.
Each packet usually corresponds to one panel, but this is not strictly necessary (see the entry for
index.cond above).

The coordinate system used by lattice by default is like a graph, with the origin at the bottom left,
with axes increasing to the right and top. In particular, panels are by default drawn starting from
the bottom left corner, going right and then up, unless as.table = TRUE, in which case panels are
drawn from the top left corner, going right and then down. It is possible to set a global prefer-
ence for the table-like arrangement by changing the default to as.table=TRUE; this can be done
by setting lattice.options(default.args =1list(as.table = TRUE)). Default values can be
set in this manner for the following arguments: as.table, aspect, between, page, main, sub,
par.strip.text, layout, skip and strip. Note that these global defaults are sometimes overrid-
den by individual functions.

The order of the panels depends on the order in which the conditioning variables are specified, with
g1 varying fastest, followed by g2, and so on. Within a conditioning variable, the order depends
on the order of the levels (which for factors is usually in alphabetical order). Both of these orders
can be modified using the index.cond and perm. cond arguments, possibly using the update (and
other related) method(s).

Value

The high-level functions documented here, as well as other high-level Lattice functions, return an
object of class "trellis"”. The update method can be used to subsequently update components of
the object, and the print method (usually called by default) will plot it on an appropriate plotting
device.

Note

Most of the arguments documented here are also applicable for the other high-level functions in the
lattice package. These are not described in any detail elsewhere unless relevant, and this should be
considered the canonical documentation for such arguments.

Any arguments passed to these functions and not recognized by them will be passed to the panel
function. Most predefined panel functions have arguments that customize its output. These argu-
ments are described only in the help pages for these panel functions, but can usually be supplied as
arguments to the high-level plot.

Author(s)

Deepayan Sarkar <Deepayan.Sarkar@R-project.org>

24 B_00_xyplot

References

Sarkar, Deepayan (2008) Lattice: Multivariate Data Visualization with R, Springer. http://
Imdvr.r-forge.r-project.org/

See Also

Lattice for an overview of the package, as well as barchart.table, print.trellis, shingle,
banking, reshape, panel.xyplot, panel.bwplot, panel.barchart, panel.dotplot, panel.stripplot,
panel.superpose, panel.loess, panel.average, strip.default, simpleKey trellis.par.set

Examples

require(stats)
Tonga Trench Earthquakes

Depth <- equal.count(quakes$depth, number=8, overlap=.1)
xyplot(lat ~ long | Depth, data = quakes)
update(trellis.last.object(),
strip = strip.custom(strip.names = TRUE, strip.levels = TRUE),
par.strip.text = list(cex = 0.75),
aspect = "iso")

Extended formula interface

xyplot(Sepal.Length + Sepal.Width ~ Petal.Length + Petal.Width | Species,
data = iris, scales = "free"”, layout = c(2, 2),
auto.key = list(x = .75, y = .75, corner = c(0.5, 0.5)))

user defined panel functions

states <- data.frame(state.x77,
state.name = dimnames(state.x77)[[11],
state.region = state.region)
xyplot(Murder ~ Population | state.region, data = states,
snames = states$state.name,
panel = function(x, y, subscripts, snames) {
panel.text(x = x, y =y, labels = snames[subscripts], cex =1,
fontfamily = "HersheySans")
»

Stacked bar chart

barchart(yield ~ variety | site, data = barley,
groups = year, layout = c(1,6), stack = TRUE,
auto.key = list(space = "right"),
ylab = "Barley Yield (bushels/acre)”,
scales = list(x = list(rot = 45)))

bwplot(voice.part ~ height, data = singer, xlab = "Height (inches)")

dotplot(variety ~ yield | year * site, data=barley)

http://lmdvr.r-forge.r-project.org/
http://lmdvr.r-forge.r-project.org/

B_01_xyplot.ts 25

Grouped dot plot showing anomaly at Morris

dotplot(variety ~ yield | site, data = barley, groups = year,
key = simpleKey(levels(barley$year), space = "right"),
xlab = "Barley Yield (bushels/acre) ",
aspect=0.5, layout = c(1,6), ylab=NULL)

stripplot(voice.part ~ jitter(height), data = singer, aspect =1,
jitter.data = TRUE, xlab = "Height (inches)")

Interaction Plot

xyplot(decrease ~ treatment, OrchardSprays, groups = rowpos,

type = "a”,
auto.key =
list(space = "right"”, points = FALSE, lines = TRUE))
longer version with no x-ticks
Not run:
bwplot(decrease ~ treatment, OrchardSprays, groups = rowpos,
panel = "panel.superpose”,
panel.groups = "panel.linejoin",
xlab = "treatment”,
key = list(lines = Rows(trellis.par.get("superpose.line”),
c(1:7, 1)),
text = list(lab = as.character(unique(OrchardSprays$rowpos))),
columns = 4, title = "Row position"))
End(Not run)
B_01_xyplot.ts Time series plotting methods

Description

This function handles time series plotting, including cut-and-stack plots. Examples are given of
superposing, juxtaposing and styling different time series.

Usage

S3 method for class 'ts'
xyplot(x, data = NULL,
screens = if (superpose) 1 else colnames(x),
superpose = FALSE,
cut = FALSE,
type = ”]-“y

26 B_01_xyplot.ts

col = NULL,
1ty = NULL,
lwd = NULL,
pch = NULL,
cex = NULL,
fill = NULL,

auto.key = superpose,
panel = if (superpose) "panel.superpose”
else "panel.superpose.plain”,

par.settings = list(),

layout = NULL, as.table = TRUE,

xlab = "Time", ylab = NULL,

default.scales = list(y = list(relation =
if (missing(cut)) "free” else "same")))

Arguments

X an object of class ts, which may be multi-variate, i.e. have a matrix structure
with multiple columns.

data not used, and must be left as NULL.
additional arguments passed to xyplot, which may pass them on to panel. xyplot.

screens factor (or coerced to factor) whose levels specify which panel each series is to
be plotted in. screens =c(1, 2, 1) would plot series 1, 2 and 3 in panels 1, 2
and 1. May also be a named list, see Details below.

superpose overlays all series in one panel (via screens = 1) and uses grouped style settings
(from trellis.par.get("superpose.line”), etc). Note that this is just a
convenience argument: its only action is to change the default values of other
arguments.

cut defines a cut-and-stack plot. cut can be a list of arguments to the function

equal.count,i.e. number (number of intervals to divide into) and overlap (the
fraction of overlap between cuts, default 0.5). If cut is numeric this is passed as
the number argument.
cut = TRUE tries to choose an appropriate number of cuts (up to a maximum of
6), using banking, and assuming a square plot region. This should have the
effect of minimising wasted space when aspect = "xy".

type, col, 1ty, 1wd, pch, cex, fill
graphical arguments, which are processed and eventually passed to panel. xyplot.
These arguments can also be vectors or (named) lists, see Details for more in-
formation.

auto.key a logical, or a list describing how to draw a key. See the auto.key entry in
xyplot. The default here is to draw lines, not points, and any specified style
arguments should show up automatically.

panel the panel function. It is recommended to leave this alone, but one can pass a
panel. groups argument which is handled by panel. superpose for each series.

par.settings style settings beyond the standard col, 1ty, lwd, etc; see trellis.par.set and
simpleTheme.

B_01_xyplot.ts

layout

as.table

xlab, ylab

default.scales

Details

27

numeric vector of length 2 specifying number of columns and rows in the plot.
The default is to fill columns with up to 6 rows.

to draw panels from top to bottom. The order is determined by the order of
columns in x.

X axis and Y axis labels; see xyplot. Note in particular that ylab may be a
character vector, in which case the labels are spaced out equally, to correspond to
the panels; but NOTE in this case the vector should be reversed OR the argument
as.table set to FALSE.

scales specification. The default is set to have "free"” Y axis scales un-
less cut is given. Note, users should pass the scales argument rather than
default.scales.

The handling of several graphical parameters is more flexible for multivariate series. These param-
eters can be vectors of the same length as the number of series plotted or are recycled if shorter.
They can also be (partially) named list, e.g., 1ist(A=c(1,2), c(3,4)) in which c(3, 4) is the
default value and c(1, 2) the value only for series A. The screens argument can be specified in a

similar way.

Some examples are given below.

Value

An object of class "trellis". The update method can be used to update components of the object
and the print method (usually called by default) will plot it on an appropriate plotting device.

Author(s)

Gabor Grothendieck, Achim Zeileis, Deepayan Sarkar and Felix Andrews <felix@nfrac.org>.

The first two authors developed xyplot. ts in their zoo package, including the screens approach.
The third author developed a different xyplot.ts for cut-and-stack plots in the latticeExtra pack-
age. The final author fused these together.

References

Sarkar, Deepayan (2008) Lattice: Multivariate Data Visualization with R, Springer. http://
Imdvr.r-forge.r-project.org/ (cut-and-stack plots)

See Also

xyplot, panel.xyplot, plot.ts, ts, xyplot.zoo in the zoo package.

Examples

xyplot(ts(c(1:10,10:1)))

#i## Figure 14.1 from Sarkar (2008)

”n n

xyplot(sunspot.year, aspect = "xy",
strip = FALSE, strip.left = TRUE,

http://lmdvr.r-forge.r-project.org/
http://lmdvr.r-forge.r-project.org/

28

cut = list(number = 4, overlap = 0.05))

A multivariate example; first juxtaposed, then superposed

xyplot (EuStockMarkets, scales = list(y = "same"))

xyplot (EuStockMarkets, superpose = TRUE, aspect = "xy", lwd = 2,
type = c("1","g"), ylim = c(@, max(EuStockMarkets)))

Examples using screens (these two are identical)
xyplot (EuStockMarkets, screens = c(rep("Continental”, 3), "UK"))
xyplot(EuStockMarkets, screens = list(FTSE = "UK", "Continental”))

Automatic group styles
xyplot(EuStockMarkets, screens = list(FTSE = "UK", "Continental"),
superpose = TRUE)

xyplot(EuStockMarkets, screens = list(FTSE = "UK", "Continental"),
superpose = TRUE, xlim = extendrange(1996:1998),
par.settings = standard.theme(color = FALSE))

Specifying styles for series by name
xyplot (EuStockMarkets, screens = list(FTSE = "UK", "Continental”),
col = 1list(DAX = "red"”, FTSE = "blue"”, "black"), auto.key = TRUE)

xyplot (EuStockMarkets, screens = list(FTSE = "UK", "Continental"),
col = 1list(DAX = "red"”), 1ty = list(SMI = 2), lwd = 1:2,
auto.key = TRUE)

Example with simpler data, few data points
set.seed(1)
z <- ts(cbind(a = 1:5, b = 11:15, ¢ = 21:25) + rnorm(5))
xyplot(z, screens = 1)
xyplot(z, screens = list(a = "primary (a)", "other (b & c)"),
type = list(a = c("p", "h"), b = c("p", "s"), "o"),
pch = list(a = 2, ¢ = 3), auto.key = list(type = "0"))

B_02_barchart.table

B_02_barchart.table table methods for barchart and dotplot

Description

Contingency tables are often displayed using bar charts and dot plots. These methods operate
directly on tables, bypassing the need to convert them to data frames for use with the formula

interface. Matrices and arrays are also supported, by coercing them to tables.

Usage

S3 method for class 'table'
barchart(x, data, groups = TRUE,
origin = @, stack = TRUE, ..., horizontal = TRUE)

B_02_barchart.table 29

S3 method for class 'array'
barchart(x, data, ...)

S3 method for class 'matrix'
barchart(x, data, ...)

S3 method for class 'table'
dotplot(x, data, groups = TRUE, ..., horizontal = TRUE)

S3 method for class 'array'
dotplot(x, data, ...)

S3 method for class 'matrix'

dotplot(x, data, ...)
Arguments

X A table, array or matrix object.

data Should not be specified. If specified, will be ignored with a warning.

groups A logical flag, indicating whether to use the last dimension as a grouping vari-
able in the display.

origin, stack Arguments to panel.barchart. The defaults for the table method are differ-
ent.

horizontal Logical flag, indicating whether the plot should be horizontal (with the categor-

ical variable on the y-axis) or vertical.

Other arguments, passed to the underlying formula method.

Details

The first dimension is used as the variable on the categorical axis. The last dimension is optionally
used as a grouping variable (to produce stacked barcharts by default). All other dimensions are used
as conditioning variables. The order of these variables cannot be altered (except by permuting the
original argument beforehand using t or aperm). For more flexibility, use the formula method after
converting the table to a data frame using the relevant as.data. frame method.

Value

An object of class "trellis”. The update method can be used to update components of the object
and the print method (usually called by default) will plot it on an appropriate plotting device.

Author(s)

Deepayan Sarkar <Deepayan.Sarkar@R-project.org>

See Also

barchart, t, aperm, table, panel.barchart, Lattice

30 B_03_histogram

Examples
barchart(Titanic, scales = list(x = "free"),
auto.key = list(title = "Survived"))
B_03_histogram Histograms and Kernel Density Plots
Description

Draw Histograms and Kernel Density Plots, possibly conditioned on other variables.

Usage
histogram(x, data, ...)
densityplot(x, data, ...)

S3 method for class 'formula’
histogram(x,

data,

allow.multiple, outer = TRUE,

auto.key = lattice.getOption("default.args")$auto.key,

aspect = "fill",

panel = lattice.getOption("panel.histogram”),

prepanel, scales, strip, groups,

xlab, xlim, ylab, ylim,

type = c("percent”, "count”, "density"),

nint = if (is.factor(x)) nlevels(x)

else round(log2(length(x)) + 1),

endpoints = extend.limits(range(as.numeric(x),
finite = TRUE), prop = 0.04),

breaks,

equal .widths = TRUE,

drop.unused.levels =

lattice.getOption("drop.unused.levels”),

lattice.options = NULL,

default.scales = list(),

default.prepanel =

lattice.getOption("prepanel.default.histogram”),
subscripts,
subset)

S3 method for class 'data.frame'
histogram(x, data = NULL, formula = data, ...)

S3 method for class 'numeric'
histogram(x, data = NULL, xlab, ...)

B_03_histogram

31

S3 method for class 'factor'
histogram(x, data = NULL, xlab, ...)

S3 method for class 'formula'

densityplot(x,
data,
allow.multiple = is.null(groups) || outer,
outer = !is.null(groups),

auto.key = lattice.getOption("default.args”)$auto.key,

aspect = "fill",

panel = lattice.getOption("panel.densityplot”),

prepanel, scales, strip, groups, weights,

xlab, xlim, ylab, ylim,

bw, adjust, kernel, window, width, give.Rkern,

n =512, from, to, cut, na.rm,

drop.unused.levels =
lattice.getOption("drop.unused. levels"”),

lattice.options = NULL,

default.scales = list(),

default.prepanel =
lattice.getOption("prepanel.default.densityplot”),

subscripts,

subset)

S3 method for class 'data.frame'
densityplot(x, data = NULL, formula = data, ...)

S3 method for class 'numeric'
densityplot(x, data = NULL, xlab, ...)

do.breaks(endpoints, nint)

Arguments

X

The object on which method dispatch is carried out.

For the formula method, x can be a formula of the form ~x | g1 *xg2x ...,
indicating that histograms or kernel density estimates of the x variable should
be produced conditioned on the levels of the (optional) variables g1, g2, x
should be numeric (or possibly a factor in the case of histogram), and each of
g1, g2, ...should be either factors or shingles.

As a special case, the right hand side of the formula can contain more than one
term separated by ‘+’ signs (e.g., ~ x1 +x2 | g1 * g2). What happens in this
case is described in the documentation for xyplot. Note that in either form, all
the terms in the formula must have the same length after evaluation.

For the numeric and factor methods, x is the variable whose histogram or

32

data

formula

type

nint

endpoints

breaks

equal.widths

B_03_histogram

Kernel density estimate is drawn. Conditioning is not allowed in these cases.

For the formula method, an optional data source (usually a data frame) in which
variables are to be evaluated (see xyplot for details). data should not be speci-
fied for the other methods, and is ignored with a warning if it is.

The formula to be used for the "data. frame" methods. See documentation for
argument x for details.

A character string indicating the type of histogram that is to be drawn. "percent”
and "count” give relative frequency and frequency histograms respectively, and
can be misleading when breakpoints are not equally spaced. "density" pro-
duces a density histogram.

type defaults to "density” when the breakpoints are unequally spaced, and
when breaks is NULL or a function, and to "percent” otherwise.

An integer specifying the number of histogram bins, applicable only when breaks
is unspecified or NULL in the call. Ignored when the variable being plotted is a
factor.

A numeric vector of length 2 indicating the range of x-values that is to be cov-
ered by the histogram. This applies only when breaks is unspecified and the
variable being plotted is not a factor. In do.breaks, this specifies the interval
that is to be divided up.

Usually a numeric vector of length (number of bins + 1) defining the breakpoints
of the bins. Note that when breakpoints are not equally spaced, the only value
of type that makes sense is density.

When breaks is unspecified, the value of lattice.getOption("histogram.breaks")

is first checked. If this value is NULL, then the default is to use

breaks = seq_len(1 + nlevels(x)) - 0.5

when x is a factor, and

breaks = do.breaks(endpoints, nint)

otherwise. Breakpoints calculated in such a manner are used in all panels. If
the retrieved value is not NULL, or if breaks is explicitly specified, it affects
the display in each panel independently. Valid values are those accepted as the
breaks argument in hist. In particular, this allows specification of breaks
as an integer giving the number of bins (similar to nint), as a character string
denoting a method, or as a function.

When specified explicitly, a special value of breaks is NULL, in which case the
number of bins is determined by nint and then breakpoints are chosen according
to the value of equal.widths.

A logical flag, relevant only when breaks=NULL. If TRUE, equally spaced bins
will be selected, otherwise, approximately equal area bins will be selected (typ-
ically producing unequally spaced breakpoints).

Integer, giving the number of points at which the kernel density is to be evalu-
ated. Passed on as an argument to density.

B_03_histogram

panel

33

A function, called once for each panel, that uses the packet (subset of panel vari-
ables) corresponding to the panel to create a display. The default panel func-
tions panel.histogram and panel.densityplot are documented separately,
and have arguments that can be used to customize its output in various ways.
Such arguments can usually be directly supplied to the high-level function.

allow.multiple, outer

auto.key
aspect
prepanel
scales
strip

groups

xlab, ylab

xlim, ylim

See xyplot.
See xyplot.
See xyplot.
See xyplot.
See xyplot.
See xyplot.

See xyplot. Note that the default panel function for histogram does not support
grouped displays, whereas the one for densityplot does.

See xyplot.
See xyplot.

drop.unused. levels

lattice.options

See xyplot.

See xyplot.

default.scales See xyplot.

subscripts

subset

See xyplot.
See xyplot.

default.prepanel

weights

bw, adjust, width

kernel, window

give.Rkern

from, to, cut

na.rm

Fallback prepanel function. See xyplot.

numeric vector of weights for the density calculations, evaluated in the non-
standard manner used for groups and terms in the formula, if any. If this is
specified, it is subsetted using subscripts inside the panel function to match it
to the corresponding x values.

At the time of writing, weights do not work in conjunction with an extended
formula specification (this is not too hard to fix, so just bug the maintainer if you
need this feature).

Arguments controlling bandwidth. Passed on as arguments to density.
The choice of kernel. Passed on as arguments to density.

Logical flag, passed on as argument to density. This argument is made avail-
able only for ease of implementation, and will produce an error if TRUE.

Controls range over which density is evaluated. Passed on as arguments to
density.

Logical flag specifying whether NA values should be ignored. Passed on as ar-
gument to density, but unlike in density, the default is TRUE.

Further arguments. See corresponding entry in xyplot for non-trivial details.

34 B_03_histogram

Details

histogram draws Conditional Histograms, and densityplot draws Conditional Kernel Density
Plots. The default panel function uses the density function to compute the density estimate, and
all arguments accepted by density can be specified in the call to densityplot to control the output.
See documentation of density for details.

These and all other high level Trellis functions have several arguments in common. These are
extensively documented only in the help page for xyplot, which should be consulted to learn more
detailed usage.

do.breaks is an utility function that calculates breakpoints given an interval and the number of
pieces to break it into.

Value

An object of class "trellis”. The update method can be used to update components of the object
and the print method (usually called by default) will plot it on an appropriate plotting device.

Note

The form of the arguments accepted by the default panel function panel.histogram is different
from that in S-PLUS. Whereas S-PLUS calculates the heights inside histogram and passes only the
breakpoints and the heights to the panel function, lattice simply passes along the original variable x
along with the breakpoints. This approach is more flexible; see the example below with an estimated
density superimposed over the histogram.

Author(s)

Deepayan Sarkar <Deepayan.Sarkar@R-project.org>

References
Sarkar, Deepayan (2008) Lattice: Multivariate Data Visualization with R, Springer. http://
Imdvr.r-forge.r-project.org/

See Also

xyplot, panel.histogram, density, panel.densityplot, panel.mathdensity, Lattice

Examples
require(stats)
histogram(~ height | voice.part, data = singer, nint = 17,

endpoints = c(59.5, 76.5), layout = c(2,4), aspect = 1,
xlab = "Height (inches)")

histogram(~ height | voice.part, data = singer,
xlab = "Height (inches)"”, type = "density”,
panel = function(x, ...) {
panel.histogram(x, ...)
panel.mathdensity(dmath = dnorm, col = "black”,

http://lmdvr.r-forge.r-project.org/
http://lmdvr.r-forge.r-project.org/

B_04_gqmath 35

args = list(mean=mean(x),sd=sd(x)))

b

densityplot(~ height | voice.part, data = singer, layout = c(2, 4),
xlab = "Height (inches)”, bw = 5)

B_04_qggmath Q-0 Plot with Theoretical Distribution

Description
Draw quantile-Quantile plots of a sample against a theoretical distribution, possibly conditioned on
other variables.

Usage

ggmath(x, data, ...)

S3 method for class 'formula'

ggmath(x,
data,
allow.multiple = is.null(groups) || outer,
outer = !is.null(groups),

distribution = gnorm,

f.value = NULL,

auto.key = lattice.getOption("default.args"”)$auto.key,

aspect = "fill",

panel = lattice.getOption("”panel.qgmath”),

prepanel = NULL,

scales, strip, groups,

xlab, xlim, ylab, ylim,

drop.unused.levels = lattice.getOption("drop.unused.levels"),
lattice.options = NULL,

default.scales = list(),

default.prepanel = lattice.getOption("prepanel.default.qgmath”),
subscripts,

subset)

S3 method for class 'data.frame'
ggmath(x, data = NULL, formula = data, ...)

S3 method for class 'numeric'
ggmath(x, data = NULL, ylab, ...)

36

Arguments

X

data

formula

distribution

f.value

panel

B_04_gqmath

The object on which method dispatch is carried out.

For the "formula” method, x should be a formula of the form ~ x | g1 * g2 %
..., where x should be a numeric variable. For the "numeric"” method, x should
be a numeric vector.

For the formula method, an optional data source (usually a data frame) in which
variables are to be evaluated (see xyplot for details). data should not be speci-
fied for the other methods, and is ignored with a warning if it is.

The formula to be used for the "data.frame” methods. See documentation for
argument x for details.

A quantile function that takes a vector of probabilities as argument and produces
the corresponding quantiles from a theoretical distribution. Possible values are
gnorm, qunif, etc. Distributions with other required arguments need to be pro-
vided as user-defined functions (see example with qt).

An optional numeric vector of probabilities, quantiles corresponding to which
should be plotted. This can also be a function of a single integer (represent-
ing sample size) that returns such a numeric vector. A typical value for this
argument is the function ppoints, which is also the S-PLUS default. If speci-
fied, the probabilities generated by this function is used for the plotted quantiles,
through the quantile function for the sample, and the function specified as the
distribution argument for the theoretical distribution.

f'.value defaults to NULL, which has the effect of using ppoints for the quan-
tiles of the theoretical distribution, but the exact data values for the sample. This
is similar to what happens for qgnorm, but different from the S-PLUS default of
f.value=ppoints.

For large x, this argument can be used to restrict the number of points plotted.
See also the tails.n argument in panel.qgmath.

A function, called once for each panel, that uses the packet (subset of panel vari-
ables) corresponding to the panel to create a display. The default panel function
panel.qgmath is documented separately, and has arguments that can be used to
customize its output in various ways. Such arguments can usually be directly
supplied to the high-level function.

allow.multiple, outer

auto.key
aspect
prepanel
scales
strip
groups
xlab, ylab

xlim, ylim

See xyplot.
See xyplot.
See xyplot.
See xyplot.
See xyplot.
See xyplot.
See xyplot.
See xyplot.
See xyplot.

drop.unused. levels

See xyplot.

B_04_gqmath 37

lattice.options

See xyplot.
default.scales See xyplot.
subscripts See xyplot.
subset See xyplot.

default.prepanel
Fallback prepanel function. See xyplot.

Further arguments. See corresponding entry in xyplot for non-trivial details.

Details

ggmath produces Q-Q plots of the given sample against a theoretical distribution. The default
behaviour of qgmath is different from the corresponding S-PLUS function, but is similar to ggnorm.
See the entry for f. value for specifics.

The implementation details are also different from S-PLUS. In particular, all the important cal-
culations are done by the panel (and prepanel function) and not qgmath itself. In fact, both the
arguments distribution and f.value are passed unchanged to the panel and prepanel function.
This allows, among other things, display of grouped Q-Q plots, which are often useful. See the help
page for panel.qgmath for further details.

This and all other high level Trellis functions have several arguments in common. These are ex-
tensively documented only in the help page for xyplot, which should be consulted to learn more
detailed usage.

Value

An object of class "trellis"”. The update method can be used to update components of the object
and the print method (usually called by default) will plot it on an appropriate plotting device.

Author(s)

Deepayan Sarkar <Deepayan.Sarkar@R-project.org>

See Also

xyplot, panel.qgmath, panel.qgmathline, prepanel.qgmathline, Lattice, quantile

Examples

ggmath(~ rnorm(100), distribution = function(p) qt(p, df = 10))
qggmath(~ height | voice.part, aspect = "xy", data = singer,
prepanel = prepanel.qgmathline,
panel = function(x, ...) {
panel.qgmathline(x, ...)
panel.qgmath(x, ...)
»
vp.comb <-
factor(sapply(strsplit(as.character(singer$voice.part), split =" "),
"y,
levels = c("Bass”, "Tenor”, "Alto"”, "Soprano"))

38

vp.group <-

factor(sapply(strsplit(as.character(singer$voice.part), split =" "),

"r2))

ggmath(~ height | vp.comb, data = singer,

groups = vp.group, auto.key = list(space = "right"),
aspect = "xy",
prepanel = prepanel.qgmathline,
panel = function(x, ...) {
panel.qgmathline(x, ...)
panel.qgmath(x, ...)
»

B_05_qq

B_05_qq Quantile-Quantile Plots of Two Samples

Description

Quantile-Quantile plots for comparing two Distributions

Usage

qq(x, data, ...)

S3 method for class 'formula'
qq(x, data, aspect = "fill",

panel = lattice.getOption("panel.qq"),

prepanel, scales, strip,

groups, xlab, xlim, ylab, ylim, f.value = NULL,
drop.unused.levels = lattice.getOption("drop.unused.levels”),
lattice.options = NULL,

qtype = 7,

default.scales = list(),

default.prepanel = lattice.getOption("prepanel.default.qq"),
subscripts,

subset)

S3 method for class 'data.frame'

gq(x, data = NULL, formula = data, ...)
Arguments
X The object on which method dispatch is carried out.

For the "formula” method, x should be a formula of the formy ~ x | g1 * g2 %
..., where x should be a numeric variable, and y a factor, shingle, character, or
numeric variable, with the restriction that there must be exactly two levels of y,
which divide the values of x into two groups. Quantiles for these groups will be

plotted against each other along the two axes.

B_05_qq

data

formula

f.value

panel

atype
aspect
prepanel
scales
strip
groups
x1lab, ylab

xLlim, ylim

39

For the formula method, an optional data source (usually a data frame) in which
variables are to be evaluated (see xyplot for details).

The formula to be used for the "data.frame” method. See documentation for
argument x for details.

An optional numeric vector of probabilities, quantiles corresponding to which
should be plotted. This can also be a function of a single integer (representing
sample size) that returns such a numeric vector. A typical value for this argument
is the function ppoints, which is also the S-PLUS default. If specified, the
probabilities generated by this function is used for the plotted quantiles, through
the quantile function.

f'.value defaults to NULL, which is equivalent to

f.value = function(n) ppoints(n, a = 1)

This has the effect of including the minimum and maximum data values in the
computed quantiles. This is similar to what happens for ggplot but different
from the default behaviour of qq in S-PLUS.

For large x, this argument can be used to restrict the number of quantiles plotted.

A function, called once for each panel, that uses the packet (subset of panel
variables) corresponding to the panel to create a display. The default panel func-
tion panel.qq is documented separately, and has arguments that can be used to
customize its output in various ways. Such arguments can usually be directly
supplied to the high-level function.

The type argument for quantile.
See xyplot.
See xyplot.
See xyplot.
See xyplot.
See xyplot.
See xyplot.
See xyplot.

drop.unused. levels

lattice.options

See xyplot.

See xyplot.

default.scales See xyplot.

subscripts

subset

See xyplot.
See xyplot.

default.prepanel

Fallback prepanel function. See xyplot.

Further arguments. See corresponding entry in xyplot for non-trivial details.

40 B_06_levelplot

Details

qq produces Q-Q plots of two samples. The default behaviour of qq is different from the corre-
sponding S-PLUS function. See the entry for f. value for specifics.

This and all other high level Trellis functions have several arguments in common. These are ex-
tensively documented only in the help page for xyplot, which should be consulted to learn more
detailed usage.
Value
An object of class "trellis”. The update method can be used to update components of the object
and the print method (usually called by default) will plot it on an appropriate plotting device.
Author(s)

Deepayan Sarkar <Deepayan. Sarkar@R-project.org>

See Also

xyplot, panel.qq, qgmath, Lattice

Examples
qq(voice.part ~ height, aspect = 1, data = singer,
subset = (voice.part == "Bass 2" | voice.part == "Tenor 1"))
B_06_levelplot Level plots and contour plots
Description

Draws false color level plots and contour plots.

Usage
levelplot(x, data, ...)
contourplot(x, data, ...)

S3 method for class 'formula'

levelplot(x,
data,
allow.multiple = is.null(groups) || outer,
outer = TRUE,

aspect = "fill",

panel = if (useRaster) lattice.getOption("panel.levelplot.raster”)
else lattice.getOption("panel.levelplot”),

prepanel = NULL,

scales = list(),

B_06_levelplot

strip = TRUE,

groups = NULL,

xlab,

xlim,

ylab,

ylim,

at,

cuts = 15,

pretty = FALSE,

region = TRUE,

drop.unused.levels =
lattice.getOption("drop.unused.levels”),

useRaster = FALSE,

lattice.options = NULL,

default.scales = list(),

default.prepanel =
lattice.getOption("prepanel.default.levelplot”),

colorkey = region,

col.regions,

alpha.regions,

subset = TRUE)

S3 method for class 'formula'
contourplot(x,

data,

panel = lattice.getOption("panel.contourplot”),

default.prepanel =
lattice.getOption("prepanel.default.contourplot”),

cuts = 7,

labels = TRUE,

contour = TRUE,

pretty = TRUE,
region = FALSE,
L)

S3 method for class 'data.frame'
levelplot(x, data = NULL, formula = data, ...)

S3 method for class 'data.frame'
contourplot(x, data = NULL, formula = data, ...)

S3 method for class 'table'
levelplot(x, data = NULL, aspect = "iso", ..., xlim, ylim)

n

S3 method for class 'table'
contourplot(x, data = NULL, aspect = "iso”, ..., xlim, ylim)

41

42

B_06_levelplot

S3 method for class 'matrix'

levelplot(x, data = NULL, aspect = "iso",
., xlim, ylim,
row.values = seqg_len(nrow(x)),
column.values = seq_len(ncol(x)))

n

S3 method for class 'matrix'
contourplot(x, data = NULL, aspect = "iso",

ns n

., xlim, ylim,
row.values = seq_len(nrow(x)),
column.values = seq_len(ncol(x)))

S3 method for class 'array'
levelplot(x, data = NULL, ...)

S3 method for class 'array'

contourplot(x, data = NULL, ...)
Arguments
X for the formula method, a formula of the formz ~x *y | g1 * g2 x ..., where
z is a numeric response, and x, y are numeric values evaluated on a rectangular
grid. g1, g2, ... are optional conditional variables, and must be either factors

data

formula

or shingles if present.

Calculations are based on the assumption that all x and y values are evaluated
on a grid (defined by their unique values). The function will not return an error
if this is not true, but the display might not be meaningful. However, the x and
y values need not be equally spaced.

Both levelplot and wireframe have methods for matrix, array, and table
objects, in which case x provides the z vector described above, while its rows
and columns are interpreted as the x and y vectors respectively. This is similar
to the form used in filled.contour and image. For higher-dimensional arrays
and tables, further dimensions are used as conditioning variables. Note that the
dimnames may be duplicated; this is handled by calling make.unique to make
the names unique (although the original labels are used for the x- and y-axes).

For the formula methods, an optional data frame in which variables in the for-
mula (as well as groups and subset, if any) are to be evaluated. Usually ignored
with a warning in other cases.

The formula to be used for the "data.frame” methods. See documentation for
argument x for details.

row.values, column.values

panel

Optional vectors of values that define the grid when x is a matrix. row.values
and column.values must have the same lengths as nrow(x) and ncol(x) re-
spectively. By default, row and column numbers.

panel function used to create the display, as described in xyplot

B_06_levelplot 43

aspect For the matrix methods, the default aspect ratio is chosen to make each cell
square. The usual default is aspect="fill", as described in xyplot.

at A numeric vector giving breakpoints along the range of z. Contours (if any) will
be drawn at these heights, and the regions in between would be colored using
col.regions. In the latter case, values outside the range of at will not be drawn
at all. This serves as a way to limit the range of the data shown, similar to what
a z1im argument might have been used for. However, this also means that when
supplying at explicitly, one has to be careful to include values outside the range
of z to ensure that all the data are shown.

at can have length one only if region=FALSE.

col.regions color vector to be used if regions is TRUE. The general idea is that this should be
a color vector of moderately large length (longer than the number of regions. By
default this is 100). It is expected that this vector would be gradually varying in
color (so that nearby colors would be similar). When the colors are actually cho-
sen, they are chosen to be equally spaced along this vector. When there are more
regions than colors in col.regions, the colors are recycled. The actual color
assignment is performed by level.colors, which is documented separately.

alpha.regions Numeric, specifying alpha transparency (works only on some devices)

colorkey A logical flag specifying whether a colorkey is to be drawn alongside the plot, or
a list describing the colorkey. The list may contain the following components:

space: location of the colorkey, can be one of "left”, "right"”, "top"” and
"bottom”. Defaults to "right".

X, y: location, currently unused
col: A color ramp specification, as in the col. regions argument in level.colors

at: A numeric vector specifying where the colors change. must be of length 1
more than the col vector.

tri.lower, tri.upper: Logical or numeric controlling whether the first and
last intervals should be triangular instead of rectangular. With the default
value (NA), this happens only if the corresponding extreme at values are
-Inf or Inf respectively, and the triangles occupy 5% of the total length
of the color key. If numeric and between 0 and 0.25, these give the corre-
sponding fraction, which is again 5% when specified as TRUE.

labels: A character vector for labelling the at values, or more commonly, a list
describing characteristics of the labels. This list may include components
labels, at, cex, col, rot, font, fontface and fontfamily.

title: Usually a character vector or expression providing a title for the col-
orkey, or a list controlling the title in further detail, or an arbitrary "grob"”.
For details of how the list form is interpreted, see the entry for main in
xyplot; generally speaking, the actual label should be specified as the
label component (which may be unnamed if it is the first component),
and the remaining arguments are used as appropriate in a call to textGrob.
Further control of the placement of the title is possible through the compo-
nent title.control. In particular, if a rot component is not specified, its
default depends on the value of title.control$side (0 for top or bottom,
and 90 for left or right).
title defaults to NULL, which means no title is drawn.

44

contour
cuts
labels

pretty

region

B_06_levelplot

title.control: A list providing control over the placement of a title, if speci-
fied. Currently two components are honoured: side can take values "top”,
"bottom”, "left”, and "right"”, and specifies the side of the colorkey on
which the title is to be placed. Defaults to the value of the "space” com-
ponent. padding is a multiplier for the default amount of padding between
the title and the colorkey.

tick.number: The approximate number of ticks desired.

tck: A (scalar) multipler for tick lengths.

corner: Interacts with X, y; currently unimplemented

width: The width of the key

height: The length of key as a fraction of the appropriate side of plot.

raster: A logical flag indicating whether the colorkey should be rendered as a
raster image using grid.raster. See also panel.levelplot.raster.

interpolate: Logical flag, passed to rasterGrob when raster=TRUE.

axis.line: A list giving graphical parameters for the color key boundary and
tick marks. Defaults to trellis.par.get("axis.line").

axis.text: A list giving graphical parameters for the tick mark labels on the
color key. Defaults to trellis.par.get("axis.text").

A logical flag, indicating whether to draw contour lines.

The number of levels the range of z would be divided into.

Typically a logical indicating whether contour lines should be labelled, but other

possibilities for more sophisticated control exists. Details are documented in

the help page for panel.levelplot, to which this argument is passed on un-

changed. That help page also documents the label.style argument, which

affects how the labels are rendered.

A logical flag, indicating whether to use pretty cut locations and labels.

A logical flag, indicating whether regions between contour lines should be filled
as in a level plot.

allow.multiple, outer, prepanel, scales, strip, groups, xlab, x1im, ylab,
ylim, drop.unused. levels, lattice.options, default.scales, subset

These arguments are described in the help page for xyplot.

default.prepanel

useRaster

Fallback prepanel function. See xyplot.

Further arguments may be supplied. Some are processed by levelplot or
contourplot, and those that are unrecognized are passed on to the panel func-
tion.

A logical flag indicating whether raster representations should be used, both for
the false color image and the color key (if present). Effectively, setting this to

TRUE changes the default panel function from panel.levelplot to panel.levelplot.raster,

and sets the default value of colorkey$raster to TRUE.

Note that panel.levelplot.raster provides only a subset of the features of
panel.levelplot, but setting useRaster=TRUE will not check whether any of
the additional features have been requested.

Not all devices support raster images. For devices that appear to lack support,
useRaster=TRUE will be ignored with a warning.

B_06_levelplot 45

Details

These and all other high level Trellis functions have several arguments in common. These are
extensively documented only in the help page for xyplot, which should be consulted to learn more
detailed usage.

Other useful arguments are mentioned in the help page for the default panel function panel.levelplot
(these are formally arguments to the panel function, but can be specified in the high level calls di-
rectly).

Value

An object of class "trellis"”. The update method can be used to update components of the object
and the print method (usually called by default) will plot it on an appropriate plotting device.

Author(s)

Deepayan Sarkar <Deepayan.Sarkar@R-project.org>

References

Sarkar, Deepayan (2008) Lattice: Multivariate Data Visualization with R, Springer. http://
Imdvr.r-forge.r-project.org/

See Also

xyplot, Lattice, panel.levelplot

Examples

x <- seq(pi/4, 5 * pi, length.out = 100)

y <- seq(pi/4, 5 * pi, length.out = 100)

r <- as.vector(sqrt(outer(x*2, y*2, "+")))

grid <- expand.grid(x=x, y=y)

grid$z <- cos(r*2) x exp(-r/(pi*3))

levelplot(z ~ x * y, grid, cuts = 50, scales=list(log="e"), xlab="",
ylab="", main="Weird Function”, sub="with log scales”,
colorkey = FALSE, region = TRUE)

triangular end-points in color key, with a title

levelplot(z ~ x * y, grid, col.regions = hcl.colors(10),
at = c(-Inf, seq(-90.8, 0.8, by = 0.2), Inf))

#S-PLUS example

require(stats)

attach(environmental)

0zo.m <- loess((ozone*(1/3)) ~ wind * temperature * radiation,
parametric = c("radiation”, "wind"”), span = 1, degree = 2)

w.marginal <- seq(min(wind), max(wind), length.out = 50)

t.marginal <- seq(min(temperature), max(temperature), length.out = 50)

r.marginal <- seq(min(radiation), max(radiation), length.out = 4)

wtr.marginal <- list(wind = w.marginal, temperature = t.marginal,

radiation = r.marginal)
grid <- expand.grid(wtr.marginal)

http://lmdvr.r-forge.r-project.org/
http://lmdvr.r-forge.r-project.org/

46 B 07 cloud
grid[, "fit"] <- c(predict(ozo.m, grid))
contourplot(fit ~ wind * temperature | radiation, data = grid,
cuts = 10, region = TRUE,
xlab = "Wind Speed (mph)",
ylab = "Temperature (F)",
main = "Cube Root Ozone (cube root ppb)")
detach()
B_07_cloud 3d Scatter Plot and Wireframe Surface Plot
Description
Generic functions to draw 3d scatter plots and surfaces. The "formula” methods do most of the
actual work.
Usage
cloud(x, data, ...)
wireframe(x, data, ...)

S3 method for class 'formula'
cloud(x,

data,

allow.multiple = is.null(groups) || outer,

outer = FALSE,

auto.key = lattice.getOption("default.args”)$auto.key,
aspect = c(1,1),

panel.aspect = 1,

panel = lattice.getOption("”panel.cloud"),

prepanel = NULL,

scales = list(),

strip = TRUE,

groups = NULL,

xlab,

ylab,

zlab,

xlim = if (is.factor(x)) levels(x) else range(x, finite

ylim = if (is.factor(y)) levels(y) else range(y, finite
zlim = if (is.factor(z)) levels(z) else range(z, finite
at,

drape = FALSE,

pretty = FALSE,

drop.unused. levels,

lattice.options = NULL,

default.scales =

TRUE),
TRUE),
TRUE),

B_07 cloud 47

list(distance = c(1, 1, 1),
arrows = TRUE,
axs = axs.default),
default.prepanel = lattice.getOption("prepanel.default.cloud”),
colorkey,
col.regions,
alpha.regions,
cuts = 70,
subset = TRUE,
axs.default = "r")

S3 method for class 'data.frame'
cloud(x, data = NULL, formula = data, ...)

S3 method for class 'formula'
wireframe(x,
data,
panel = lattice.getOption("panel.wireframe”),
default.prepanel = lattice.getOption("prepanel.default.wireframe”),
L)

S3 method for class 'data.frame'
wireframe(x, data = NULL, formula = data, ...)

S3 method for class 'matrix'

cloud(x, data = NULL, type = "h",
zlab = deparse(substitute(x)), aspect, ...,
xlim, ylim, row.values, column.values)

S3 method for class 'table'

cloud(x, data = NULL, groups = FALSE,
zlab = deparse(substitute(x)),
type = "h", ...)

S3 method for class 'matrix'

wireframe(x, data = NULL,
zlab = deparse(substitute(x)), aspect, ...,
xlim, ylim, row.values, column.values)

Arguments

X The object on which method dispatch is carried out.

For the "formula” methods, a formula of the form z~x*xy | g1 xg2 % ...,
where z is a numeric response, and x, y are numeric values. g1, g2, ..., if
present, are conditioning variables used for conditioning, and must be either
factors or shingles. In the case of wireframe, calculations are based on the
assumption that the x and y values are evaluated on a rectangular grid defined
by their unique values. The grid points need not be equally spaced.

48

B 07 cloud

For wireframe, x, y and z may also be matrices (of the same dimension), in
which case they are taken to represent a 3-D surface parametrized on a 2-D grid
(e.g., a sphere). Conditioning is not possible with this feature. See details below.

Missing values are allowed, either as NA values in the z vector, or missing rows
in the data frame (note however that in that case the X and Y grids will be
determined only by the available values). For a grouped display (producing
multiple surfaces), missing rows are not allowed, but NA-s in z are.

Both wireframe and cloud have methods for matrix objects, in which case
x provides the z vector described above, while its rows and columns are inter-
preted as the x and y vectors respectively. This is similar to the form used in
persp.

data For the "formula" methods, an optional data frame in which variables in the
formula (as well as groups and subset, if any) are to be evaluated. data should
not be specified except when using the "formula” method.

formula The formula to be used for the "data. frame” methods. See documentation for
argument x for details.

row.values, column.values
Optional vectors of values that define the grid when x is a matrix. row.values
and column.values must have the same lengths as nrow(x) and ncol(x) re-
spectively. By default, row and column numbers.

allow.multiple, outer, auto.key, prepanel, strip, groups, xlab, x1im, ylab,

ylim, drop.unused. levels, lattice.options, default.scales, subset
These arguments are documented in the help page for xyplot. For the cloud. table
method, groups must be a logical indicating whether the last dimension should
be used as a grouping variable as opposed to a conditioning variable. This is
only relevant if the table has more than 2 dimensions.

type type of display in cloud (see panel. 3dscatter for details). Defaults to "h" for
the matrix method.

aspect, panel.aspect
Unlike other high level functions, aspect is taken to be a numeric vector of
length 2, giving the relative aspects of the y-size/x-size and z-size/x-size of the
enclosing cube. The usual role of the aspect argument in determining the aspect
ratio of the panel (see xyplot for details) is played by panel.aspect, except
that it can only be a numeric value.

For the matrix methods, the default y/x aspect is ncol(x) / nrow(x) and the
z/x aspect is the smaller of the y/x aspect and 1.

panel panel function used to create the display. See panel.cloud for (non-trivial)
details.

default.prepanel
Fallback prepanel function. See xyplot.

scales a list describing the scales. As with other high level functions (see xyplot for
details), this list can contain parameters in name=value form. It can also contain
components with the special names x, y and z, which can be similar lists with
axis-specific values overriding the ones specified in scales.
The most common use for this argument is to set arrows=FALSE, which causes
tick marks and labels to be used instead of arrows being drawn (the default).

B _07_cloud 49

Both can be suppressed by draw=FALSE. Another special component is distance,
which specifies the relative distance of the axis label from the bounding box. If
specified as a component of scales (as opposed to one of scales$z etc), this
can be (and is recycled if not) a vector of length 3, specifying distances for the
X, y and z labels respectively.

Other components that work in the scales argument of xyplot etc. should also
work here (as long as they make sense), including explicit specification of tick
mark locations and labels. (Not everything is implemented yet, but if you find
something that should work but does not, feel free to bug the maintainer.)

Note, however, that for these functions scales cannot contain information that
is specific to particular panels. If you really need that, consider using the scales. 3d
argument of panel.cloud.

axs.default Unlike 2-D display functions, cloud does not expand the bounding box to slightly
beyound the range of the data, even though it should. This is primarily be-
cause this is the natural behaviour in wireframe, which uses the same code.
axs.default is intended to provide a different default for cloud. However, this
feature has not yet been implemented.

zlab Specifies a label describing the z variable in ways similar to xlab and ylab
(i.e. “grob”, character string, expression or list) in other high level functions.
Additionally, if z1ab (and x1lab and ylab) is a list, it can contain a component
called rot, controlling the rotation for the label

zlim limits for the z-axis. Similar to x1im and ylim in other high level functions

drape logical, whether the wireframe is to be draped in color. If TRUE, the height of a
facet is used to determine its color in a manner similar to the coloring scheme
used in levelplot. Otherwise, the background color is used to color the facets.
This argument is ignored if shade = TRUE (see panel.3dwire).

at, col.regions, alpha.regions
these arguments are analogous to those in levelplot. if drape=TRUE, at gives
the vector of cutpoints where the colors change, and col.regions the vec-
tor of colors to be used in that case. alpha.regions determines the alpha-
transparency on supporting devices. These are passed down to the panel func-
tion, and also used in the colorkey if appropriate. The default for col.regions
and alpha.regions is derived from the Trellis setting "regions”

cuts if at is unspecified, the approximate number of cutpoints if drape=TRUE
pretty whether automatic choice of cutpoints should be prettfied
colorkey logical indicating whether a color key should be drawn alongside, or a list de-

scribing such a key. See levelplot for details.

Any number of other arguments can be specified, and are passed to the panel
function. In particular, the arguments distance, perspective, screen and
R.mat are very important in determining the 3-D display. The argument shade
can be useful for wireframe calls, and controls shading of the rendered surface.
These arguments are described in detail in the help page for panel.cloud.
Additionally, an argument called zoom may be specified, which should be a nu-
meric scalar to be interpreted as a scale factor by which the projection is magni-
fied. This can be useful to get the variable names into the plot. This argument is
actually only used by the default prepanel function.

50 B 07 cloud

Details

These functions produce three dimensional plots in each panel (as long as the default panel functions
are used). The orientation is obtained as follows: the data are scaled to fall within a bounding box
that is contained in the [-0.5, 0.5] cube (even smaller for non-default values of aspect). The viewing
direction is given by a sequence of rotations specified by the screen argument, starting from the
positive Z-axis. The viewing point (camera) is located at a distance of 1/distance from the origin.
If perspective=FALSE, distance is set to O (i.e., the viewing point is at an infinite distance).

cloud draws a 3-D Scatter Plot, while wireframe draws a 3-D surface (usually evaluated on a
grid). Multiple surfaces can be drawn by wireframe using the groups argument (although this is
of limited use because the display is incorrect when the surfaces intersect). Specifying groups with
cloud results in a panel . superpose-like effect (via panel.3dscatter).

wireframe can optionally render the surface as being illuminated by a light source (no shadows
though). Details can be found in the help page for panel.3dwire. Note that although arguments
controlling these are actually arguments for the panel function, they can be supplied to cloud and
wireframe directly.

For single panel plots, wireframe can also plot parametrized 3-D surfaces (i.e., functions of the
form f(u,v) = (x(u,v), y(u,v), z(u,v)), where values of (u,v) lie on a rectangle. The simplest example
of this sort of surface is a sphere parametrized by latitude and longitude. This can be achieved by
calling wireframe with a formula x of the form z~x*y, where x, y and z are all matrices of the same
dimension, representing the values of x(u,v), y(u,v) and z(u,v) evaluated on a discrete rectangular
grid (the actual values of (u,v) are irrelevant).

When this feature is used, the heights used to calculate drape colors or shading colors are no longer
the z values, but the distances of (x,y,z) from the origin.

Note that this feature does not work with groups, subscripts, subset, etc. Conditioning variables
are also not supported in this case.

The algorithm for identifying which edges of the bounding box are ‘behind’ the points doesn’t work
in some extreme situations. Also, panel.cloud tries to figure out the optimal location of the arrows
and axis labels automatically, but can fail on occasion (especially when the view is from ‘below’
the data). This can be manually controlled by the scpos argument in panel.cloud.

These and all other high level Trellis functions have several other arguments in common. These are
extensively documented only in the help page for xyplot, which should be consulted to learn more
detailed usage.

Value

An object of class "trellis". The update method can be used to update components of the object
and the print method (usually called by default) will plot it on an appropriate plotting device.

Note

There is a known problem with grouped wireframe displays when the (X, y) coordinates represented
in the data do not represent the full evaluation grid. The problem occurs whether the grouping is
specified through the groups argument or through the formula interface, and currently causes mem-
ory access violations. Depending on the circumstances, this is manifested either as a meaningless
plot or a crash. To work around the problem, it should be enough to have a row in the data frame
for each grid point, with an NA response (z) in rows that were previously missing.

B_07 cloud

Author(s)

Deepayan Sarkar <Deepayan.Sarkar@R-project.org>

References

Sarkar, Deepayan (2008) Lattice: Multivariate Data Visualization with R, Springer.
Imdvr.r-forge.r-project.org/

See Also

Lattice for an overview of the package, as well as xyplot, levelplot, panel.cloud.

For interaction, see panel.identify.cloud.

Examples

volcano ## 87 x 61 matrix

wireframe(volcano, shade = TRUE,
aspect = c(61/87, 0.4),
light.source = ¢(10,0,10))

g <- expand.grid(x = 1:10, y = 5:15, gr = 1:2)
g$z <- log((g$x"gsgr + gey"2) * ghgr)
wireframe(z ~ x * y, data = g, groups = gr,
scales = list(arrows = FALSE),
drape = TRUE, colorkey = TRUE,
screen = list(z = 30, x = -60))

cloud(Sepal.Length ~ Petal.Length * Petal.Width | Species, data = iris,
screen = list(x = -90, y = 70), distance = .4, zoom = .6)

cloud.table

cloud(prop.table(Titanic, margin = 1:3),
type = c("p”, "h"), strip = strip.custom(strip.names = TRUE),
scales = list(arrows = FALSE, distance = 2), panel.aspect = 0.7,
zlab = "Proportion”)[, 1]

transparent axes

par.set <-
list(axis.line = list(col = "transparent”),
clip = list(panel = "off"))
print(cloud(Sepal.Length ~ Petal.Length * Petal.Width,

data = iris, cex = .8,
groups = Species,
main = "Stereo”,

screen = list(z = 20, x = -70, y = 3),
par.settings = par.set,
scales = list(col = "black")),
split = ¢(1,1,2,1), more = TRUE)
print(cloud(Sepal.Length ~ Petal.Length * Petal.Width,

51

http://

http://lmdvr.r-forge.r-project.org/
http://lmdvr.r-forge.r-project.org/

52 B_08_splom
data = iris, cex = .8,
groups = Species,
main = "Stereo”,
screen = list(z = 20, x = -70, y = 0),
par.settings = par.set,
scales = list(col = "black")),
split = ¢(2,1,2,1))
B_08_splom Scatter Plot Matrices
Description
Draw Conditional Scatter Plot Matrices and Parallel Coordinate Plots
Usage
splom(x, data, ...)
parallelplot(x, data, ...)

S3 method for class 'formula’
splom(x,

data,
auto.key =
aspect =1,
between = list(x = 0.5, y = 0.5),

panel = lattice.getOption("”panel.splom”),
prepanel,

scales,

strip,

groups,

xlab,

xlim,

ylab = NULL,

ylim,

superpanel = lattice.getOption("panel.pairs"),
pscales = 5,

varnames = NULL,

drop.unused. levels,

lattice.getOption("default.args"”)$auto.key,

lattice.options = NULL,

default.scales,

default.prepanel = lattice.getOption("prepanel.default.splom”),
subset = TRUE)

S3 method for class 'formula'
parallelplot(x,

data,

B_08_splom

53

auto.key = lattice.getOption("default.args"”)$auto.key,
aspect = "fill",

between = list(x = 0.5, y = 0.5),

panel = lattice.getOption("panel.parallel”),

prepanel,

scales,

strip,

groups,

xlab = NULL,

xlim,

ylab = NULL,

ylim,

varnames = NULL,

horizontal.axis = TRUE,

drop.unused.levels,

lattice.options = NULL,

default.scales,

default.prepanel = lattice.getOption("prepanel.default.parallel”),
subset = TRUE)

S3 method for class 'data.frame'

splom(x, data = NULL, ..., groups = NULL, subset = TRUE)

S3 method for class 'matrix'

splom(x, data = NULL, ..., groups = NULL, subset = TRUE)

S3 method for class 'matrix'’

parallelplot(x, data = NULL, ..., groups = NULL, subset = TRUE)

S3 method for class 'data.frame'

parallelplot(x, data = NULL, ..., groups = NULL, subset = TRUE)

Arguments

X The object on which method dispatch is carried out.
For the "formula” method, a formula describing the structure of the plot, which
should be of the form ~x | g1 x g2 x ..., where x is a data frame or matrix.
Each of g1,g2, ... must be either factors or shingles. The conditioning vari-
ables g1, g2, ... may be omitted.
For the data. frame methods, a data frame.

data For the formula methods, an optional data frame in which variables in the for-
mula (as well as groups and subset, if any) are to be evaluated.

aspect aspect ratio of each panel (and subpanel), square by default for splom.

between to avoid confusion between panels and subpanels, the default is to show the
panels of a splom plot with space between them.

panel For parallelplot, this has the usual interpretation, i.e., a function that creates

the display within each panel.
For splom, the terminology is slightly complicated. The role played by the panel
function in most other high-level functions is played here by the superpanel

54 B_08_splom

function, which is responsible for the display for each conditional data subset.
panel is simply an argument to the default superpanel function panel.pairs,
and is passed on to it unchanged. It is used there to create each pairwise display.
See panel.pairs for more useful options.

superpanel function that sets up the splom display, by default as a scatterplot matrix.

pscales a numeric value or a list, meant to be a less functional substitute for the scales
argument in xyplot etc. This argument is passed to the superpanel function,
and is handled by the default superpanel function panel.pairs. The help page
for the latter documents this argument in more detail.

varnames A character or expression vector or giving names to be used for the variables in
x. By default, the column names of x.

horizontal.axis
logical indicating whether the parallel axes should be laid out horizontally (TRUE)
or vertically (FALSE).

auto.key, prepanel, scales, strip, groups, xlab, xlim, ylab, ylim,

drop.unused. levels, lattice.options, default.scales, subset
See xyplot

default.prepanel
Fallback prepanel function. See xyplot.

Further arguments. See corresponding entry in xyplot for non-trivial details.

Details

splom produces Scatter Plot Matrices. The role usually played by panel is taken over by superpanel,
which takes a data frame subset and is responsible for plotting it. It is called with the coordinate
system set up to have both x- and y-limits from ©.5 to ncol(z) + @.5. The only built-in option
currently available is panel.pairs, which calls a further panel function for each pair (i, j) of
variables in z inside a rectangle of unit width and height centered at c(i, j) (see panel.pairs for
details).

Many of the finer customizations usually done via arguments to high level function like xyplot
are instead done by panel.pairs for splom. These include control of axis limits, tick locations
and prepanel calcultions. If you are trying to fine-tune your splom plot, definitely look at the
panel.pairs help page. The scales argument is usually not very useful in splom, and trying to
change it may have undesired effects.

parallelplot draws Parallel Coordinate Plots. (Difficult to describe, see example.)

These and all other high level Trellis functions have several arguments in common. These are
extensively documented only in the help page for xyplot, which should be consulted to learn more
detailed usage.

Value

An object of class "trellis"”. The update method can be used to update components of the object
and the print method (usually called by default) will plot it on an appropriate plotting device.

Author(s)

Deepayan Sarkar <Deepayan.Sarkar@R-project.org>

B_09_tmd 55

See Also

xyplot, Lattice, panel.pairs, panel.parallel

Examples

super.sym <- trellis.par.get("superpose.symbol”)
splom(~iris[1:4], groups = Species, data = iris,
panel = panel.superpose,
key = list(title = "Three Varieties of Iris”,
columns = 3,
points = list(pch = super.sym$pch[1:3],
col = super.sym$col[1:31),
text = list(c("Setosa”, "Versicolor"”, "Virginica"”))))
splom(~iris[1:3]|Species, data = iris,
layout=c(2,2), pscales = 0,
varnames = c("Sepal\nLength”, "Sepal\nWidth"”, "Petal\nLength"),
page = function(...) {
ltext(x = seq(.6, .8, length.out = 4),
y = seq(.9, .6, length.out = 4),
labels = c("Three”, "Varieties”, "of", "Iris"),
cex = 2)
b))
parallelplot(~iris[1:4] | Species, iris)
parallelplot(~iris[1:4], iris, groups = Species,
horizontal.axis = FALSE, scales = list(x = list(rot = 90)))

B_09_tmd Tukey Mean-Difference Plot

Description

tmd Creates Tukey Mean-Difference Plots from a trellis object returned by xyplot, qq or ggmath.
The prepanel and panel functions are used as appropriate. The formula and data. frame methods
for tmd are provided for convenience, and simply call tmd on the object created by the corresponding
xyplot methods.

Usage
tmd(object, ...)

S3 method for class 'trellis'

tmd(object,
xlab = "mean”,
ylab = "difference”,
panel,
prepanel,

)

56 B_09_tmd

prepanel.tmd.qggmath(x,
f.value = NULL,
distribution = gnorm,

qtype = 7,
groups = NULL,
subscripts, ...)

panel.tmd.qgmath(x,
f.value = NULL,
distribution = gnorm,

qtype = 7,
groups = NULL,
subscripts, ...,

identifier = "tmd")
panel.tmd.default(x, y, groups = NULL, ...,
identifier = "tmd")

prepanel.tmd.default(x, vy, ...)
Arguments
object An object of class "trellis” returned by xyplot, qq or qgmath.
x1lab x label
ylab y label
panel panel function to be used. See details below.
prepanel prepanel function. See details below.

f.value, distribution, qtype

see panel.qgmath.
groups, subscripts

see xyplot.

Y data as passed to panel functions in original call.
other arguments

identifier A character string that is prepended to the names of grobs that are created by
this panel function.

Details

The Tukey Mean-difference plot is produced by modifying the (x,y) values of each panel as follows:
the new coordinates are given by x=(x+y)/2 and y=y-x, which are then plotted. The default panel
function(s) add a reference line at y=0 as well.

tmd acts onthe a "trellis” object, not on the actual plot this object would have produced. As such,
it only uses the arguments supplied to the panel function in the original call, and completely ignores
what the original panel function might have done with this data. tmd uses these panel arguments to
set up its own scales (using its prepanel argument) and display (using panel). It is thus important
to provide suitable prepanel and panel functions to tmd depending on the original call.

Such functions currently exist for xyplot, qq (the ones with default in their name) and qgmath, as
listed in the usage section above. These assume the default displays for the corresponding high-level
call. If unspecified, the prepanel and panel arguments default to suitable choices.

B 10 rfs 57

tmd uses the update method for "trellis” objects, which processes all extra arguments supplied
to tmd.

Value

An object of class "trellis". The update method can be used to update components of the object
and the print method (usually called by default) will plot it on an appropriate plotting device.

Author(s)

Deepayan Sarkar <Deepayan.Sarkar@R-project.org>

See Also

qq, qgmath, xyplot, Lattice

Examples

tmd(ggmath(~height | voice.part, data = singer))

B_10_rfs Residual and Fit Spread Plots

Description

Plots fitted values and residuals (via qgmath) on a common scale for any object that has methods
for fitted values and residuals.

Usage

rfs(model, layout=c(2, 1), xlab="f-value"”, ylab=NULL,
distribution = qunif,

panel, prepanel, strip, ...)
Arguments
model a fitted model object with methods fitted.values and residuals. Can be the
value returned by oneway
layout default layout is c(2,1)
xlab defaults to "f.value”

distribution the distribution function to be used for ggmath
ylab, panel, prepanel, strip
See xyplot

other arguments, passed on to qgmath.

58 B_11_oneway

Value

An object of class "trellis”. The update method can be used to update components of the object
and the print method (usually called by default) will plot it on an appropriate plotting device.

Author(s)

Deepayan Sarkar <Deepayan.Sarkar@R-project.org>

See Also

oneway, qgmath, xyplot, Lattice

Examples

rfs(oneway(height ~ voice.part, data = singer, spread = 1), aspect = 1)

B_11_oneway Fit One-way Model

Description

Fits a One-way model to univariate data grouped by a factor, the result often being displayed using
rfs

Usage

oneway(formula, data, location=mean, spread=function(x) sqrt(var(x)))

Arguments
formula formula of the form y ~ x where y is the numeric response and x is the grouping
factor
data data frame in which the model is to be evaluated
location function or numeric giving the location statistic to be used for centering the
observations, e.g. median, O (to avoid centering).
spread function or numeric giving the spread statistic to be used for scaling the obser-
vations, e.g. sd, 1 (to avoid scaling).
Value

A list with components

location vector of locations for each group.

spread vector of spreads for each group.
fitted.values vector of locations for each observation.
residuals residuals (y - fitted.values).

scaled.residuals residuals scaled by spread for their group

C _01 _trellis.device 59

Author(s)

Deepayan Sarkar <Deepayan.Sarkar@R-project.org>

See Also

rfs, Lattice

C_01_trellis.device Initializing Trellis Displays

Description

Initialization of a display device with appropriate graphical parameters.

Usage

trellis.device(device = getOption("device"),
color = !(dev.name == "postscript”),
theme = lattice.getOption("default.theme"”),
new = TRUE,
retain = FALSE,
.

Arguments

device function (or the name of one as a character string) that starts a device. Admis-
sible values depend on the platform and how R was compiled (see Devices),
but usually "pdf"”, "postscript”, "png”, "jpeg" and at least one of "X11",
"windows" and "quartz" will be available.

color logical, whether the initial settings should be color or black and white. Defaults
to FALSE for postscript devices, TRUE otherwise. Note that this only applies to
the initial choice of colors, which can be overridden using theme or subsequent
calls to trellis.par.set (and by arguments supplied directly in high level
calls for some settings).

theme list of components that changes the settings of the device opened, or, a function
that when called produces such a list. The function name can be supplied as
a quoted string. These settings are only used to modify the default settings
(determined by other arguments), and need not contain all possible parameters.

A possible use of this argument is to change the default settings by specifying
lattice.options(default.theme = "col.whitebg"). For back-compatibility,
this is initially (when lattice is loaded) set to getOption(lattice. theme).

If theme is a function, it will not be supplied any arguments, however, it is
guaranteed that a device will already be open when it is called, so one may use
.Device inside the function to ascertain what device has been opened.

60 C_01 _trellis.device

new logical flag indicating whether a new device should be started. If FALSE, the
options for the current device are changed to the defaults determined by the
other arguments.

retain logical. If TRUE and a setting for this device already exists, then that is used
instead of the defaults for this device. By default, pre-existing settings are over-
written (and lost).

name name of the device for which the setting is required, as returned by .Device

additional parameters to be passed to the device function, most commonly file
for non-screen devices, as well as height, width, etc. See the help file for
individual devices for admissible arguments.

Details

The trellis.device function sets up an R graphics device for use with lattice graphics, by opening
the device if necessary, and defining a set of associated graphical parameters (colors, line types,
fonts, etc.).

Even if a device is opened without calling trellis.device, for example, by calling a device func-
tion directly, trellis.device is still called automatically when a "trellis" object is plotted.
The default graphical settings used in this case can be customized using lattice.options. It is
therefore rarely necessary for the user to call trellis.device explicitly.

Value
None; trellis.device is called for the side effect of opening a device and / or setting associated
graphical parameters.

Note

Earlier versions of trellis.device had a bg argument to set the background color, but this is no
longer supported. If supplied, the bg argument will be passed on to the device function; however,
this will have no effect on the Trellis settings. It is rarely meaningful to change the background
alone; if you feel the need to change the background, consider using the theme argument instead.

Author(s)

Deepayan Sarkar <Deepayan.Sarkar@R-project.org>

References
Sarkar, Deepayan (2008) Lattice: Multivariate Data Visualization with R, Springer. http://
Imdvr.r-forge.r-project.org/

See Also

Lattice for an overview of the lattice package.
Devices for valid choices of device on your platform.

standard. theme for the default theme and alternatives.

http://lmdvr.r-forge.r-project.org/
http://lmdvr.r-forge.r-project.org/

C _02a_standard.theme 61

C_02a_standard.theme Built-in Graphical Themes

Description

Built-in graphical parameter settings. These mainly differ in their choice of colors.

Usage

standard. theme(name, color = TRUE,
symbol = palette.colors(palette = "Okabe-Ito")[c(6, 2, 4, 7, 3, 5, 8)1,
fill = NULL,
region = hcl.colors(14, palette = "Y1IGnBu", rev = TRUE),
reference = "gray90",
bg = "transparent”,
fg = "black”,
o)
canonical.theme(...)
custom_theme(symbol, fill, region,
reference = "gray90", bg = "transparent”, fg = "black”,
strip.bg = rep("gray95”, 7), strip.fg = rep("gray70", 7),
L))
classic.theme(name, color)
col.whitebg()

Arguments

name character string giving the name of the device for which the setting is required,
as returned by .Device. This is only used by classic.theme to allow device-
specific setting. It is retained in standard. theme for back-compatibilty, but its
use is not recommended.

color logical, whether the initial settings should be color or black and white.

symbol vector of colors to be used for symbols and lines.

fill vector of colors to be used as fill colors, e.g., in bar charts and histograms. The
default of NULL in standard. theme results in lightened versions of the symbol
colors to be used.

region vector of colors to be used to create a color ramp, typically used by levelplot

reference color, to be used for reference lines.

fg color, to be used for foreground elements such as axes and labels.

bg color, to be used as background.

strip.bg color, to be used as strip background.

strip.fg color, to be used as strip foreground.

62 C _02a_standard.theme

additional arguments, passed on to other functions as appropriate. In partic-
ular, additional arguments provided to standard.theme will be passed on to
custom_theme, and these may include non-color parameters that will be used to
modify the resulting theme via simpleTheme.

Details

Trellis Graphics functions obtain the default values of various graphical parameters (colors, line
types, fonts, etc.) from a customizable “settings” list (see trellis.par.set for details). This
functionality is analogous to par for standard R graphics and, together with lattice.options,
mostly supplants it (par settings are mostly ignored by Lattice). Unlike par, Trellis settings can be
controlled separately for each different device type (but not concurrently for different instances of
the same device).

The functions documented in this page produce such graphical settings (a.k.a. themes), usually to
be used with trellis.device or trellis.par.set.

classic. theme and col.whitebg produce predefined themes that are not recommended for routine
use but are retained for compatibility.

The classic. theme function was intended to provide device specific settings (e.g. light colors on a
grey background for screen devices, dark colors or black and white for print devices) and was used
to obtain defaults prior to R 2.3.0. However, these settings are not always appropriate, due to the
variety of platforms and hardware settings on which R is used, as well as the fact that a plot created
on a particular device may be subsequently used in many different ways. For this reason, common
device-agnostic defaults were used for all devices from R 2.3.0 onwards.

Since R 4.3.0, a new set of defaults given by standard. theme is used. The defaults are based on

HCL palettes, but customization of the palettes is allowed. Earlier behaviour can be reinstated by
setting classic. theme as the default theme argument, e.g., by putting lattice.options(default. theme
= classic.theme("pdf")) in a startup script (see the entry for theme in trellis.device for de-

tails).

custom_theme is the workhorse function called by standard. theme. canonical. theme is an alias
for standard. theme.

Value

A list of components defining graphical parameter settings for Lattice displays. It is used internally
in trellis.device, and can also be used as the theme argument to trellis.par.set

col.whitebg returns a similar (but smaller) list that is suitable as the theme argument to trellis.device
and trellis.par.set. It contains settings values which provide colors suitable for plotting on a
white background. Note that the name col.whitebg is somewhat of a misnomer, since it actually

sets the background to transparent rather than white.

Author(s)

Deepayan Sarkar <Deepayan. Sarkar@R-project.org>

References

Sarkar, Deepayan (2008) Lattice: Multivariate Data Visualization with R, Springer. http://
Imdvr.r-forge.r-project.org/

http://lmdvr.r-forge.r-project.org/
http://lmdvr.r-forge.r-project.org/

C_02b_trellis.par.get 63

See Also

Lattice for an overview of the lattice package.
Devices for valid choices of device on your platform.

trellis.par.get and trellis.par.set can be used to query and modify the settings after a
device has been initialized. The par.settings argument to high level functions, described in
xyplot, can be used to attach transient settings to a "trellis"” object.

C_02b_trellis.par.get Graphical Parameters for Trellis Displays

Description
Functions used to query, display and modify graphical parameters for fine control of Trellis displays.
Modifications are made to the settings for the currently active device only.

Usage

trellis.par.set(name, value, ..., theme, warn = TRUE, strict = FALSE)
trellis.par.get(name = NULL)
show.settings(x = NULL)

Arguments

name A character string giving the name of a component. If unspecified in trellis.par.get(),
the return value is a named list containing all the current settings (this can be
used to get the valid values for name).

value a list giving the desired value of the component. Components that are already
defined as part of the current settings but are not mentioned in value will remain
unchanged.

theme alist decribing how to change the settings, similar to what is returned by trellis.par.get().

This is purely for convenience, allowing multiple calls to trellis.par.set to
be condensed into one. The name of each component must be a valid name as
described above, with the corresponding value a valid value as described above.
As in trellis.device, theme can also be a function that produces such a list
when called. The function name can be supplied as a quoted string.

Multiple settings can be specified in name = value form. Equivalent to calling
with theme = 1ist(...)

warn A logical flag, indicating whether a warning should be issued when trellis.par.get
is called when no graphics device is open.

strict Usually a logical flag, indicating whether the value should be interpreted strictly.
Usually, assignment of value to the corresponding named component is fuzzy in
the sense that sub-components that are absent from value but not currently NULL
are retained. By specifying strict = TRUE, such values will be removed.
An even stricter interpretation is allowed by specifying strict as a numeric
value larger than 1. In that case, top-level components not specified in the call
will also be removed. This is primarily for internal use.

64 C_02b_trellis.par.get

X optional list of components that change the settings (any valid value of theme).
These are used to modify the current settings (obtained by trellis.par.get)
before they are displayed.

Details

The various graphical parameters (color, line type, background etc) that control the look and feel
of Trellis displays are highly customizable. Also, R can produce graphics on a number of devices,
and it is expected that a different set of parameters would be more suited to different devices.
These parameters are stored internally in a variable named lattice. theme, which is a list whose
components define settings for particular devices. The components are idenified by the name of
the device they represent (as obtained by .Device), and are created as and when new devices are
opened for the first time using trellis.device (or Lattice plots are drawn on a device for the first
time in that session).

The initial settings for each device defaults to values appropriate for that device. In practice, this
boils down to three distinct settings, one for screen devices like x11 and windows, one for black and
white plots (mostly useful for postscript) and one for color printers (color postcript, pdf).

Once a device is open, its settings can be modified. When another instance of the same device
is opened later using trellis.device, the settings for that device are reset to its defaults, unless
otherwise specified in the call to trellis.device. But settings for different devices are treated
separately, i.e., opening a postscript device will not alter the x11 settings, which will remain in
effect whenever an x11 device is active.

The functions trellis.par.* are meant to be interfaces to the global settings. They always apply
on the settings for the currently ACTIVE device.

trellis.par.get, called without any arguments, returns the full list of settings for the active
device. With the name argument present, it returns that component only. trellis.par.get sets the
value of the name component of the current active device settings to value.

trellis.par.get is usually used inside trellis functions to get graphical parameters before plot-
ting. Modifications by users via trellis.par.set is traditionally done as follows:

add.line <- trellis.par.get("”add.line")
add.line$col <- "red”

trellis.par.set("add.line”, add.line)

More convenient (but not S compatible) ways to do this are
trellis.par.set(list(add.line =1ist(col ="red")))
and

trellis.par.set(add.line =1ist(col ="red"))

The actual list of the components in trellis. settings has not been finalized, so I’m not attempt-
ing to list them here. The current value can be obtained by print(trellis.par.get()). Most
names should be self-explanatory.

show. settings provides a graphical display summarizing some of the values in the current settings.

Value

trellis.par.get returns a list giving parameters for that component. If name is missing, it returns
the full list.

C_02b_trellis.par.get 65

Most of the settings are graphical parameters that control various elements of a lattice plot. For
details, see the examples below. The more unusual settings are described here.

grid.pars Grid graphical parameters that are in effect globally unless overridden by specific set-
tings.

fontsize A list of two components (each a numeric scalar), text and points, for text and symbols
respectively.

clip A list of two components (each a character string, either "on"” or "off"), panel and strip.

axis.components A list with four components (left, top, right, bottom), each a list giving
numeric mutlipliers named tck, pad1, and pad2 for corresponding grid layout units.

layout.heights A list with numeric multipliers for grid layout heights.

layout.widths A list with numeric multipliers for grid layout widths.

Note

In some ways, trellis.par.get and trellis.par.set together are a replacement for the par
function used in traditional R graphics. In particular, changing par settings has little (if any) effect
on lattice output. Since lattice plots are implemented using Grid graphics, its parameter system
does have an effect unless overridden by a suitable lattice parameter setting. Such parameters can
be specified as part of a lattice theme by including them in the grid.pars component (see gpar for
a list of valid parameter names).

Author(s)

Deepayan Sarkar <Deepayan.Sarkar@R-project.org>

See Also

trellis.device, Lattice, gpar

Examples

show.settings()
tp <- trellis.par.get()

unusual <- c("grid.pars”, "fontsize”, "clip"”, "axis.components",
"layout.heights”, "layout.widths")

for (u in unusual) tp[[ul] <- NULL
names.tp <- lapply(tp, names)
unames <- sort(unique(unlist(names.tp)))
ans <- matrix(@, nrow = length(names.tp), ncol = length(unames))
rownames (ans) <- names(names.tp)
colnames(ans) <- unames
for (i in seqg_along(names.tp))
ans[i,] <- as.numeric(unames %in% names.tp[[i]])
ans <- ans[, order(-colSums(ans))]
ans <- ans[order(rowSums(ans)), 1]

66 C_03_simpleTheme

ans[ans == 0] <- NA

levelplot(t(ans), colorkey = FALSE,
scales = list(x = list(rot = 90)),
panel = function(x, y, z, ...) {
panel.abline(v = unique(as.numeric(x)),
h = unique(as.numeric(y)),
col = "darkgrey")
panel.xyplot(x, y, pch =16 * z, ...)
b
xlab = "Graphical parameters”,
ylab = "Setting names")

C_03_simpleTheme Function to generate a simple theme

Description

Simple interface to generate a list appropriate as a theme, typically used as the par.settings
argument in a high level call

Usage

simpleTheme(col, alpha,
cex, pch, 1ty, lwd, font, fill, border,
col.points, col.line,
alpha.points, alpha.line)

Arguments

col, col.points, col.line
A color specification. col is used for components "plot.symbol”, "plot.line”,
"plot.polygon”, "superpose.symbol”, "superpose.line”, and "superpose.polygon”.
col.points overrides col, butis used only for "plot.symbol” and "superpose.symbol”.
Similarly, col.line overrides col for "plot.line” and "superpose.line”.
The arguments can be vectors, but only the first component is used for scalar
targets (i.e., the ones without "superpose” in their name).

alpha, alpha.points, alpha.line
A numeric alpha transparency specification. The same rules as col, etc., apply.

cex, pch, font Parameters for points. Applicable for components plot.symbol (for which only
the first component is used) and superpose.symbol (for which the arguments
can be vectors).

1ty, 1wd Parameters for lines. Applicable for components plot.line (for which only the
first component is used) and superpose.line (for which the arguments can be
vectors).

fill fill color, applicable for components plot. symbol, plot.polygon, superpose.symbol,

and superpose.polygon.
border border color, applicable for components plot.polygon and superpose.polygon.

C_04_lattice.options 67

Details

The appearance of a lattice display depends partly on the “theme” active when the display is plot-
ted (see trellis.device for details). This theme is used to obtain defaults for various graphical
parameters, and in particular, the auto.key argument works on the premise that the same source
is used for both the actual graphical encoding and the legend. The easiest way to specify custom
settings for a particular display is to use the par.settings argument, which is usually tedious to
construct as it is a nested list. The simpleTheme function can be used in such situations as a wrapper
that generates a suitable list given parameters in simple name=value form, with the nesting made
implicit. This is less flexible, but straightforward and sufficient in most situations.

Value
A list that would work as the theme argument to trellis.device and trellis.par.set, or as the
par.settings argument to any high level lattice function such as xyplot.

Author(s)
Deepayan Sarkar <Deepayan.Sarkar@R-project.org>, based on a suggestion from John Main-
donald.

See Also

trellis.device, xyplot, Lattice

Examples

str(simpleTheme(pch = 16))

dotplot(variety ~ yield | site, data = barley, groups = year,
auto.key = list(space = "right"),
par.settings = simpleTheme(pch = 16),
xlab = "Barley Yield (bushels/acre) ",
aspect=0.5, layout = c(1,6))

C_04_lattice.options Low-level Options Controlling Behaviour of Lattice

Description

Functions to handle settings used by lattice. Their main purpose is to make code maintainance
easier, and users normally should not need to use these functions. However, fine control at this level
maybe useful in certain cases.

Usage

lattice.options(...)
lattice.getOption(name)

68 C_04_lattice.options

Arguments
name character giving the name of a setting
new options can be defined, or existing ones modified, using one or more ar-
guments of the form name = value or by passing a list of such tagged values.
Existing values can be retrieved by supplying the names (as character strings) of
the components as unnamed arguments.
Details

These functions are modeled on options and getOption, and behave similarly for the most part.
Some of the available components are documented here, but not all. The purpose of the ones not
documented are either fairly obvious, or not of interest to the end-user.

panel.error A function, or NULL. If the former, every call to the panel function will be wrapped
inside tryCatch with the specified function as an error handler. The default is to use the
panel.error function. This prevents the plot from failing due to errors in a single panel, and
leaving the grid operations in an unmanageable state. If set to NULL, errors in panel functions
will not be caught using tryCatch.

save.object Logical flag indicating whether a "trellis” object should be saved when plotted
for subsequent retrieval and further manipulation. Defaults to TRUE.

layout.widths, layout.heights Controls details of the default space allocation in the grid lay-
out created in the course of plotting a "trellis” object. Each named component is a list of
arguments to the grid function unit (x, units, and optionally data).

Usually not of interest to the end-user, who should instead use the similiarly named component
in the graphical settings, modifiable using trellis.par.set.

drop.unused.levels A list of two components named cond and data, both logical flags. The
flags indicate whether the unused levels of factors (conditioning variables and primary vari-
ables respectively) will be dropped, which is usually relevant when a subsetting operation is
performed or an ’interaction’ is created. See xyplot for more details. Note that this does not
control dropping of levels of the *groups’ argument.

legend.bbox A character string, either "full” or "panel”. This determines the interpretation of
x and y when space="inside" in key (determining the legend; see xyplot): either the full
figure region ("full"”), or just the region that bounds the panels and strips (’"panel"’).

default.args A list giving default values for various standard arguments: as.table, auto.key,
aspect, between, grid, skip, strip, xscale.components, yscale.components, and axis.

highlight.gpar A listgiving arguments to gpar used to highlight a viewport chosen using trellis. focus.
banking The banking function. See banking.

axis.padding List with components named "numeric” and "factor”, both scalar numbers. Panel
limits are extended by this amount, to provide padding for numeric and factor scales respec-
tively. The value for numeric is multiplicative, whereas factor is additive.

skip.boundary.labels Numeric scalar between 0 and 1. Tick marks that are too close to the
limits are not drawn unless explicitly requested. The limits are contracted by this proportion,
and anything outside is skipped.

interaction.sep The separator for creating interactions with the extended formula interface (see
xyplot).

C_05_print.trellis 69

optimize.grid Logical flag, FALSE by default. Complicated grid unit calculations can be slow.
Sometimes these can be optimized at the cost of potential loss of accuracy. This option con-
trols whether such optimization should be applied.

axis.units List determining default units for axis components. Should not be of interest to the
end-user.

In addition, there is an option for the default prepanel and panel function for each high-level func-
tion; e.g., panel.xyplot and prepanel.default.xyplot for xyplot. The options for the others
have similarly patterned names.

Value

lattice.getOption returns the value of a single component, whereas lattice.options always
returns a list with one or more named components. When changing the values of components, the
old values of the modified components are returned by lattice.options. If called without any
arguments, the full list is returned.

Author(s)

Deepayan Sarkar <Deepayan. Sarkar@R-project.org>

See Also

options, trellis.device, trellis.par.get, Lattice

Examples

names(lattice.options())
str(lattice.getOption("layout.widths"), max.level = 2)

Not run:

change default settings for subsequent plots

lattice.options(default.args = list(as.table = TRUE,
grid = TRUE,
auto.key = TRUE))

End(Not run)

C_05_print.trellis Plot and Summarize Trellis Objects

Description

The print and plot methods produce a graph from a "trellis” object. The print method is
necessary for automatic plotting. plot method is essentially an alias, provided for convenience.
The summary method gives a textual summary of the object. dim and dimnames describe the cross-
tabulation induced by conditioning. panel.error is the default handler used when an error occurs
while executing the panel function.

70

Usage

C_05_print.trellis

S3 method for class 'trellis'
plot(x, position, split,

more =

FALSE, newpage = TRUE,

packet.panel = packet.panel.default,

draw.in

NULL,

panel.height = lattice.getOption("layout.heights")$panel,
panel.width = lattice.getOption("layout.widths")$panel,
save.object = lattice.getOption("save.object"),
panel.error = lattice.getOption("panel.error"),

prefix,

)

S3 method for class 'trellis'

print(x,

S3 method for class 'trellis'

summary (object,

L)

S3 method for class 'trellis'

dim(x)

S3 method for class 'trellis'

dimnames(x)

panel.error(e)

Arguments

X, object

position

split

more

newpage

packet.panel

an object of class "trellis”

a vector of 4 numbers, typically c(xmin, ymin, xmax, ymax) that give the lower-
left and upper-right corners of a rectangle in which the Trellis plot of x is to be
positioned. The coordinate system for this rectangle is [0-1] in both the x and y
directions.

a vector of 4 integers, c(x,y,nx,ny) , that says to position the current plot at the
X,y position in a regular array of nx by ny plots. (Note: this has origin at top
left)

A logical specifying whether more plots will follow on this page.

A logical specifying whether the plot should be on a new page. This option is
specific to lattice, and is useful for including lattice plots in an arbitrary grid
viewport (see the details section).

a function that determines which packet (data subset) is plotted in which panel.
Panels are always drawn in an order such that columns vary the fastest, then
rows and then pages. This function determines, given the column, row and
page and other relevant information, the packet (if any) which should be used in
that panel. By default, the association is determnined by matching panel order
with packet order, which is determined by varying the first conditioning variable
the fastest, then the second, and so on. This association rule is encoded in the

C_05_print.trellis

draw.in

71

default, namely the function packet.panel.default, whose help page details
the arguments supplied to whichever function is specified as the packet.panel
argument.

An optional (grid) viewport (used as the name argument in downViewport) in
which the plot is to be drawn. If specified, the newpage argument is ignored.
This feature is not well-tested.

panel.width, panel.height

save.object

panel.error

prefix

Details

lists with 2 components, that should be valid x and units arguments to unit()
(the data argument cannot be specified currently, but can be considered for
addition if needed). The resulting unit object will be the width/height of each
panel in the Lattice plot. These arguments can be used to explicitly control the
dimensions of the panel, rather than letting them expand to maximize available
space. Vector widths are allowed, and can specify unequal lengths across rows
or columns.

Note that this option should not be used in conjunction with non-default values
of the aspect argument in the original high level call (no error will be produced,
but the resulting behaviour is undefined).

logical, specifying whether the object being printed is to be saved. The last
object thus saved can be subsequently retrieved. This is an experimental fea-
ture that should allow access to a panel’s data after the plot is done, making it
possible to enhance the plot after the fact. This also allows the user to invoke
the update method on the current plot, even if it was not assigned to a variable
explicitly. For more details, see trellis. focus.

a function, or a character string naming a function, that is to be executed when
an error occurs during the execution of the panel function. The error is caught
(using tryCatch) and supplied as the only argument to panel.error. The de-
fault behaviour (implemented as the panel.error function) is to print the cor-
responding error message in the panel and continue. To stop execution on error,
use panel.error = stop.

Normal error recovery and debugging tools are unhelpful when tryCatch is
used. tryCatch can be completely bypassed by setting panel.error to NULL.

A character string acting as a prefix identifying the plot of a "trellis” object,
primarily used in constructing viewport and grob names, to distinguish similar
viewports if a page contains multiple plots. The default is based on the se-
rial number of the current plot on the current page (specifically, "plot_01",
"plot_02", etc.). If supplied explicitly, this must be a valid R symbol name
(briefly, it must start with a letter or a period followed by a letter) and must not
contain the grid path separator (currently "::").

an error condition caught by tryCatch

extra arguments, ignored by the print method. All arguments to the plot
method are passed on to the print method.

This is the default print method for objects of class “trellis”, produced by calls to functions like
xyplot, bwplot etc. It is usually called automatically when a trellis object is produced. It can also
be called explicitly to control plot positioning by means of the arguments split and position.

72 C_05_print.trellis

When newpage = FALSE, the current grid viewport is treated as the plotting area, making it possible
to embed a Lattice plot inside an arbitrary grid viewport. The draw.in argument provides an
alternative mechanism that may be simpler to use.

The print method uses the information in x (the object to be printed) to produce a display using the
Grid graphics engine. At the heart of the plot is a grid layout, of which the entries of most interest
to the user are the ones containing the display panels.

Unlike in older versions of Lattice (and Grid), the grid display tree is retained after the plot is
produced, making it possible to access individual viewport locations and make additions to the plot.
For more details and a lattice level interface to these viewports, see trellis. focus.

Note

Unlike S-PLUS, trying to position a multipage display (using position and/or split) will mess
things up.

Author(s)

Deepayan Sarkar <Deepayan. Sarkar@R-project.org>

See Also

Lattice, unit, update.trellis, trellis.focus, packet.panel.default

Examples

p11 <- histogram(~ height | voice.part, data = singer, xlab="Height")
p12 <- densityplot(~ height | voice.part, data = singer, xlab = "Height")
p2 <- histogram(~ height, data = singer, xlab = "Height")

simple positioning by split
print(p11, split=c(1,1,1,2), more=TRUE)
print(p2, split=c(1,2,1,2))

Combining split and position:

print(p11, position = ¢(0,0,.75,.75), split=c(1,1,1,2), more=TRUE)
print(p12, position = c(0,0,.75,.75), split=c(1,2,1,2), more=TRUE)
print(p2, position = c¢(.5,.75,1,1), more=FALSE)

Using seekViewport

repeat same plot, with different polynomial fits in each panel
xyplot(Armed.Forces ~ Year, longley, index.cond = list(rep(1, 6)),
layout = c(3, 2),
panel = function(x, y, ...)
{
panel.xyplot(x, vy, ...)
fm <- 1Im(y ~ poly(x, panel.number()))
1lines(x, predict(fm))
»

C_06_update.trellis 73

Not run:
grid::seekViewport(trellis.vpname("panel”, 1, 1))
cat("Click somewhere inside the first panel:\n")
ltext(grid::grid.locator(), lab = "linear")

End(Not run)

grid: :seekViewport(trellis.vpname("panel”, 1, 1))
grid::grid.text("linear"”)

grid: :seekViewport(trellis.vpname("panel”, 2, 1))
grid::grid.text("quadratic")

grid: :seekViewport(trellis.vpname("panel”, 3, 1))
grid::grid.text("cubic")

grid: :seekViewport(trellis.vpname("panel”, 1, 2))
grid::grid.text("degree 4")

grid: :seekViewport(trellis.vpname("panel”, 2, 2))
grid::grid.text("degree 5")

grid: :seekViewport(trellis.vpname("panel”, 3, 2))
grid::grid.text("degree 6")

C_06_update.trellis Retrieve and Update Trellis Object

Description

Update method for objects of class "trellis”, and a way to retrieve the last printed trellis object
(that was saved).

Usage

S3 method for class 'trellis'
update(object,
panel,
aspect,
as.table,
between,
key,
auto.key,
legend,
layout,
main,
page,
par.strip.text,
prepanel,

74

perm.cond,
L)
S3 method for class 'trellis'
t(x)
S3 method for class 'trellis'

x[i, 3,

trellis.last.object(...

Arguments

object,

i?j
drop

scales,

skip,

strip,

strip.left,

sub,

xlab,

ylab,

xlab. top,
ylab.right,

xlim,

ylim,
xscale.components,
yscale.components,
axis,
par.settings,
plot.args,
lattice.options,
index.cond,

., drop = FALSE]

X The object to be updated, of class "trellis”.

indices to be used. Names are not currently allowed.

, prefix)

C_06_update.trellis

logical, whether dimensions with only one level are to be dropped. Currently

ignored, behaves as if it were FALSE.

panel, aspect, as. table, between, key, auto.key, legend, layout, main, page,
par.strip.text, prepanel, scales, skip, strip, strip.left, sub, xlab, ylab
xlab.top, ylab.right, xlim, ylim, xscale.components, yscale.components
axis, par.settings, plot.args, lattice.options, index.cond, perm.cond,

prefix

arguments that will be used to update object. See details below.

A character string acting as a prefix identifying the plot of a "trellis” ob-
ject. Only relevant when a particular page is occupied by more than one plot.
Defaults to the value appropriate for the last "trellis” object printed. See

trellis.focus.

C_06_update.trellis 75

Details

All high level lattice functions such as xyplot produce an object of (S3) class "trellis”, which is
usually displayed by its print method. However, the object itself can be manipulated and modified
to a large extent using the update method, and then re-displayed as needed.

Most arguments to high level functions can also be supplied to the update method as well, with
some exceptions. Generally speaking, anything that would needs to change the data within each
panel is a no-no (this includes the formula, data, groups, subscripts and subset). Everything
else is technically game, though might not be implemented yet. If you find something missing that
you wish to have, feel free to make a request.

Not all arguments accepted by a Lattice function are processed by update, but the ones listed above
should work. The purpose of these arguments are described in the help page for xyplot. Any other
argument is added to the list of arguments to be passed to the panel function. Because of their
somewhat special nature, updates to objects produced by cloud and wireframe do not work very
well yet.

The "[" method is a convenient shortcut for updating index.cond. The t method is a convenient
shortcut for updating perm.cond in the special (but frequent) case where there are exactly two
conditioning variables, when it has the effect of switching (‘transposing’) their order.

The print method for "trellis"” objects optionally saves the object after printing it. If this feature
is enabled, trellis.last.object canretrieve it. By default, the last object plotted is retrieved, but
if multiple objects are plotted on the current page, then others can be retrieved using the appropriate
prefix argument. If trellis.last.object is called with arguments, these are used to update the
retrieved object before returning it.

Value
An object of class trellis, by default plotted by print.trellis. trellis.last.object returns
NULL is no saved object is available.

Author(s)

Deepayan Sarkar <Deepayan.Sarkar@R-project.org>

See Also

trellis.object, Lattice, xyplot

Examples

spots <- by(sunspots, gl(235, 12, labels = 1749:1983), mean)
old.options <- lattice.options(save.object = TRUE)

xyplot(spots ~ 1749:1983, xlab = "", type = "1",
scales = list(x = list(alternating = 2)),
main = "Average Yearly Sunspots")

n

update(trellis.last.object(), aspect =
trellis.last.object(xlab = "Year")
lattice.options(old.options)

xy")

76

C_07_shingles

C_07_shingles

shingles

Description

Functions to handle shingles

Usage

shingle(x, intervals=sort(unique(x)))

equal.count(x,
as.shingle(x)
is.shingle(x)

.2

S3 method for class 'shingle'
plot(x, panel, xlab, ylab, ...)

S3 method for class 'shingle'
print(x, showValues = TRUE, ...)

S3 method for class 'shinglelLevel'

as.character(x,

L)

S3 method for class 'shinglelevel'

print(x, ...)

S3 method for class 'shingle'

summary (object,

showValues = FALSE, ...)

S3 method for class 'shingle'
x[subset, drop = FALSE]
as.factorOrShingle(x, subset, drop)

Arguments

X

object

showValues

intervals
subset

drop
panel, x1lab, ylab

numeric variable or R object, shingle in plot.shingle and x[]. An object (list
of intervals) of class "shingleLevel" in print.shinglelLevel

shingle object to be summarized

logical, whether to print the numeric part. If FALSE, only the intervals are
printed

numeric vector or matrix with 2 columns
logical vector

whether redundant shingle levels are to be dropped

standard Trellis arguments (see xyplot)

C_07_shingles 77

other arguments, passed down as appropriate. For example, extra arguments
to equal.count are passed on to co.intervals. graphical parameters can be
passed as arguments to the plot method.

Details

A shingle is a data structure used in Trellis, and is a generalization of factors to ‘continuous’ vari-
ables. It consists of a numeric vector along with some possibly overlapping intervals. These in-
tervals are the ‘levels’ of the shingle. The levels and nlevels functions, usually applicable to
factors, also work on shingles. The implementation of shingles is slightly different from S.

There are print methods for shingles, as well as for printing the result of levels() applied to a
shingle. For use in labelling, the as.character method can be used to convert levels of a shingle
to character strings.

equal.count converts x to a shingle using the equal count algorithm. This is essentially a wrapper
around co.intervals. All arguments are passed to co.intervals.

shingle creates a shingle using the given intervals. If intervals is a vector, these are used to
form O length intervals.

as.shingle returns shingle(x) if x is not a shingle.
is.shingle tests whether x is a shingle.

plot.shingle displays the ranges of shingles via rectangles. print.shingle and summary.shingle
describe the shingle object.
Value
x$intervals for levels.shingle(x), logical for is.shingle, an object of class "trellis” for
plot (printed by default by print.trellis), and an object of class "shingle” for the others.
Author(s)

Deepayan Sarkar <Deepayan.Sarkar@R-project.org>

See Also

xyplot, co.intervals, Lattice

Examples

z <- equal.count(rnorm(50))
plot(z)

print(z)

print(levels(z))

78 D_draw.key

D_draw.colorkey Produce a colorkey typically for levelplot

Description
Creates (and optionally draws) a grid frame grob representing a color key that can be placed in other
grid-based plots. Primarily used by levelplot when a color key is requested.

Usage

draw.colorkey(key, draw = FALSE, vp = NULL)

Arguments
key A list determining the key. See documentation for levelplot, in particular the
section describing the colorkey argument, for details.
draw A scalar logical, indicating whether the grob is to be drawn.
vp The viewport in which to draw the grob, if applicable.
Value

A grid frame object (that inherits from "grob”)

Author(s)

Deepayan Sarkar <Deepayan. Sarkar@R-project.org>

See Also

xyplot, levelplot

D_draw.key Produce a Legend or Key

Description
Produces (and possibly draws) a Grid frame grob which is a legend (aka key) that can be placed in
other Grid plots.

Usage

draw.key(key, draw=FALSE, vp=NULL, ...)

D_level.colors 79

Arguments
key A list determining the key. See documentation for xyplot, in particular the
section describing the key argument, for details.
draw logical, whether the grob is to be drawn.
vp viewport
ignored
Value

A Grid frame object (that inherits from ‘grob’).

Author(s)

Deepayan Sarkar <Deepayan.Sarkar@R-project.org>

See Also
xyplot
D_level.colors A function to compute false colors representing a numeric or categor-
ical variable
Description

Calculates false colors from a numeric variable (including factors, using their numeric codes) given
a color scheme and breakpoints.

Usage
level.colors(x, at, col.regions, colors = TRUE, ...)
Arguments
X A numeric or factor variable.
at A numeric variable of breakpoints defining intervals along the range of x.
col.regions A specification of the colors to be assigned to each interval defined by at. This
could be either a vector of colors, or a function that produces a vector of colors
when called with a single argument giving the number of colors. See details
below.
colors logical indicating whether colors should be computed and returned. If FALSE,

only the indices representing which interval (among those defined by at) each
value in x falls into is returned.

Extra arguments, ignored.

80 D_make.groups

Details

If at has length n, then it defines n-1 intervals. Values of x outside the range of at are not assigned
to an interval, and the return value is NA for such values.

Colors are chosen by assigning a color to each of the n-1 intervals. If col.regions is a palette
function (such as topo.colors, or the result of calling colorRampPalette), it is called with n-1 as
an argument to obtain the colors. Otherwise, if there are exactly n-1 colors in col.regions, these
get assigned to the intervals. If there are fewer than n-1 colors, col.regions gets recycled. If there
are more, a more or less equally spaced (along the length of col.regions) subset is chosen.

Value

A vector of the same length as x. Depending on the colors argument, this could be either a vector
of colors (in a form usable by R), or a vector of integer indices representing which interval the
values of x fall in.

Author(s)

Deepayan Sarkar <deepayan.sarkar@r-project.org>

See Also

levelplot, colorRampPalette.

Examples

depth.col <-
with(quakes,
level.colors(depth, at = do.breaks(range(depth), 30),
col.regions = hcl.colors))

xyplot(lat ~ long | equal.count(stations), quakes,

strip = strip.custom(var.name = "Stations"),
colours = depth.col,
panel = function(x, y, colours, subscripts, ...) {
panel.xyplot(x, y, pch = 21, col = "transparent”,
fill = colours[subscripts], ...)
»
D_make.groups Grouped data from multiple vectors
Description

Combines two or more vectors, possibly of different lengths, producing a data frame with a second
column indicating which of these vectors that row came from. This is mostly useful for getting data
into a form suitable for use in high level Lattice functions.

D_simpleKey 81

Usage

make.groups(...)

Arguments
one or more vectors of the same type (coercion is attempted if not), or one or
more data frames with similar columns, with possibly differing number of rows.
Value
When all the input arguments are vectors, a data frame with two columns

data all the vectors supplied, concatenated

which factor indicating which vector the corresponding data value came from
When all the input arguments are data frames, the result of rbind applied to them, along with an
additional which column as described above.

Author(s)

Deepayan Sarkar <Deepayan.Sarkar@R-project.org>

See Also

Lattice

Examples

sim.dat <-
make.groups(uniform = runif(200),
exponential = rexp(175),
lognormal = rlnorm(150),
normal = rnorm(125))
qgmath(~ data | which, sim.dat, scales = list(y = "free"))

D_simpleKey Function to generate a simple key

Description

Simple interface to generate a list appropriate for draw. key

Usage

simpleKey(text, points = TRUE,
rectangles = FALSE,
lines = FALSE,
col, cex, alpha, font,
fontface, fontfamily,
lineheight, ...)

82 D_simpleKey

Arguments
text character or expression vector, to be used as labels for levels of the grouping
variable
points logical
rectangles logical
lines logical

col, cex, alpha, font, fontface, fontfamily, lineheight

Used as top-level components of the list produced, to be used for the text labels.
Defaults to the values in trellis.par.get("add. text")

further arguments added to the list, eventually passed to draw. key

Details

A lattice plot can include a legend (key) if an appropriate list is specified as the key argument to a
high level Lattice function such as xyplot. This key can be very flexible, but that flexibility comes
at a cost: this list needs to be fairly complicated even in simple situations. simpleKey is designed
as a useful shortcut in the common case of a key drawn in conjunction with a grouping variable,
using the default graphical settings.

The simpleKey function produces a suitable key argument using a simpler interface. The resulting
list will use the text argument as a text component, along with at most one set each of points, rect-
angles, and lines. The number of entries (rows) in the key will be the length of the text component.
The graphical parameters for the additional components will be derived from the default graphical
settings (wherein lies the simplification, as otherwise these would have to be provided explicitly).

Calling simpleKey directly is usually unnecessary. It is most commonly invoked (during the plot-
ting of the "trellis"” object) when the auto.key argument is supplied in a high-level plot with
a groups argument. In that case, the text argument of simpleKey defaults to levels(groups),
and the defaults for the other arguments depend on the relevant high-level function. Note that these
defaults can be overridden by supplying auto.key as a list containing the replacement values.

Value

A list that would work as the key argument to xyplot, etc.

Author(s)

Deepayan Sarkar <Deepayan.Sarkar@R-project.org>

See Also

Lattice, draw.key, trellis.par.get, and xyplot, specifically the entry for auto.key.

D_strip.detault

83

D_strip.default

Default Trellis Strip Function

Description

strip.default is the function that draws the strips by default in Trellis plots. Users can write
their own strip functions, but most commonly this involves calling strip.default with a slightly
different arguments. strip.custom provides a convenient way to obtain new strip functions that
differ from strip.default only in the default values of certain arguments.

Usage

strip.default(which.given,

strip.custom(..

Arguments

which.given

which.panel

var.name

factor.levels

which.panel,

var.name,

factor.levels,
shingle.intervals,

strip.names = c(FALSE, TRUE),
strip.levels = c(TRUE, FALSE),
sep =" :",

style = 1,

horizontal = TRUE,

bg = trellis.par.get("strip.background”)$col[which.given],
fg = trellis.par.get("strip.shingle”)$col[which.given],
par.strip.text = trellis.par.get("add.text"))

>

integer index specifying which of the conditioning variables this strip corre-
sponds to.

vector of integers as long as the number of conditioning variables. The contents
are indices specifying the current levels of each of the conditioning variables
(thus, this would be unique for each distinct packet). This is identical to the
return value of which.packet, which is a more accurate name.

vector of character strings or expressions as long as the number of conditioning
variables. The contents are interpreted as names for the conditioning variables.
Whether they are shown on the strip depends on the values of strip.names and
style (see below). By default, the names are shown for shingles, but not for
factors.

vector of character strings or expressions giving the levels of the conditioning
variable currently being drawn. For more than one conditioning variable, this
will vary with which.given. Whether these levels are shown on the strip de-
pends on the values of strip.levels and style (see below). factor.levels
may be specified for both factors and shingles (despite the name), but by default
they are shown only for factors. If shown, the labels may optionally be abbrevi-
ated by specifying suitable components in par.strip.text (see xyplot)

84 D_strip.default

shingle.intervals
if the current strip corresponds to a shingle, this should be a 2-column matrix
giving the levels of the shingle. (of the form that would be produced by printing
levels(shingle)). Otherwise, it should be NULL

strip.names a logical vector of length 2, indicating whether or not the name of the condi-
tioning variable that corresponds to the strip being drawn is to be written on the
strip. The two components give the values for factors and shingles respectively.

This argument is ignored for a factor when style is not one of 1 and 3.
strip.levels a logical vector of length 2, indicating whether or not the level of the condi-

tioning variable that corresponds to the strip being drawn is to be written on the
strip. The two components give the values for factors and shingles respectively.

sep character or expression, serving as a separator if the name and level are both to
be shown.

style integer, with values 1, 2, 3, 4 and 5 currently supported, controlling how the cur-
rent level of a factor is encoded. Ignored for shingles (actually, when shingle.intervals
is non-null.

The best way to find out what effect the value of style has is to try them out.
Here is a short description: for a style value of 1, the strip is colored in the
background color with the strip text (as determined by other arguments) centered
on it. A value of 3 is the same, except that a part of the strip is colored in the
foreground color, indicating the current level of the factor. For styles 2 and 4, the
part corresponding to the current level remains colored in the foreground color,
however, for style = 2, the remaining part is not colored at all, whereas for 4, it
is colored with the background color. For both these, the names of all the levels
of the factor are placed on the strip from left to right. Styles 5 and 6 produce
the same effect (they are subtly different in S, this implementation corresponds
to 5), they are similar to style 1, except that the strip text is not centered, it is
instead positioned according to the current level.

Note that unlike S-PLUS, the default value of style is 1. strip.names and
strip.levels have no effect if style is not 1 or 3.

horizontal logical, specifying whether the labels etc should be horizontal. horizontal=FALSE
is useful for strips on the left of panels using strip.left=TRUE

par.strip.text list with parameters controlling the text on each strip, with components col,
cex, font, etc.

bg strip background color.
fg strip foreground color.

arguments to be passed on to strip.default, overriding whatever value it
would have normally assumed

Details

default strip function for trellis functions. Useful mostly because of the style argument — non-
default styles are often more informative, especially when the names of the levels of the factor x are
small. Traditional use is as strip = function(...) strip.default(style=2,...), though this
can be simplified by the use of strip.custom.

D_trellis.object 85

Value

strip.default is called for its side-effect, which is to draw a strip appropriate for multi-panel
Trellis conditioning plots. strip.custom returns a function that is similar to strip.default, but
with different defaults for the arguments specified in the call.

Author(s)

Deepayan Sarkar <Deepayan. Sarkar@R-project.org>

See Also

xyplot, Lattice

Examples

Traditional use
xyplot(Petal.Length ~ Petal.Width | Species, iris,
strip = function(..., style) strip.default(..., style = 4))

equivalent call using strip.custom
xyplot(Petal.Length ~ Petal.Width | Species, iris,
strip = strip.custom(style = 4))

xyplot(Petal.Length ~ Petal.Width | Species, iris,
strip = FALSE,
strip.left = strip.custom(style = 4, horizontal = FALSE))

D_trellis.object A Trellis Plot Object

Description

This class of objects is returned by high level lattice functions, and is usually plotted by default by
its print method.

Details

A trellis object, as returned by high level lattice functions like xyplot, is a list with the "class”
attribute set to "trellis”. Many of the components of this list are simply the arguments to the
high level function that produced the object. Among them are: as.table, layout, page, panel,
prepanel, main, sub, par.strip.text, strip, skip, xlab ylab, par.settings, lattice.options
and plot.args. Some other typical components are:

formula the Trellis formula used in the call
index.cond list with index for each of the conditioning variables

perm.cond permutation of the order of the conditioning variables

aspect.fill logical, whether aspect is "fill"

86 E_interaction

aspect.ratio numeric, aspect ratio to be used if aspect.fill is FALSE
call call that generated the object.

condlevels list with levels of the conditioning variables

legend list describing the legend(s) to be drawn

panel.args alist as long as the number of panels, each element being a list itself, containing the
arguments in named form to be passed to the panel function in that panel.

panel.args.common alist containing the arguments common to all the panel functions in name=value
form

x.scales list describing x-scale, can consist of several other lists, paralleling panel.args, if x-
relation is not "same”

.scales list describing y-scale, similar to x.scales

X <

.between numeric vector of interpanel x-space

y.between numeric vector of interpanel y-space

x.limits numeric vector of length 2 or list, giving x-axis limits
y.limits similarto x.limits

packet.sizes array recording the number of observations in each packet

Author(s)

Deepayan Sarkar <Deepayan. Sarkar@R-project.org>

See Also

Lattice, xyplot, print.trellis

E_interaction Functions to Interact with Lattice Plots

Description

The classic Trellis paradigm is to plot the whole object at once, without the possibility of interacting
with it afterwards. However, by keeping track of the grid viewports where the panels and strips are
drawn, it is possible to go back to them afterwards and enhance them one panel at a time. These
functions provide convenient interfaces to help in this. Note that these are still experimental and the
exact details may change in future.

Usage

panel.identify(x, y = NULL,
subscripts = seq_along(x),
labels = subscripts,
n = length(x), offset = 0.5,
threshold = 18, ## in points, roughly 0.25 inches
panel.args = trellis.panelArgs(),

E_interaction

ced)
panel.identify.qgmath(x, distribution, groups, subscripts, labels,
panel.args = trellis.panelArgs(),
o))
panel.identify.cloud(x, y, z, subscripts,
perspective, distance,
x1lim, ylim, zlim,
screen, R.mat, aspect, scales.3d,

panel.3d.identify,

n = length(subscripts),

offset = 0.5,

threshold = 18,

labels = subscripts,

panel.args = trellis.panelArgs())

panel.link.splom(threshold = 18, verbose = getOption("verbose”), ...)

panel.brush.splom(threshold = 18, verbose = getOption("verbose”), ...)

trellis.vpname(name = c("position”, "split"”, "split.location”, "toplevel”,
"figure"”, "panel”, "strip"”, "strip.left",
"legend”, "legend.region”, "main”, "sub",

"xlab”, "ylab", "xlab.top", "ylab.right", "page"),
column, row,
side = c("left"”, "top", "right”, "bottom”", "inside"),
clip.off = FALSE, prefix)
trellis.grobname(name,
type = c("", "panel”, "strip”, "strip.left”,
"key", "colorkey"),
group = 0,
which.given = lattice.getStatus("current.which.given”,
prefix = prefix),
which.panel = lattice.getStatus("current.which.panel”,
prefix = prefix),
column = lattice.getStatus("current.focus.column”,
prefix = prefix),
row = lattice.getStatus("current.focus.row”,
prefix = prefix),
prefix = lattice.getStatus("current.prefix”))
trellis.focus(name, column, row, side, clip.off,

highlight = interactive(), ..., prefix,
guess = TRUE, verbose = getOption("verbose”))
trellis.switchFocus(name, side, clip.off, highlight, ..., prefix)

trellis.unfocus()
trellis.panelArgs(x, packet.number)

87

88

Arguments

X, Y, Z

n

subscripts

labels

E_interaction

variables defining the contents of the panel. In the case of trellis.panelArgs,
a "trellis” object.

the number of points to identify by default (overridden by a right click)

an optional vector of integer indices associated with each point. See details
below.

an optional vector of labels associated with each point. Defaults to subscripts

distribution, groups

offset

threshold

panel.args

typical panel arguments of panel.qgmath. These will usually be obtained from
panel.args

the labels are printed either below, above, to the left or to the right of the iden-
tified point, depending on the relative location of the mouse click. The offset
specifies (in "char" units) how far from the identified point the labels should be
printed.

threshold in grid’s "points” units. Points further than these from the mouse
click position are not considered

list that contains components names x (and usually y), to be used if x is missing.
Typically, when called after trellis. focus, this would appropriately be the
arguments passed to that panel.

perspective, distance, x1im, ylim, z1im, screen, R.mat, aspect, scales. 3d

arguments as passed to panel.cloud. These are required to recompute the rel-
evant three-dimensional projections in panel.identify.cloud.

panel.3d.identify

name

column, row

guess

the function that is responsible for the actual interaction once the data rescaling
and rotation computations have been done. By default, an internal function
similar to panel.identify is used.

A character string indicating which viewport or grob we are looking for. Al-
though these do not necessarily provide access to all viewports and grobs created
by a lattice plot, they cover most of the ones that end-users may find interesting.

trellis.vpname and trellis. focus deal with viewport names only, and only
accept the values explicitly listed above. trellis.grobname is meant to create
names for grobs, and can currently accept any value.

If name, as well as column and row is missing in a call to trellis. focus, the
user can click inside a panel (or an associated strip) to focus on that panel. Note
however that this assumes equal width and height for each panel, and may not
work when this is not true.

When name is "panel”, "strip”, or "strip.left"”, column and row must also
be specified. When name is "legend”, side must also be specified.

integers, indicating position of the panel or strip that should be assigned focus
in the Trellis layout. Rows are usually calculated from the bottom up, unless the
plot was created with as.table=TRUE

logical. If TRUE, and the display has only one panel, that panel will be automat-
ically selected by a call to trellis. focus.

E_interaction 89

side character string, relevant only for legends (i.e., when name="1egend"), indicat-
ing their position. Partial specification is allowed, as long as it is unambiguous.

clip.off logical, whether clipping should be off, relevant when name is "panel” or "strip”.
This is necessary if axes are to be drawn outside the panel or strip. Note that
setting clip.of f=FALSE does not necessarily mean that clipping is on; that is
determined by conditions in effect during printing.

type A character string specifying whether the grob is specific to a particular panel
or strip.
When type is "panel”, "strip”, or "strip.left”, information about the
panel is added to the grob name.

group An integer specifying whether the grob is specific to a particular group within
the plot.
When group is greater than zero, information about the group is added to the
grob name.

which.given, which.panel
integers, indicating which conditional variable is being represented (within a
strip) and the current levels of the conditional variables.
When which.panel has length greater than 1, and the type is "strip” or
"strip.left”, information about the conditional variable is added to the grob
name.

prefix A character string acting as a prefix identifying the plot of a "trellis” object,
primarily used to distinguish otherwise equivalent viewports in different plots.
This only becomes relevant when a particular page is occupied by more than one
plot. Defaults to the value appropriate for the last "trellis” object printed, as
determined by the prefix argument in print.trellis.

Users should not usually need to supply a value for this argument except to
interact with an existing plot other than the one plotted last.

For switchFocus, ignored except when it does not match the prefix of the cur-
rently active plot, in which case an error occurs.

highlight logical, whether the viewport being assigned focus should be highlighted. For
trellis. focus, the default is TRUE in interactive mode, and trellis. switchFocus
by default preserves the setting currently active.

packet.number integer, which panel to get data from. See packet.number for details on how
this is calculated

verbose whether details will be printed

For panel.identify.qgmath, extra parameters are passed on to panel.identifly.
For panel.identify, extra arguments are treated as graphical parameters and

are used for labelling. For trellis.focus and trellis.switchFocus, these

are used (in combination with lattice.options) for highlighting the chosen
viewport if so requested. Graphical parameters can be supplied for panel.link.splom.

Details

panel.identify is similar to identify. When called, it waits for the user to identify points (in
the panel being drawn) via mouse clicks. Clicks other than left-clicks terminate the procedure.

90

E_interaction

Although it is possible to call it as part of the panel function, it is more typical to use it to identify
points after plotting the whole object, in which case a call to trellis. focus first is necessary.

panel.link.splomis meant for use with splom, and requires a panel to be chosen using trellis. focus

before it is called. Clicking on a point causes that and the corresponding proections in other pairwise
scatter plots to be highlighted. panel.brush.splomis a (misnamed) alias for panel.link.splom,
retained for back-compatibility.

panel.identify.qgmath is a specialized wrapper meant for use with the display produced by
ggmath. panel.identify.qgmath is a specialized wrapper meant for use with the display pro-
duced by cloud. It would be unusual to call them except in a context where default panel function
arguments are available through trellis.panelArgs (see below).

One way in which panel. identify etc. are different from identify is in how it uses the subscripts
argument. In general, when one identifies points in a panel, one wants to identify the origin in the
data frame used to produce the plot, and not within that particular panel. This information is avail-
able to the panel function, but only in certain situations. One way to ensure that subscripts is
available is to specify subscripts = TRUE in the high level call such as xyplot. If subscripts is
not explicitly specified in the call to panel.identify, but is available in panel.args, then those
values will be used. Otherwise, they default to seq_along(x). In either case, the final return value
will be the subscripts that were marked.

The process of printing (plotting) a Trellis object builds up a grid layout with named viewports
which can then be accessed to modify the plot further. While full flexibility can only be obtained
by using grid functions directly, a few lattice functions are available for the more common tasks.

trellis. focus can be used to move to a particular panel or strip, identified by its position in the
array of panels. It can also be used to focus on the viewport corresponding to one of the labels or
a legend, though such usage would be less useful. The exact viewport is determined by the name
along with the other arguments, not all of which are relevant for all names. Note that when more
than one object is plotted on a page, trellis. focus will always go to the plot that was created last.
For more flexibility, use grid functions directly (see note below).

After a successful call to trellis. focus, the desired viewport (typically panel or strip area) will
be made the ‘current’ viewport (plotting area), which can then be enhanced by calls to standard
lattice panel functions as well as grid functions.

It is quite common to have the layout of panels chosen when a "trellis” object is drawn, and
not before then. Information on the layout (specifically, how many rows and columns, and which
packet belongs in which position in this layout) is retained for the last "trellis” object plotted,
and is available through trellis.currentLayout.

trellis.unfocus unsets the focus, and makes the top level viewport the current viewport.

trellis.switchFocus is a convenience function to switch from one viewport to another, while
preserving the current row and column. Although the rows and columns only make sense for panels
and strips, they would be preserved even when the user switches to some other viewport (where
row/column is irrelevant) and then switches back.

Once a panel or strip is in focus, trellis.panelArgs can be used to retrieve the arguments that
were available to the panel function at that position. In this case, it can be called without arguments
as

trellis.panelArgs()

E_interaction 91

This usage is also allowed when a "trellis” object is being printed, e.g. inside the panel functions
or the axis function (but not inside the prepanel function). trellis.panelArgs can also retrieve
the panel arguments from any "trellis” object. Note that for this usage, one needs to specify the
packet.number (as described under the panel entry in xyplot) and not the position in the layout,
because a layout determines the panel only after the object has been printed.

It is usually not necessary to call trellis.vpname and trellis.grobname directly. However,
they can be useful in generating appropriate names in a portable way when using grid functions to
interact with the plots directly, as described in the note below.

Value

panel.identify returns an integer vector containing the subscripts of the identified points (see
details above). The equivalent of identify with pos=TRUE is not yet implemented, but can be
considered for addition if requested.

trellis.panelArgs returns a named list of arguments that were available to the panel function for
the chosen panel.

trellis.vpname and trellis.grobname return character strings.

trellis. focus has a meaningful return value only if it has been used to focus on a panel interac-
tively, in which case the return value is a list with components col and row giving the column and
row positions respectively of the chosen panel, unless the choice was cancelled (by a right click), in
which case the return value is NULL. If click was outside a panel, both col and row are set to 0.

Note

The viewports created by lattice are accessible to the user through trellis.focus as described
above. Functions from the grid package can also be used directly. For example, current.vpTree
can be used to inspect the current viewport tree and seekViewport or downViewport can be used
to navigate to these viewports. For such usage, trellis.vpname and trellis.grobname provides
a portable way to access the appropriate viewports and grobs by name.

Author(s)
Deepayan Sarkar <Deepayan.Sarkar@R-project.org>. Felix Andrews provided initial imple-
mentations of panel.identify.qgmath and support for focusing on panels interctively.

See Also

identify, Lattice, print.trellis, trellis.currentlLayout, current.vpTree, viewports

Examples

Not run:

xyplot(1:10 ~ 1:10)
trellis.focus("panel”, 1, 1)
panel.identify()

End(Not run)

xyplot(Petal.Length ~ Sepal.Length | Species, iris, layout = c(2, 2))

92

Sys.sleep(1)

trellis.focus("panel”, 1, 1)
do.call(”panel.lmline”, trellis.panelArgs())
Sys.sleep(0.5)

trellis.unfocus()

trellis.focus("panel”, 2, 1)
do.call("panel.1lmline”, trellis.panelArgs())
Sys.sleep(0.5)

trellis.unfocus()

trellis.focus("panel”, 1, 2)
do.call("panel.lmline"”, trellis.panelArgs())
Sys.sleep(0.5)

trellis.unfocus()

choosing loess smoothing parameter
p <- xyplot(dist ~ speed, cars)

panel.loessresid <-
function(x = panel.args$x,
y = panel.args$y,
span,
panel.args = trellis.panelArgs())

{
fm <- loess(y ~ X, span = span)
xgrid <- do.breaks(current.panel.limits()$xlim, 50)
ygrid <- predict(fm, newdata = data.frame(x =
panel.lines(xgrid, ygrid)
pred <- predict(fm)
center residuals so that they fall inside panel
resids <- y - pred + mean(y)
fm.resid <- loess.smooth(x, resids, span = span)
##panel.points(x, resids, col = 1, pch = 4)
panel.lines(fm.resid, col = 1)

3

spans <- c(0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8)

update(p, index.cond = list(rep(1, length(spans))))

panel.locs <- trellis.currentLayout()
i<
for (row in 1:nrow(panel.locs))

for (column in 1:ncol(panel.locs))
if (panel.locs[row, column] > 0)

trellis.focus("panel”, row = row, column = column,

highlight = FALSE)

E_interaction

F_1_panel.barchart 93

panel.loessresid(span = spans[i])

grid::grid.text(paste("span = ", spans[i]),
X = 0.25,
y = 0.75,

default.units = "npc")
trellis.unfocus()

i<-1i+1
3
F_1_panel.barchart Default Panel Function for barchart
Description

Default panel function for barchart.

Usage

panel.barchart(x, y, box.ratio = 1, box.width,

horizontal = TRUE,

origin = NULL, reference = TRUE,

stack = FALSE,

groups = NULL,

col = if (is.null(groups)) plot.polygon$col
else superpose.polygon$col,

border = if (is.null(groups)) plot.polygon$border

else superpose.polygon$border,

1ty = if (is.null(groups)) plot.polygon$lty
else superpose.polygon$lty,

lwd = if (is.null(groups)) plot.polygon$lwd
else superpose.polygon$lwd,

., identifier = "barchart"”)
Arguments

X Extent of Bars. By default, bars start at left of panel, unless origin is specified,
in which case they start there.

y Horizontal location of bars. Possibly a factor.

box.ratio Ratio of bar width to inter-bar space.

box.width Thickness of bars in absolute units; overrides box. ratio. Useful for specifying
thickness when the categorical variable is not a factor, as use of box.ratio
alone cannot achieve a thickness greater than 1.

horizontal Logical flag. If FALSE, the plot is ‘transposed’ in the sense that the behaviours

of x and y are switched. x is now the ‘factor’. Interpretation of other arguments
change accordingly. See documentation of bwplot for a fuller explanation.

94

origin

reference

stack

groups

F_1_panel.barchart

The origin for the bars. For grouped displays with stack = TRUE, this argument
is ignored and the origin set to 0. Otherwise, defaults to NULL, in which case bars
start at the left (or bottom) end of a panel. This choice is somewhat unfortuntate,
as it can be misleading, but is the default for historical reasons. For tabular
(or similar) data, origin =@ is usually more appropriate; if not, one should
reconsider the use of a bar chart in the first place (dot plots are often a good
alternative).

Logical, whether a reference line is to be drawn at the origin.

logical, relevant when groups is non-null. If FALSE (the default), bars for differ-
ent values of the grouping variable are drawn side by side, otherwise they are
stacked.

Optional grouping variable.

col, border, 1ty, 1wd

identifier

Details

Graphical parameters for the bars. By default, the trellis parameter plot.polygon
is used if there is no grouping variable, otherwise superpose.polygon is used.
col gives the fill color, border the border color, and 1ty and lwd the line type
and width of the borders.

Extra arguments will be accepted but ignored.

A character string that is prepended to the names of grobs that are created by
this panel function.

A barchart is drawn in the panel. Note that most arguments controlling the display can be supplied
to the high-level barchart call directly.

Author(s)

Deepayan Sarkar <Deepayan.Sarkar@R-project.org>

See Also

barchart

Examples

barchart(yield ~ variety | site, data = barley,
groups = year, layout = c(1,6), origin = 0,
ylab = "Barley Yield (bushels/acre)”,

scales

= list(x = list(abbreviate = TRUE,
minlength = 5)))

F_1_panel.bwplot

95

F_1_panel.bwplot

Default Panel Function for bwplot

Description

This is the default panel function for bwplot.

Usage

panel.bwplot(x,

y, box.ratio =1,

box.width = box.ratio / (1 + box.ratio),
horizontal = TRUE,

pch, col, alpha, cex,

font, fontfamily, fontface,

fill, varwidth = FALSE,

notch = FALSE, notch.frac = 0.5,

L

levels.fos,

stats = boxplot.stats,
coef = 1.5,

do.out = TRUE,
identifier = "bwplot")

Arguments

X’y

box.ratio
box.width

horizontal

numeric vector or factor. Boxplots drawn for each unique value of y (x) if
horizontal is TRUE (FALSE)

ratio of box thickness to inter box space

thickness of box in absolute units; overrides box.ratio. Useful for specifying
thickness when the categorical variable is not a factor, as use of box.ratio
alone cannot achieve a thickness greater than 1.

logical. If FALSE, the plot is ‘transposed’ in the sense that the behaviours of
x and y are switched. x is now the ‘factor’. Interpretation of other arguments
change accordingly. See documentation of bwplot for a fuller explanation.

pch, col, alpha, cex, font, fontfamily, fontface

fill

varwidth

notch

notch.frac

graphical parameters controlling the dot. pch="|" is treated specially, by re-
placing the dot with a line (similar to boxplot)

color to fill the boxplot

logical. If TRUE, widths of boxplots are proportional to the number of points
used in creating it.

if notch is TRUE, a notch is drawn in each side of the boxes. If the notches of
two plots do not overlap this is ‘strong evidence’ that the two medians differ
(Chambers et al., 1983, p. 62). See boxplot.stats for the calculations used.

numeric in (0,1). When notch=TRUE, the fraction of the box width that the
notches should use.

96

stats

coef, do.out

levels.fos

identifier

Details

F_1_panel.bwplot

a function, defaulting to boxplot.stats, that accepts a numeric vector and re-
turns a list similar to the return value of boxplot.stats. The function must
accept arguments coef and do.out even if they do not use them (a ... argu-
ment is good enough). This function is used to determine the box and whisker
plot.

passed to stats

numeric values corresponding to positions of the factor or shingle variable. For
internal use.

further arguments, ignored.

A character string that is prepended to the names of grobs that are created by
this panel function.

Creates Box and Whisker plot of x for every level of y (or the other way round if horizontal=FALSE).
By default, the actual boxplot statistics are calculated using boxplot.stats. Note that most argu-
ments controlling the display can be supplied to the high-level bwplot call directly.

Although the graphical parameters for the dot representing the median can be controlled by optional
arguments, many others can not. These parameters are obtained from the relevant settings parame-
ters ("box.rectangle” for the box, "box.umbrella” for the whiskers and "plot.symbol” for the

outliers).

Author(s)

Deepayan Sarkar <Deepayan.Sarkar@R-project.org>

See Also

bwplot, boxplot.stats

Examples

bwplot(voice.part ~ height, data = singer,
xlab = "Height (inches)”,
panel = function(...) {
panel.grid(v = -1, h = @)
panel.bwplot(...)

}!

par.settings = list(plot.symbol = list(pch = 4)))

bwplot(voice.part ~ height, data = singer,
xlab = "Height (inches)"”,
notch = TRUE, pch = "|")

F_1_panel.cloud

97

F_1_panel.cloud Default Panel Function for cloud

Description

Default panel functions controlling cloud and wireframe displays.

Usage

panel.cloud(x, y, subscripts, z,
groups = NULL,
perspective = TRUE,
distance = if (perspective) 0.2 else 0,
xlim, ylim, zlim,
panel.3d.cloud = "panel.3dscatter”,
panel.3d.wireframe = "panel.3dwire”,
screen = list(z = 40, x = -60),
R.mat = diag(4), aspect = c(1, 1),
par.box = NULL,
xlab, ylab, zlab,
xlab.default, ylab.default, zlab.default,
scales. 3d,
proportion = 0.6,
wireframe = FALSE,
scpos,

at,

identifier = "cloud")
panel.wireframe(...)
panel.3dscatter(x, y, z, rot.mat, distance,

n.n

groups, type = "p”,
xlim, ylim, zlim,
xlim.scaled, ylim.scaled, zlim.scaled,
zero.scaled,
col, col.point, col.line,
1ty, lwd, cex, pch, fill,
cross, ..., .scale = FALSE, subscripts,
identifier = "3dscatter”)
panel.3dwire(x, y, z, rot.mat = diag(4), distance,
shade = FALSE,
shade.colors.palette = trellis.par.get("shade
light.source = c(0, 0, 1000),
xlim, ylim, zlim,
xlim.scaled,
ylim.scaled,
zlim.scaled,
col = if (shade) "transparent” else "black",

.colors”)$palette,

98

lty = 1, lwd = 1,
alpha,

F_1_panel.cloud

col.groups = superpose.polygon$col,
polynum = 100,

.scale = FALSE,

drape = FALSE,

at,

col.regions = regions$col,
alpha.regions = regions$alpha,
identifier = "3dwire")

makeShadePalette(col.regions, ..., min = 0.05, pref = 0.75)

Arguments

X’y’z

subscripts

groups

perspective

distance

screen

R.mat

par.box

numeric (or possibly factors) vectors representing the data to be displayed. The
interpretation depends on the context. For panel. cloud these are essentially the
same as the data passed to the high level plot (except if formula was a matrix,
the appropriate x and y vectors are generated). By the time they are passed to
panel.3dscatter and panel.3dwire, they have been appropriately subsetted
(using subscripts) and scaled (to lie inside a bounding box, usually the [-0.5,
0.5] cube).

Further, for panel.3dwire, x and y are shorter than z and represent the sorted
locations defining a rectangular grid. Also in this case, z may be a matrix if the
display is grouped, with each column representing one surface.

In panel.cloud (called from wireframe) and panel.3dwire, x, y and z could
also be matrices (of the same dimension) when they represent a 3-D surface
parametrized on a 2-D grid.

index specifying which points to draw. The same x, y and z values (represent-
ing the whole data) are passed to panel.cloud for each panel. subscripts
specifies the subset of rows to be used for the particular panel.

specification of a grouping variable, passed down from the high level functions.

logical, whether to plot a perspective view. Setting this to FALSE is equivalent to
setting distance to 0

numeric, between 0 and 1, controls amount of perspective. The distance of
the viewing point from the origin (in the transformed coordinate system) is 1
/ distance. This is described in a little more detail in the documentation for
cloud

A list determining the sequence of rotations to be applied to the data before being
plotted. The initial position starts with the viewing point along the positive z-
axis, and the x and y axes in the usual position. Each component of the list

should be named one of "x", "y" or "z" (repetitions are allowed), with their
values indicating the amount of rotation about that axis in degrees.

initial rotation matrix in homogeneous coordinates, to be applied to the data
before screen rotates the view further.

graphical parameters for box, namely, col, Ity and lwd. By default obtained from
the parameter box. 3d.

F_1_panel.cloud

xlim, ylim, z1im

panel.3d.cloud,

aspect
xlab, ylab, z1ab

xlab.default
ylab.default
zlab.default
scales.3d
proportion

scpos

wireframe

drape

at

col.regions

alpha.regions

rot.mat

type

99

limits for the respective axes. As with other lattice functions, these could each
be a numeric 2-vector or a character vector indicating levels of a factor.
panel.3d.wireframe

functions that draw the data-driven part of the plot (as opposed to the bounding
box and scales) in cloud and wireframe. This function is called after the ‘back’
of the bounding box is drawn, but before the ‘front’ is drawn.

Any user-defined custom display would probably want to change these func-
tions. The intention is to pass as much information to this function as might be
useful (not all of which are used by the defaults). In particular, these functions
can expect arguments called x1im, ylim, z1im which give the bounding box
ranges in the original data scale and x1im.scaled, ylim.scaled, z1im.scaled
which give the bounding box ranges in the transformed scale. More arguments
can be considered on request.

aspect as in cloud

Labels, have to be lists. Typically the user will not manipulate these, but instead
control this via arguments to cloud directly.

for internal use

for internal use

for internal use

list defining the scales

numeric scalar, gives the length of arrows as a proportion of the sides

A list with three components X, y and z (each a scalar integer), describing which
of the 12 sides of the cube the scales should be drawn. The defaults should be
OK. Valid values are x: 1,3,9, 11;y: 8, 5,7, 6 and z: 4, 2, 10, 12. (See com-
ments in the source code of panel.cloud to see the details of this enumeration.)

logical, indicating whether this is a wireframe plot

logical, whether the facets will be colored by height, in a manner similar to
levelplot. This is ignored if shade=TRUE.

When drape = TRUE in wireframe, the facets defining the surface are colored
as a function of (average) height, similar to levelplot. at is a numeric vector
giving the breakpoints along the z-axis where colors change.

vector of colors to be used in conjunction with at when drape = TRUE.

In makeShadePalette, which can be used to define a shading palette (see be-
low), col.regions is an initial vector defining the base color (as a function of
height) that is then adjusted according to irradiance and reflectance.

numeric scalar controlling transparency when drape = TRUE.

4x4 transformation matrix in homogeneous coordinates. This gives the rotation
matrix combining the screen and R.mat arguments to panel.cloud

Character vector, specifying type of cloud plot. Can include one or more of "p”,
"1", "h" or "b". "p” and "1"” mean ‘points’ and ‘lines’ respectively, and "b"
means ‘both’. "h” stands for ‘histogram’, and causes a line to be drawn from
each point to the X-Y plane (i.e., the plane representing z =), or the lower (or
upper) bounding box face, whichever is closer.

100

F_1_panel.cloud

xlim.scaled, ylim.scaled, z1im.scaled

zero.scaled

Cross

shade

axis limits (after being scaled to the bounding box)

z-axis location (after being scaled to the bounding box) of the X-Y plane in the
original data scale, to which lines will be dropped (if within range) from each
point when type = "h"

logical, defaults to TRUE if pch = "+". panel.3dscatter can represent each
point by a 3d ‘cross’ of sorts (it’s much easier to understand looking at an exam-
ple than from a description). This is different from the usual pch argument, and
reflects the depth of the points and the orientation of the axes. This argument
indicates whether this feature will be used.

This is useful for two reasons. It can be set to FALSE to use "+" as the plotting
character in the regular sense. It can also be used to force this feature in grouped
displays.

logical, indicating whether the surface is to be colored using an illumination
model with a single light source

shade.colors.palette

min
pref

light.source

polynum

col.groups

a function (or the name of one) that is supposed to calculate the color of a facet
when shading is being used. Three pieces of information are available to the
function: first, the cosine of the angle between the incident light ray and the
normal to the surface (representing foreshortening); second, the cosine of half
the angle between the reflected ray and the viewing direction (useful for non-
Lambertian surfaces); and third, the scaled (average) height of that particular
facet with respect to the total plot z-axis limits.

All three numbers should be between 0 and 1. The shade.colors.palette
function should return a valid color. The default function is obtained from the
trellis settings using makeShadePalette.

numeric, between 0 and 1, giving a minimum saturation in makeShadePalette

numeric, giving a power that is applied to reflectance value before it is used to
‘darken’ the colors.

a 3-vector representing (in cartesian coordinates) the light source. This is rel-
ative to the viewing point being (0, 0, 1/distance) (along the positive z-axis),
keeping in mind that all observations are bounded within the [-0.5, 0.5] cube

quadrilateral faces are drawn in batches of polynum at a time. Drawing too few
at a time increases the total number of calls to the underlying grid.polygon
function, which affects speed. Trying to draw too many at once may be unnec-
essarily memory intensive. This argument controls the trade-off.

colors for different groups

col, col.point, col.line, 1ty, 1wd, cex, pch, fill, alpha

.scale

Graphical parameters. Some other arguments (such as lex for line width) may
also be passed through the . .. argument.

other parameters, passed down when appropriate

Logical flag, indicating whether x, y, and z should be assumed to be in the
original data scale and hence scaled before being plotted. x, y, and z are usu-
ally already scaled. However, setting . scale=TRUE may be helpful for calls to
panel.3dscatter and panel.3dwire in user-supplied panel functions.

F_1_panel.cloud 101

identifier A character string that is prepended to the names of grobs that are created by
this panel function.

Details

These functions together are responsible for the content drawn inside each panel in cloud and
wireframe. panel.wireframe is a wrapper to panel.cloud, which does the actual work.

panel.cloud is responsible for drawing the content that does not depend on the data, namely, the
bounding box, the arrows/scales, etc. At some point, depending on whether wireframe is TRUE,
it calls either panel.3d.wireframe or panel.3d.cloud, which draws the data-driven part of the
plot.

The arguments accepted by these two functions are different, since they have essentially different
purposes. For cloud, the data is unstructured, and x, y and z are all passed to the panel. 3d.cloud
function. For wireframe, on the other hand, x and y are increasing vectors with unique values,
defining a rectangular grid. z must be a matrix with length(x) * length(y) rows, and as many
columns as the number of groups.

panel.3dscatter is the default panel.3d.cloud function. It has a type argument similar to
panel.xyplot, and supports grouped displays. It tries to honour depth ordering, i.e., points and
lines closer to the camera are drawn later, overplotting more distant ones. (Of course there is
no absolute ordering for line segments, so an ad hoc ordering is used. There is no hidden point
removal.)

panel.3dwire is the default panel.3d.wireframe function. It calculates polygons corresponding
to the facets one by one, but waits till it has collected information about polynum facets, and draws
them all at once. This avoids the overhead of drawing grid.polygon repeatedly, speeding up the
rendering considerably. If shade = TRUE, these attempt to color the surface as being illuminated
from a light source at 1ight.source. palette. shade is a simple function that provides the deafult
shading colors

Multiple surfaces are drawn if groups is non-null in the call to wireframe, however, the algorithm
is not sophisticated enough to render intersecting surfaces correctly.

Author(s)

Deepayan Sarkar <Deepayan.Sarkar@R-project.org>

See Also

cloud, utilities.3d

Examples

wireframe(volcano, shade = TRUE,
shade.colors.palette = makeShadePalette(hcl.colors(10, "Inferno"),
pref = 0.2))
wireframe(volcano, shade = TRUE,
shade.colors.palette = makeShadePalette(hcl.colors(10, "Dark Mint"),
pref = 0.2))
wireframe(volcano, shade = TRUE,
shade.colors.palette = makeShadePalette(hcl.colors(10, "Harmonic"),
pref = 0.2))

102

F_1_panel.densityplot

F_1_panel.densityplot Default Panel Function for densityplot

Description

This is the default panel function for densityplot.

Usage

panel.densityplot(x, darg, plot.points = "jitter",

Arguments

X

darg

plot.points

ref

groups

weights

jitter.amount

type

ref = FALSE,

groups = NULL,
weights = NULL,
jitter.amount,

type, ...,
grid = lattice.getOption("default.args")$grid,
identifier = "density")

data points for which density is to be estimated

list of arguments to be passed to the density function. Typically, this should
be a list with zero or more of the following components : bw, adjust, kernel,
window, width, give.Rkern, n, from, to, cut, na.rm (see density for details)

logical specifying whether or not the data points should be plotted along with
the estimated density. Alternatively, a character string specifying how the points
should be plotted. Meaningful values are "rug"”, in which case panel.rug is
used to plota ‘rug’, and "jitter”, in which case the points are jittered vertically
to better distinguish overlapping points.

logical, whether to draw x-axis

an optional grouping variable. If present, panel. superpose will be used instead
to display each subgroup

numeric vector of weights for the density calculations. If this is specified, the
... part must also include a subscripts argument that matches the weights to
X.

when plot.points="jitter"”, the value to use as the amount argument to
jitter.

type argument used to plot points, if requested. This is not expected to be useful,
it is available mostly to protect a type argument, if specified, from affecting the
density curve.

extra graphical parameters. Note that additional arguments to panel . rug cannot
be passed on through panel.densityplot.

F_1_panel.dotplot 103

grid A logical flag, character string, or list specifying whether and how a background
grid should be drawn. In its general form, grid can be a list of arguments to be
supplied to panel.grid, which is called with those arguments. Three shortcuts
are available:
TRUE: roughly equivalent to list(h=-1, v=-1)
"h": roughly equivalent to list(h=-1, v=10)
"v": roughly equivalent to list(h=0, v=-1)
No grid is drawn if grid = FALSE.

identifier A character string that is prepended to the names of grobs that are created by
this panel function.

Author(s)

Deepayan Sarkar <Deepayan.Sarkar@R-project.org>

See Also

densityplot, jitter

F_1_panel.dotplot Default Panel Function for dotplot

Description

Default panel function for dotplot.

Usage

panel.dotplot(x, y, horizontal = TRUE,
pch, col, 1lty, lwd, col.line,
levels.fos,
groups = NULL,

grid = lattice.getOption("default.args")$grid,
identifier = "dotplot")

Arguments
Y variables to be plotted in the panel. Typically y is the ‘factor’
horizontal logical. If FALSE, the plot is ‘transposed’ in the sense that the behaviours of

x and y are switched. x is now the ‘factor’. Interpretation of other arguments
change accordingly. See documentation of bwplot for a fuller explanation.

pch, col, 1ty, 1wd, col.line
graphical parameters

levels.fos locations where reference lines will be drawn

104

groups

grid

identifier

Details

F_1_panel.histogram

grouping variable (affects graphical parameters)

extra parameters, passed to panel.xyplot which is responsible for drawing the
foreground points (panel.dotplot only draws the background reference lines).

A logical flag, or list specifying whether and how a background grid should
be drawn. In its general form grid can be a list of arguments to be sup-
plied to panel.grid, which is called with those arguments. If FALSE, no grid
lines are drawn. grid = TRUE is roughly equivalent to list(h=0, v=-1) if
horizontal = TRUE and list(h=-1, v =0) if horizontal = FALSE. In other
words, grid lines are drawn only for the numeric axis, as reference lines for the
categorical axis are drawn regardless of the value of grid.

A character string that is prepended to the names of grobs that are created by
this panel function.

Creates (possibly grouped) Dotplot of x against y or vice versa

Author(s)

Deepayan Sarkar <Deepayan. Sarkar@R-project.org>

See Also

dotplot

F_1_panel.histogram Default Panel Function for histogram

Description

This is the default panel function for histogram.

Usage

panel.histogram(x,

breaks,

equal.widths = TRUE,

type = "density"”,

nint = round(log2(length(x)) + 1),
alpha, col, border, 1ty, lwd,

A

identifier = "histogram")

F_1_panel.levelplot

Arguments

X
breaks
equal.widths
type

nint

The data points for which the histogram is to be drawn

The breakpoints for the histogram

logical used when breaks==NULL

105

Type of histogram, possible values being "percent”, "density” and "count”

Number of bins for the histogram

alpha, col, border, 1ty, 1wd
graphical parameters for bars; defaults are obtained from the plot.polygon

identifier

Author(s)

settings.

other arguments, passed to hist when deemed appropriate

A character string that is prepended to the names of grobs that are created by

this panel function.

Deepayan Sarkar <Deepayan. Sarkar@R-project.org>

See Also

histogram

F_1_panel.levelplot Panel Functions for levelplot and contourplot

Description

These are the default panel functions for levelplot and contourplot.

alternative raster-based panel function for use with levelplot.

Usage

panel.levelplot(x, vy, z,

subscripts,

at = pretty(z),

shrink,

labels,

label.style = c("mixed”, "flat”, "align"),
contour = FALSE,

region = TRUE,

col = add.line$col,

1ty = add.line$lty,

lwd = add.line$lwd,
border = "transparent”,
border.1lty = 1,
border.lwd = 0.1,

Also documented is an

106

F_1_panel.levelplot

region.type = c("grid"”, "contour"),
col.regions = regions$col,
alpha.regions = regions$alpha,
identifier = "levelplot”)

panel.contourplot(...)

panel.levelplot.raster(x, vy, z,

Arguments

X,y,Z
subscripts

at

shrink

labels

label.style

contour

region

col, 1ty, 1wd

subscripts,

at = pretty(z),

col.regions = regions$col,
alpha.regions = regions$alpha,
interpolate = FALSE,
identifier = "levelplot”)

Variables defining the plot.
Integer vector indicating what subset of x, y and z to draw.

Numeric vector giving breakpoints along the range of z. See levelplot for
details.

Either a numeric vector of length 2 (meant to work as both x and y components),
or a list with components x and y which are numeric vectors of length 2. This
allows the rectangles to be scaled proportional to the z-value. The specification
can be made separately for widths (x) and heights (y). The elements of the length
2 numeric vector gives the minimum and maximum proportion of shrinkage
(corresponding to min and max of z).

Either a logical scalar indicating whether the labels are to be drawn, or a char-
acter or expression vector giving the labels associated with the at values. Alter-
natively, 1abels can be a list with the following components:

labels: acharacter or expression vector giving the labels. This can be omitted,
in which case the defaults will be used.

col, cex, alpha: graphical parameters for label texts

fontfamily, fontface, font: font used for the labels

Controls how label positions and rotation are determined. A value of "flat"
causes the label to be positioned where the contour is flattest, and the label is
not rotated. A value of "align” causes the label to be drawn as far from the
boundaries as possible, and the label is rotated to align with the contour at that

point. The default is to mix these approaches, preferring the flattest location
unless it is too close to the boundaries.

A logical flag, specifying whether contour lines should be drawn.

A logical flag, specifying whether inter-contour regions should be filled with
appropriately colored rectangles.

Graphical parameters for contour lines.

F_1_panel.levelplot

border

107

Border color for rectangles used when region=TRUE.

border.1ty, border.1lwd

region.type

col.regions

alpha.regions
interpolate

identifier

Details

Graphical parameters for the border
Extra parameters.

A character string, one of "grid"” and "contour”. The former (the default) uses
a grid of rectangles to display the colors for the level plot; the latter uses a grid of
polygons, mimicking the behavior of filled. contour, which gives a smoother
appearance at the cost of increased processing time.

The "contour” option requires x and y to be complete, in the sense that it must

include all possible combinations in the underlying grid. However, z values are
allowed to be missing.

A vector of colors, or a function to produce a vecor of colors, to be used if
region=TRUE. Each interval defined by at is assigned a color, so the number of
colors actually used is one less than the length of at. See level.colors for
details on how the color assignment is done.

numeric scalar controlling transparency of facets
logical, passed to grid.raster.

A character string that is prepended to the names of grobs that are created by
this panel function.

The same panel function is used for both levelplot and contourplot (which differ only in default
values of some arguments). panel.contourplot is a simple wrapper to panel.levelplot.

‘When contour=TRUE, the contourLines function is used to calculate the contour lines.

panel.levelplot.raster is an alternative panel function that uses the raster drawing abilities in
R 2.11.0 and higher (through grid.raster). It has fewer options (e.g., can only render data on
an equispaced grid), but can be more efficient. When using panel.levelplot.raster, it may be
desirable to render the color key in the same way. This is possible, but must be done separately; see
levelplot for details.

Author(s)

Deepayan Sarkar <Deepayan.Sarkar@R-project.org>.

The functionality of region.type = "contour" is based on code borrowed from the gridGraphics
package, written by Zhijian (Jason) Wen and Paul Murrell and ported to lattice by Johan Larsson.

See Also

levelplot, level.colors, contourLines, filled.contour

Examples

require(grid)

levelplot(rnorm(10) ~ 1:10 + sort(runif(10)), panel = panel.levelplot)

108 F_1_panel.pairs

suppressWarnings(plot(levelplot(rnorm(10) ~ 1:10 + sort(runif(10)),
panel = panel.levelplot.raster,
interpolate = TRUE)))

levelplot(volcano, panel = panel.levelplot.raster)

levelplot(volcano, panel = panel.levelplot.raster,
col.regions = hcl.colors, cuts = 30, interpolate = TRUE)

F_1_panel.pairs Default Superpanel Function for splom

Description

This is the default superpanel function for splom.

Usage

panel.pairs(z,

panel = lattice.getOption("panel.splom”),

lower.panel = panel,

upper.panel = panel,

diag.panel = "diag.panel.splom”,

as.matrix = FALSE,

groups = NULL,

panel.subscripts,

subscripts,

pscales = 5,

prepanel.limits = scale_limits,

varnames = colnames(z),

varname.col, varname.cex, varname.font,

varname.fontfamily, varname.fontface,

axis.text.col, axis.text.cex, axis.text.font,

axis.text.fontfamily, axis.text.fontface,

axis.text.lineheight,

axis.line.col, axis.line.lty, axis.line.lwd,

axis.line.alpha, axis.line.tck,

S

diag.panel.splom(x = NULL,

varname = NULL, limits, at
draw = TRUE, tick.number =
varname.col, varname.cex,
varname.lineheight, varname.font,
varname.fontfamily, varname.fontface,
axis.text.col, axis.text.alpha,
axis.text.cex, axis.text.font,

= NULL, labels = NULL,
5,

F_1_panel.pairs

Arguments

z

109

axis.text.fontfamily, axis.text.fontface,
axis.text.lineheight,

axis.line.col, axis.line.alpha,
axis.line.lty, axis.line.lwd,
axis.line.tck,

.2

The data frame used for the plot.

panel, lower.panel, upper.panel

diag.panel

as.matrix

groups

The panel function used to display each pair of variables. If specified, lower . panel
and upper . panel are used for panels below and above the diagonal respectively.

In addition to extra arguments not recognized by panel.pairs, the list of argu-
ments passed to the panel function also includes arguments named i and j, with
values indicating the row and column of the scatterplot matrix being plotted.

The panel function used for the diagonals. See arguments to diag.panel.splom

to know what arguments this function is passed when called. Use diag.panel=NULL
to suppress plotting on the diagonal panels.

logical. If TRUE, the layout of the panels will have origin on the top left instead
of bottom left (similar to pairs). This is in essence the same functionality as
provided by as. table for the panel layout

Grouping variable, if any

panel.subscripts

subscripts
pscales

prepanel.limits

logical specifying whether the panel function accepts an argument named subscripts.
The indices of the rows of z that are to be displayed in this (super)panel.

Controls axis labels, passed down from splom. If pscales is a single number, it
indicates the approximate number of equally-spaced ticks that should appear on
each axis. If pscales is a list, it should have one component for each column in
z, each of which itself a list with the following valid components:

at: a numeric vector specifying tick locations

labels: character vector labels to go with at

limits: numeric 2-vector specifying axis limits (should be made more flexible
at some point to handle factors)

These are specifications on a per-variable basis, and used on all four sides in the
diagonal cells used for labelling. Factor variables are labelled with the factor
names. Use pscales=0 to supress the axes entirely.

A function to calculate suitable axis limits given a single argument x containing
a data vector. The return value of the function should be similar to the x1im
or ylim argument documented in xyplot; that is, it should be a numeric or
DateTime vector of length 2 defining a range, or a character vector representing
levels of a factor.

Most high-level lattice plots (such as xyplot) use the prepanel function for
deciding on axis limits from data. This function serves a similar function by
calculating the per-variable limits. These limits can be overridden by the corre-
sponding 1imits component in the pscales list.

110

F_1_panel.pairs

X data vector corresponding to that row / column (which will be the same for
diagonal ‘panels’).

varname (scalar) character string or expression that is to be written centred within the
panel

limits numeric of length 2, or, vector of characters, specifying the scale for that panel
(used to calculate tick locations when missing)

at locations of tick marks

labels optional labels for tick marks

draw A logical flag specifying whether to draw the tick marks and labels. If FALSE,
variable names are shown but axis annotation is omitted.

tick.number A Numeric scalar giving the suggested number of tick marks.

varnames A character or expression vector or giving names to be used for the variables in
x. By default, the column names of x.

varname.col Color for the variable name in each diagonal panel. See gpar for details on this
and the other graphical parameters listed below.

varname. cex Size multiplier for the variable name in each diagonal panel.

varname.lineheight

Line height for the variable name in each diagonal panel.

varname.font, varname. fontfamily, varname. fontface

axis.

axis.

axis.

axis.

axis.

axis.
axis.

axis.
axis.

axis.

Details

text.

text.
text.

text.

text.

line.
line.

line.
line.

line.

Font specification for the variable name in each diagonal panel.
col Color for axis label text.

cex Size multiplier for axis label text.
font, axis.text.fontfamily, axis.text.fontface
Font specification for axis label text.
lineheight
Line height for axis label text.
alpha
Alpha-transparency for axis label text.
col Color for the axes.
1ty Line type for the axes.
lwd Line width for the axes.
alpha
Alpha-transparency for the axes.

tck A numeric multiplier for the length of tick marks in diagonal panels.

Further arguments, passed on to panel, lower.panel, upper.panel, and diag.panel

from panel.pairs. Currently ignored by diag.panel.splom.

panel.pairs is the function that is actually used as the panel function in a "trellis"” object
produced by splom.

F_1_panel.parallel 111

Author(s)

Deepayan Sarkar <Deepayan.Sarkar@R-project.org>

See Also

splom

Examples

Cmat <- outer(1:6,1:6,
function(i,j) hcl.colors(11)[i+j-1]) ## rainbow(11, start=.12, end=.5)[i+j-1])

splom(~diag(6), as.matrix = TRUE,

panel = function(x, y, i, j, ...) {
panel.fill(Cmatli,jl)
panel.text(.5,.5, paste("(",1,",",]3,")",sep=""))
1))
F_1_panel.parallel Default Panel Function for parallel
Description

This is the default panel function for parallel.

Usage

panel.parallel(x, y, z, subscripts,
groups = NULL,
col, lwd, 1ty, alpha,
common.scale = FALSE,
lower,
upper,
horizontal.axis = TRUE,
identifier = "parallel”)

Arguments
X,y dummy variables, ignored.
z The data frame used for the plot. Each column will be coerced to numeric before
being plotted, and an error will be issued if this fails.
subscripts The indices of the rows of z that are to be displyed in this panel.
groups An optional grouping variable. If specified, different groups are distinguished

by use of different graphical parameters (i.e., rows of z in the same group share
parameters).

112

F_1_panel.qgmath

col, 1wd, 1ty, alpha

common. scale

lower, upper

horizontal.axis

identifier

Details

graphical parameters (defaults to the settings for superpose.line). If groups
is non-null, these parameters used one for each group. Otherwise, they are recy-
cled and used to distinguish between rows of the data frame z.

logical, whether a common scale should be used columns of z. Defaults to
FALSE, in which case the horizontal range for each column is different (as deter-
mined by lower and upper).

numeric vectors replicated to be as long as the number of columns in z. De-
termines the lower and upper bounds to be used for scaling the corresponding
columns of z after coercing them to numeric. Defaults to the minimum and max-
imum of each column. Alternatively, these could be functions (to be applied on
each column) that return a scalar.

other arguments (ignored)

logical indicating whether the parallel axes should be laid out horizontally (TRUE)
or vertically (FALSE).

A character string that is prepended to the names of grobs that are created by
this panel function.

Produces parallel coordinate plots, which are easier to understand from an example than through a

verbal description.

Author(s)

See example for parallel

Deepayan Sarkar <Deepayan.Sarkar@R-project.org>

References

Inselberg, Alfred (2009) Parallel Coordinates: Visual Multidimensional Geometry and Its Applica-
tions, Springer. ISBN: 978-0-387-21507-5.

Inselberg, A. (1985) “The Plane with Parallel Coordinates”, The Visual Computer.

See Also

parallel

F_1_panel.qgmath

Default Panel Function for ggmath

Description

This is the default panel function for ggmath.

F_1_panel.qqgmath 113

Usage

panel.qgmath(x, f.value = NULL,
distribution = gnorm,

qtype = 7,
groups = NULL, ...,
tails.n = 0,

identifier = "qgmath")

Arguments

X vector (typically numeric, coerced if not) of data values to be used in the panel.
f.value, distribution
Defines how quantiles are calculated. See qgmath for details.

gtype The type argument to be used in quantile

groups An optional grouping variable. Within each panel, one Q-Q plot is produced
for every level of this grouping variable, differentiated by different graphical
parameters.

Further arguments, often graphical parameters, eventually passed on to panel. xyplot.
Arguments grid and abline of panel.xyplot may be particularly useful.

tails.n number of data points to represent exactly on each tail of the distribution. This
reproduces the effect of f.value = NULL for the extreme data values, while ap-
proximating the remaining data. It has no effect if f.value = NULL. If tails.n
is given, qtype is forced to be 1.

identifier A character string that is prepended to the names of grobs that are created by
this panel function.

Details

Creates a Q-Q plot of the data and the theoretical distribution given by distribution. Note that
most of the arguments controlling the display can be supplied directly to the high-level qgmath call.

Author(s)

Deepayan Sarkar <Deepayan. Sarkar@R-project.org>

See Also

ggmath

Examples

set.seed(0)
xx <= rt(10000, df = 10)
ggmath(~ xx, pch = "+" distribution = gnorm,
grid = TRUE, abline = c(0, 1),
xlab.top = c("raw”, "ppoints(100)"”, "tails.n = 50"),
panel = function(..., f.value) {
switch(panel.number(),

114

F_1_panel.stripplot

panel.qgmath(..., f.value = NULL),
panel.qgmath(..., f.value = ppoints(100)),
panel.qgmath(..., f.value = ppoints(100), tails.n = 50))

}, layout = c(3, 1))[c(1,1,1)]

F_1_panel.stripplot Default Panel Function for stripplot

Description

This is the default panel function for stripplot. Also see panel.superpose

Usage

panel.stripplot(x, y, jitter.data = FALSE,

Arguments

X,y
jitter.data

factor, amount

horizontal

groups

grid

identifier

factor = 0.5, amount = NULL,
horizontal = TRUE, groups = NULL,

grid = lattice.getOption("default.args”)$grid,
identifier = "stripplot”)

coordinates of points to be plotted

whether points should be jittered to avoid overplotting. The actual jittering is
performed inside panel.xyplot, using its jitter.x or jitter.y argument
(depending on the value of horizontal).

amount of jittering, see jitter

logical. If FALSE, the plot is ‘transposed’ in the sense that the behaviours of
x and y are switched. x is now the ‘factor’. Interpretation of other arguments
change accordingly. See documentation of bwplot for a fuller explanation.

optional grouping variable

additional arguments, passed on to panel.xyplot

A logical flag, character string, or list specifying whether and how a background
grid should be drawn. In its general form, grid can be a list of arguments to be
supplied to panel.grid, which is called with those arguments. Three shortcuts
are available:

TRUE: roughly equivalent to list(h=-1, v=-1)

"h": roughly equivalent to list(h=-1, v=20)

"v": roughly equivalent to list(h=0, v=-1)

No grid is drawn if grid = FALSE.

A character string that is prepended to the names of grobs that are created by
this panel function.

F_1_panel.xyplot 115

Details

Creates stripplot (one dimensional scatterplot) of x for each level of y (or vice versa, depending on
the value of horizontal)

Author(s)

Deepayan Sarkar <Deepayan.Sarkar@R-project.org>

See Also

stripplot, jitter

F_1_panel.xyplot Default Panel Function for xyplot

Description

This is the default panel function for xyplot. Also see panel.superpose. The default panel
functions for splom and qq are essentially the same function.

Usage

n.n

panel.xyplot(x, y, type = "p",
groups = NULL,
pch, col, col.line, col.symbol,
font, fontfamily, fontface,
1ty, cex, fill, 1lwd,
horizontal = FALSE, ...,
smooth = NULL,
grid = lattice.getOption("default.args")$grid,
abline = NULL,
jitter.x = FALSE, jitter.y = FALSE,

factor = 0.5, amount = NULL,
identifier = "xyplot")
panel.splom(..., identifier = "splom")
panel.qq(..., identifier = "qq")
Arguments
Y variables to be plotted in the scatterplot
type character vector controlling how x and y are to be plotted. Can consist of one

non o n_n o n

or more Of the fOHOWlIlg: npu’ ”1“, ”h“, ”b“, ”O”, ”S”, ”S”, g , r , a ,
"smooth”, and "spline”. If type has more than one element, an attempt is
made to combine the effect of each of the components.

The behaviour if any of the first five are included in type is similar to the ef-
fect of the corresponding type in plot: "p"” and "1" stand for points and lines

116 F_1_panel.xyplot

respectively; "b" and "o" (for ‘overlay’) plot both; "h" draws vertical (or hori-
zontal if horizontal = TRUE) line segments from the points to the origin. Types
"s" and "S" are like "1" in the sense that they join consecutive points, but in-
stead of being joined by a straight line, points are connected by a vertical and
a horizontal segment forming a ‘step’, with the vertical segment coming first
for "s"”, and the horizontal segment coming first for "S"”. Types "s” and "S"
sort the values along one of the axes (depending on horizontal); this is un-
like the behavior in plot. For the latter behavior, use type = "s" with panel =
panel.points.

Type "g" adds a reference grid using panel.grid in the background, but using
the grid argument is now the preferred way to do so.

The remaining values of type lead to various types of smoothing. This can also
be achieved using the smooth argument, or by calling the relevant panel func-
tions directly. The panel functions provide finer control over graphical and other
parameters, but using smooth or type is convenient for simple usage. Using
smooth is recommended, but type is also supported for backwards compatibil-
ity.

Type "r" adds a linear regression line, "smooth” adds a loess fit, "spline” adds
a cubic smoothing spline fit, and "a" draws line segments joining the average y
value for each distinct x value. See smooth for details.

See example(xyplot) and demo(lattice) for examples.

groups an optional grouping variable. If present, panel. superpose will be used instead
to display each subgroup

col, col.line, col.symbol
default colours are obtained from plot.symbol and plot.lineusing trellis.par.get.

font, fontface, fontfamily
font used when pch is a character

pch, 1ty, cex, lwd, fill
other graphical parameters. fill serves the purpose of bg in points for certain
values of pch

horizontal A logical flag controlling the orientation for certain type’s, e.g., "h", "s", ans
"S" and the result of smoothing.

Extra arguments, if any, for panel.xyplot. Usually passed on as graphical
parameters to low level plotting functions, or to the panel functions performing
smoothing, if applicable.

smooth If specificied, indicates the type of smooth to be added. Can be a character vector
containing one or more values from "1m", "loess”, "spline”, and "average".
Can also be a logical flag; TRUE is interpreted as "loess”. Each of these result in
calling a corresponding panel function as described below; the smooth argument
simply provides a convenient shortcut.

"1m" adds a linear regression line (same as panel.lmline, except for default
graphical parameters). "loess” adds a loess fit (same as panel.loess). "spline”
adds a cubic smoothing spline fit (same as panel.spline). "average" has the
effect of calling panel.average, which in conjunction with a groups argument
can be useful for creating interaction plots.

F_1_panel.xyplot

grid

abline

117

Normally, smoothing is performed with the y variable as the response and the x
variable as the predictor. However, the roles of x and y are reversed if horizontal
= TRUE.

A logical flag, character string, or list specifying whether and how a background
grid should be drawn. This provides the same functionality as type="g", but is
the preferred alternative as the effect type="g" is conceptually different from
that of other type values (which are all data-dependent). Using the grid argu-
ment also allows more flexibility.

Most generally, grid can be a list of arguments to be supplied to panel.grid,

which is called with those arguments. Three shortcuts are available:
TRUE: roughly equivalent to list(h=-1, v=-1)
"h": roughly equivalent to list(h=-1, v=20)

non,

v": roughly equivalent to list(h=0, v=-1)
No grid is drawn if grid = FALSE.

A numeric vector or more generally a list containing arguments that are used
to call panel.abline. If specified as a numeric vector, abline is used as the
first unnamed argument to panel.abline. This allows arguments of the form
abline =c(@, 1), which adds the diagonal line, or abline = coef (fm) to fit
the regression line from a fitted mode. Use the list form for finer control; e.g.,
abline=1ist(h=0, v=0, col ="grey").

For more flexibility, use panel.abline directly.

jitter.x, jitter.y

factor, amount

identifier

Details

logical, whether the data should be jittered before being plotted.
controls amount of jittering.

A character string that is prepended to the names of grobs that are created by
this panel function.

Creates scatterplot of x and y, with various modifications possible via the type argument. panel.qq
draws a 45 degree line before calling panel.xyplot.

Note that most of the arguments controlling the display can be supplied directly to the high-level

(e.g. xyplot) call.

Author(s)

Deepayan Sarkar <Deepayan. Sarkar@R-project.org>

See Also

panel.superpose, xyplot, splom

Examples

types.plain <-

types.horiz <- c("s", "S", "h",

C("p”, “1”, “0”, nrn, ugu’ "S”, Usn’ “h", nan, “Smooth”)

”

a", "smooth")

horiz <- rep(c(FALSE, TRUE), c(length(types.plain), length(types.horiz)))

118 F 2 Ilines

types <- c(types.plain, types.horiz)

x <- sample(seq(-10@, 10, length.out = 15), 30, TRUE)
y <= x +0.25 * (x + 1)*2 + rnorm(length(x), sd = 5)

xyplot(y ~ x | gl(1, length(types)),

xlab = "type",

ylab = list(c("horizontal=TRUE", "horizontal=FALSE"), y = c(1/6, 4/6)),

as.table = TRUE, layout = c(5, 3),

between = list(y = c(0, 1)),

strip = function(...) {
panel.fill(trellis.par.get("strip.background”)$col[1])
type <- types[panel.number()]
grid::grid.text(label = sprintf('"%s

X =0.5, y =0.5)

grid::grid.rect()

"

, type),

3
scales = list(alternating = c(@, 2), tck = c(@, 0.7), draw = FALSE),
par.settings =
list(layout.widths = list(strip.left = c(1, 0, @, @, 0))),
panel = function(...) {
type <- types[panel.number()]
horizontal <- horiz[panel.number()]
panel.xyplot(...,
type = type,
horizontal = horizontal)
P Lrep(1, length(types))]

F_2_1llines Replacements of traditional graphics functions

Description

These functions are intended to replace common low level traditional graphics functions, primarily
for use in panel functions. The originals can not be used (at least not easily) because lattice panel
functions need to use grid graphics. Low level drawing functions in grid can be used directly as
well, and is often more flexible. These functions are provided for convenience and portability.

Usage

lplot.xy(xy, type, pch, lty, col, cex, lwd,
font, fontfamily, fontface,
col.line, col.symbol, alpha, fill,
origin = 0@, ..., identifier, name.type)

larrows(...)
llines(x, ...)

F 2 llines 119

lpoints(x, ...)
lpolygon(x, ...)
lpolypath(x, ...)
lrect(...)
lsegments(...)
ltext(x, ...)

Default S3 method:
larrows(x@ = NULL, y@ = NULL, x1, y1, x2 = NULL, y2 = NULL,
angle = 30, code = 2, length = 0.25, unit = "inches",
ends = switch(code, "first”, "last”, "both"),
type = "open”,
col = add.line$col,
alpha = add.line$alpha,
1ty = add.line$lty,
lwd = add.line$lwd,
fill = NULL,
font, fontface,
., identifier, name.type)
Default S3 method:
llines(x, y = NULL, type = "1",
col, alpha, 1lty, lwd, ..., identifier, name.type)
Default S3 method:
lpoints(x, y = NULL, type = "p”, col, pch, alpha, fill,
font, fontfamily, fontface, cex, ..., identifier, name.type)
Default S3 method:
lpolygon(x, y = NULL,
border = "black”, col = "transparent”, fill = NULL,
font, fontface,

rule = c("none”, "winding", "evenodd"),
identifier, name.type)
Default S3 method:
lpolypath(x, y = NULL,
border = "black”, col = "transparent”, fill = NULL,
font, fontface,
rule = c("winding”, "evenodd"),
identifier, name.type)
Default S3 method:
ltext(x, y = NULL, labels = seq_along(x),
col, alpha, cex, srt = 0,
lineheight, font, fontfamily, fontface,
adj = c(0.5, 0.5), pos = NULL, offset = 0.5, ..., identifier, name.type)
Default S3 method:
lrect(xleft, ybottom, xright, ytop,
x = (xleft + xright) / 2,
y = (ybottom + ytop) / 2,

120

width =

F 2 llines

xright - xleft,

height = ytop - ybottom,
col = "transparent”,
border = "black"”,

1ty =1
just =

hjust =

, lwd = 1, alpha =1,

"center”,

NULL, vjust = NULL,

font, fontface,
., identifier, name.type)
Default S3 method:
lsegments(x0, yo@, x1, y1, x2, y2,
col, alpha, 1lty, 1lwd,
font, fontface, ..., identifier, name.type)

panel.arrows(..

>

panel.lines(...)

panel.points(..
panel.polygon(.
panel.rect(...)

>
.)

panel.segments(...)

panel.text(...)

Arguments

X, ¥, X0, y0, x1, y1

length, unit

, X2, ¥2, Xy

locations. x2 and y?2 are available for for S compatibility.

determines extent of arrow head. length specifies the length in terms of unit,
which can be any valid grid unit as long as it doesn’t need a data argument. unit
defaults to inches, which is the only option in the base version of the function,
arrows.

angle, code, type, labels, srt, adj, pos, offset

ends

arguments controlling behaviour. See respective base functions for details. For
larrows and panel.larrows, type is either "open” or "closed”, indicating
the type of arrowhead.

serves the same function as code, using descriptive names rather than integer
codes. If specified, this overrides code

col, alpha, 1ty, lwd, fill, pch, cex, lineheight, font, fontfamily, fontface,
col.line, col.symbol, border

origin

graphical parameters. fill applies to points when pch is in 21: 25 and specifies
the fill color, similar to the bg argument in the base graphics function points.
For devices that support alpha-transparency, a numeric argument alpha between
0 and 1 can controls transparency. Be careful with this, since for devices that
do not support alpha-transparency, nothing will be drawn at all if this is set to
anything other than 0.

fill, font and fontface are included in lrect, larrows, lpolygon, and
lsegments only to ensure that they are not passed down (as gpar does not like
them).

for type="h" or type="H", the value to which lines drop down.

F 2 llines

121

xleft, ybottom, xright, ytop

see rect

width, height, just, hjust, vjust

rule

identifier

name. type

Details

finer control over rectangles, see grid.rect
extra arguments, passed on to lower level functions as appropriate.

character string specifying how NA values are interpreted for polygons and paths.
This is mainly intended for paths (via grid.path), but can also be specified for
polygons for convenience.

For polygons, the default rule is "none”, which treats NA-separated segments as
separate polygons. This value is only valid for polygons. For the other rules
("winding" or "evenodd") these segments are interpreted as subpaths, possibly
representing holes, of a single path, and are rendered using grid.path. Support
and rendering speed may depend on the device being used.

A character string that is prepended to the name of the grob that is created.

A character value indicating whether the name of the grob should have panel or
strip information added to it. Typically either "panel”, "strip"”, "strip.left",
or "" (for no extra information).

These functions are meant to be grid replacements of the corresponding base R graphics functions,
to allow existing Trellis code to be used with minimal modification. The functions panel.* are
essentally identical to the 1% versions, are recommended for use in new code (as opposed to ported
code) as they have more readable names.

See the documentation of the base functions for usage. Not all arguments are always supported. All
these correspond to the default methods only.

Note

There is a new type="H" option wherever appropriate, which is similar to type="h", but with

horizontal lines.

Author(s)

Deepayan Sarkar <Deepayan.Sarkar@R-project.org>

See Also

points, lines, rect, text, segments, arrows, Lattice

Examples

SD <- 0.1

t <- seq(@, 2*xpi, length.out = 50) + rnorm(50, sd = SD)

d <- list(x =
y

rectangles

c(cos(t), NA, rev(@.5 * cos(t))) + rnorm(101, sd
c(sin(t), NA, rev(0.5 * sin(t))) + rnorm(101, sd

SD),
SD))

122

F_2_panel.functions

xyplot(y ~ x, d, panel = panel.rect, col = 4, alpha = 0.5, width = 0.1, height = 0.1)

points and lines
xyplot(y ~ x, d, panel = panel.lines, col = 4, alpha = 0.5,

nn

type = "o", pch

16)

polygons and paths (with holes)
xyplot(y ~ x, d, panel = panel.polygon, col = 4, alpha = 0.5, rule = "evenodd")

Example adapted from https://journal.r-project.org/articles/RJ-2012-017/
x <- c(.1, .5, .9, NA, .4, .5, .6, NA, .4, .6, .5)

y <-c(.1, .8, .1, NA, .5, .4, .5, NA, .3, .3, .2)

d <- data.frame(x = x, y = y)

xyplot(y ~ x, data = d, panel = panel.polygon, rule = "none"”, col = "grey")

xyplot(y ~ x, data = d, panel

panel.polypath, rule "winding", col = "grey")

xyplot(y ~ x, data = d, panel = panel.polypath, rule = "evenodd”, col = "grey")

F_2_panel.functions Useful Panel Function Components

Description

These are predefined panel functions available in lattice for use in constructing new panel functions
(often on-the-fly).

Usage

panel.

panel.

panel.

panel.

abline(a = NULL, b = 0,
h = NULL, v = NULL,
reg = NULL, coef = NULL,
col, col.line, 1lty, lwd, alpha, type,

reference = FALSE,
identifier = "abline")
refline(...)

curve(expr, from, to, n = 101,
curve.type = "1",
col, 1lty, 1lwd, type,
identifier = "curve")
rug(x = NULL, y = NULL,
regular = TRUE,
start = if (regular) 0 else 0.97,
end = if (regular) 0.03 else 1,
x.units = rep("npc”, 2),
y.units = rep("npc”, 2),

F_2_panel.functions 123

col, col.line, 1lty, lwd, alpha,
identifier = "rug")
panel.average(x, y, fun = mean, horizontal = TRUE,
lwd, 1lty, col, col.line, type,
identifier = "linejoin")
panel.linejoin(x, y, fun = mean, horizontal = TRUE,
lwd, 1lty, col, col.line, type,

L]

identifier = "linejoin")

panel.fill(col, border, ..., identifier = "fill")
panel.grid(h=3, v=3, col, col.line, 1lty, 1lwd, x, y, ..., identifier = "grid")
panel.lmline(x, y, ..., identifier = "Imline")

panel.mathdensity(dmath = dnorm, args = list(mean=0, sd=1),
n = 50, col, col.line, 1lwd, 1lty, type,
., identifier = "mathdensity")

Arguments

X,y Variables defining the contents of the panel. In panel.grid these are optional
and are used only to choose an appropriate method of pretty.

a, b Coefficients of the line to be added by panel.abline. a can be a vector of
length 2, representing the coefficients of the line to be added, in which case
b should be missing. a can also be an appropriate ‘regression’ object, i.e., an
object which has a coef method that returns a length 2 numeric vector. The
corresponding line will be plotted. The reg argument overrides a if specified.

coef Coefficients of the line to be added as a vector of length 2.

reg A (linear) regression object, with a coef method that gives the coefficints of the
corresponding regression line.

h, v For panel.abline, these are numeric vectors giving locations respectively of
horizontal and vertical lines to be added to the plot, in native coordinates.
For panel.grid, these usually specify the number of horizontal and vertical ref-
erence lines to be added to the plot. Alternatively, they can be negative numbers.
h=-1 and v=-1 are intended to make the grids aligned with the axis labels. This
doesn’t always work; all that actually happens is that the locations are chosen
using pretty, which is also how the label positions are chosen in the most com-
mon cases (but not for factor variables, for instance). h and v can be negative
numbers other than -1, in which case -h and -v (as appropriate) is supplied as
the n argument to pretty.
If x and/or y are specified in panel.grid, they will be used to select an appro-
priate method for pretty. This is particularly useful while plotting date-time
objects.

reference A logical flag determining whether the default graphical parameters for panel.abline
should be taken from the “reference.line” parameter settings. The default is to
take them from the “add.line” settings. The panel.refline function is a wrap-
per around panel.abline that calls it with reference = TRUE.

124 F_2_panel.functions

expr An expression considered as a function of x, or a function, to be plotted as a
curve.

n The number of points to use for drawing the curve.

from, to optional lower and upper x-limits of curve. If missing, limits of current panel
are used

curve. type Type of curve ("p" for points, etc), passed to 11ines

regular A logical flag indicating whether the ‘rug’ is to be drawn on the ‘regular’ side
(left / bottom) or not (right / top).

start, end endpoints of rug segments, in normalized parent coordinates (between 0 and 1).
Defaults depend on value of regular, and cover 3% of the panel width and
height.

X.units, y.units
Character vectors, replicated to be of length two. Specifies the (grid) units as-
sociated with start and end above. x.units and y.units are for the rug on
the x-axis and y-axis respectively (and thus are associated with start and end
values on the y and x scales respectively).

col, col.line, 1ty, 1lwd, alpha, border
Graphical parameters.
type Usually ignored by the panel functions documented here; the argument is present

only to make sure an explicitly specified type argument (perhaps meant for an-
other function) does not affect the display.

fun The function that will be applied to the subset of x values (or y if horizontal
is FALSE) determined by the unique values of y (x).

horizontal A logical flag. If FALSE, the plot is ‘transposed’ in the sense that the roles of
x and y are switched; x is now the ‘factor’. Interpretation of other arguments
change accordingly. See documentation of bwplot for a fuller explanation.

dmath A vectorized function that produces density values given a numeric vector named
X, €.g., dnorm.

args A list giving additional arguments to be passed to dmath.

Further arguments, typically graphical parameters, passed on to other low-level
functions as appropriate. Color can usually be specified by col, col.line, and
col.symbol, the last two overriding the first for lines and points respectively.

identifier A character string that is prepended to the names of grobs that are created by
this panel function.

Details

panel.abline adds a line of the form y = a + b x x, or vertical and/or horizontal lines. Graphical
parameters are obtained from the “add.line” settings by default. panel.refline is similar, but uses
the “reference.line” settings for the defaults.

panel.grid draws a reference grid.

panel.curve adds a curve, similar to what curve does with add = TRUE. Graphical parameters for
the curve are obtained from the “add.line” setting.

F_2_panel.functions 125

panel.average treats one of x and y as a factor (according to the value of horizontal), calculates
fun applied to the subsets of the other variable determined by each unique value of the factor, and
joins them by a line. Can be used in conjunction with panel.xyplot, and more commonly with
panel. superpose to produce interaction plots.

panel.linejoin is an alias for panel.average. It is retained for back-compatibility, and may go
away in future.

panel.mathdensity plots a (usually theoretical) probability density function. This can be useful
in conjunction with histogram and densityplot to visually assess goodness of fit (note, however,
that ggmath is more suitable for this).

panel.rug adds a rug representation of the (marginal) data to the panel, much like rug.

panel.lmline(x, y) is equivalent to panel.abline(1Im(y ~ x)).

Author(s)

Deepayan Sarkar <Deepayan. Sarkar@R-project.org>

See Also

Lattice, panel.axis, panel.identify identify, trellis.par.set.

Examples

Interaction Plot

bwplot(yield ~ site, barley, groups = year,

panel = function(x, y, groups, subscripts, ...) {
panel.grid(h = -1, v = @)
panel.stripplot(x, y, ..., jitter.data = TRUE, grid = FALSE,
groups = groups, subscripts = subscripts)
panel.superpose(x, y, ..., panel.groups = panel.average, grid = FALSE,

groups = groups, subscripts = subscripts)
}!
auto.key = list(points = FALSE, lines = TRUE, columns = 2))

Superposing a fitted normal density on a Histogram

histogram(~ height | voice.part, data = singer, layout = c(2, 4),
type = "density"”, border = "transparent”, col.line = "grey60”,
xlab = "Height (inches)”,
ylab = "Density Histogram\n with Normal Fit",

panel = function(x, ...) {
panel.histogram(x, ...)
panel.mathdensity(dmath = dnorm,
args = list(mean = mean(x), sd = sd(x)), ...)

b

126 F_2_panel.loess

F_2_panel.loess Panel Function to Add a LOESS Smooth

Description

A predefined panel function that can be used to add a LOESS smooth based on the provided data.

Usage

panel.loess(x, y, span = 2/3, degree = 1,
family = c("symmetric”, "gaussian"),
evaluation = 50,
lwd, 1lty, col, col.line, type,
horizontal = FALSE,
., identifier = "loess")

Arguments

X,y Variables defining the data to be used.
lwd, 1ty, col, col.line
Graphical parameters for the added line. col.line overrides col.

type Ignored. The argument is present only to make sure that an explicitly specified
type argument (perhaps meant for another function) does not affect the display.
span, degree, family, evaluation
Arguments to loess. smooth, for which panel.loess is essentially a wrapper.

horizontal A logical flag controlling which variable is to be treated as the predictor (by de-
fault x) and which as the response (by default y). If TRUE, the plot is ‘transposed’
in the sense that y becomes the predictor and x the response. (The name ‘hori-
zontal’ may seem an odd choice for this argument, and originates from similar
usage in bwplot).

Extra arguments, passed on to panel.lines.

identifier A character string that is prepended to the names of grobs that are created by
this panel function.

Value

The object returned by loess. smooth.

Author(s)

Deepayan Sarkar <Deepayan.Sarkar@R-project.org>

See Also

Lattice, loess.smooth, prepanel.loess

F_2_panel.qqmathline

127

F_2_panel.qgmathline Useful panel function with qgmath

Description

Useful panel function with gqgmath. Draws a line passing through the points (usually) determined
by the .25 and .75 quantiles of the sample and the theoretical distribution.

Usage

panel.qgmathline(x, y = x,

Arguments

X

y

distribution

probs

qtype

groups

identifier

Author(s)

distribution = gnorm,
probs = ¢(0.25, 0.75),
qtype = 7,

groups = NULL,

identifier = "qgmathline")

The original sample, possibly reduced to a fewer number of quantiles, as deter-
mined by the f.value argument to ggmath

an alias for x for backwards compatibility
quantile function for reference theoretical distribution.

numeric vector of length two, representing probabilities. Corresponding quan-
tile pairs define the line drawn.

the type of quantile computation used in quantile
optional grouping variable. If non-null, a line will be drawn for each group.
other arguments.

A character string that is prepended to the names of grobs that are created by
this panel function.

Deepayan Sarkar <Deepayan.Sarkar@R-project.org>

See Also

prepanel.qgmathline, qgmath, quantile

128

F_2_panel.smoothScatter

F_2_panel.smoothScatter

Lattice panel function analogous to smoothScatter

Description

This function allows the user to place smoothScatter plots in lattice graphics.

Usage

panel.smoothScatter(x, y

Arguments

X

y

nbin

cuts
bandwidth
col.regions

colramp

nrpoints

NULL,

nbin = 64, cuts = 255,

bandwidth,

col.regions,

colramp,

nrpoints = 100,

transformation = function(x) x"0.25,

pch = II'II
cex = 1, col="black",
range.x,

raster = FALSE,
subscripts,
identifier = "smoothScatter”)

Numeric vector containing x-values or n by 2 matrix containing x and y values.

Numeric vector containing y-values (optional). The length of x must be the same
as that of y.

Numeric vector of length 1 (for both directions) or 2 (for x and y separately)
containing the number of equally spaced grid points for the density estimation.

number of cuts defining the color gradient

Numeric vector: the smoothing bandwidth. If missing, these functions come
up with a more or less useful guess. This parameter then gets passed on to the
function bkde2D.

character vector of colors, or a function producing such a vector. Defaults to the
col component of the regions setting of the current theme.

Function accepting an integer n as an argument and returning n colors. If miss-
ing, the default is derived from col.regions with the following modification:
if col.regions is a vector of colors, it is prepended by "white"” before being
converted into a function using colorRampPalette.

Numeric vector of length 1 giving number of points to be superimposed on the
density image. The first nrpoints points from those areas of lowest regional
densities will be plotted. Adding points to the plot allows for the identification
of outliers. If all points are to be plotted, choose nrpoints = Inf.

F_2_panel.spline 129

transformation Function that maps the density scale to the color scale.

pch, cex graphical parameters for the nrpoints “outlying” points shown in the display
range.x see bkde2D for details.
col points color parameter

Further arguments that are passed on to panel.levelplot.

raster logical; if TRUE, panel.levelplot.raster is used, making potentially smaller
output files.

subscripts ignored, but necessary for handling of ...in certain situations. Likely to be
removed in future.

identifier A character string that is prepended to the names of grobs that are created by
this panel function.

Details

This replicates the display part of the smoothScatter function by replacing standard graphics calls
by grid-compatible ones.

Value

The function is called for its side effects, namely the production of the appropriate plots on a graph-
ics device.

Author(s)

Deepayan Sarkar <deepayan.sarkar@r-project.org>

Examples

ddf <- as.data.frame(matrix(rnorm(40000), ncol = 4) + 1.5 * rnorm(10000))
ddfl, c(2,4)] <- (-ddf[, c(2,4)1)
xyplot(V1l ~ V2 + V3, ddf, outer = TRUE,
panel = panel.smoothScatter, aspect = "iso")
argument to panel.levelplot
xyplot(V1 ~ V2, ddf, panel = panel.smoothScatter, cuts = 10,
region.type = "contour"”)
splom(ddf, panel = panel.smoothScatter, nbin = 64, raster = TRUE)

F_2_panel.spline Panel Function to Add a Spline Smooth

Description

A predefined panel function that can be used to add a spline smooth based on the provided data.

130

Usage

F_2_panel.spline

panel.spline(x, y, npoints = 101,

Arguments

X,y

npoints

lwd = plot.line$lwd,

1ty = plot.line$lty,

col, col.line = plot.line$col,
type,

horizontal = FALSE, ...,
keep.data = FALSE,

identifier = "spline")

Variables defining the data to be used.

The number of equally spaced points within the range of the predictor at which
the fitted model is evaluated for plotting.

lwd, 1ty, col, col.line

type

horizontal

keep.data

identifier

Value

Graphical parameters for the added line. col.line overrides col.

Ignored. The argument is present only to make sure that an explicitly specified
type argument (perhaps meant for another function) does not affect the display.

A logical flag controlling which variable is to be treated as the predictor (by de-
fault x) and which as the response (by default y). If TRUE, the plot is ‘transposed’
in the sense that y becomes the predictor and x the response. (The name ‘hori-
zontal’ may seem an odd choice for this argument, and originates from similar
usage in bwplot).

Passed on to smooth. spline. The default here (FALSE) is different, and results
in the original data not being retained in the fitted spline model. It may be useful
to set this to TRUE if the return value of panel.spline, which is the fitted model
as returned by smooth. spline, is to be used for subsequent computations.

Extra arguments, passed on to smooth.spline and panel.lines as appropri-
ate.

A character string that is prepended to the names of grobs that are created by
this panel function.

The fitted model as returned by smooth. spline.

Author(s)

Deepayan Sarkar <Deepayan.Sarkar@R-project.org>

See Also

Lattice, smooth.spline, prepanel.spline

F_2_panel.superpose 131

F_2_panel.superpose Panel Function for Display Marked by groups

Description

These are panel functions for Trellis displays useful when a grouping variable is specified for use
within panels. The x (and y where appropriate) variables are plotted with different graphical pa-
rameters for each distinct value of the grouping variable.

Usage

panel.superpose(x, y = NULL, subscripts, groups,

panel.groups = "panel.xyplot”,

col, col.line, col.symbol,

pch, cex, fill, font,

fontface, fontfamily,

1ty, lwd, alpha,

type = "p”,

grid = lattice.getOption("default.args”)$grid,

distribute.type = FALSE)
panel.superpose.2(..., distribute.type = TRUE)

panel.superpose.plain(...,
col, col.line, col.symbol,
pch, cex, fill, font,
fontface, fontfamily,
1ty, lwd, alpha)

Arguments

Y Coordinates of the points to be displayed. Usually numeric.

panel.groups The panel function to be used for each subgroup of points. Defaults to panel.xyplot.

To be able to distinguish between different levels of the originating group inside
panel.groups, it will be supplied two special arguments called group. number
and group. value which will hold the numeric code and factor level correspond-
ing to the current level of groups. No special care needs to be taken when
writing a panel. groups function if this feature is not used.

subscripts An integer vector of subscripts giving indices of the x and y values in the original
data source. See the corresponding entry in xyplot for details.

groups A grouping variable. Different graphical parameters will be used to plot the sub-
sets of observations given by each distinct value of groups. The default graphi-
cal parameters are obtained from the "superpose. symbol” and "superpose.line”
settings using trellis.par.get wherever appropriate.

132 F_2_panel.superpose

type Usually a character vector specifying how each group should be drawn. For-
mally, it is passed on to the panel.groups function, which must know what
to do with it. By default, panel.groups is panel.xyplot, whose help page
describes the admissible values.

The functions panel. superpose and panel. superpose. 2 differ only in the de-
fault value of distribute. type, which controls the way the type argument is
interpreted. If distribute. type = FALSE, then the interpretation is the same as
for panel.xyplot for each of the unique groups. In other words, if type is a
vector, all the individual components are honoured concurrently. If distribute. type
=TRUE, type is replicated to be as long as the number of unique values in
groups, and one component used for the points corresponding to the each dif-
ferent group. Even in this case, it is possible to request multiple types per group,
specifying type as a list, each component being the desired type vector for the
corresponding group.

If distribute.type = FALSE, any occurrence of "g" in type causes a grid to
be drawn, and all such occurrences are removed before type is passed on to
panel.groups.

grid Logical flag specifying whether a background reference grid should be drawn.
See panel . xyplot for details.

col A vector color specification. See Details.

col.line A vector color specification. See Details.

col.symbol A vector color specification. See Details.

pch A vector plotting character specification. See Details.

cex A vector size factor specification. See Details.

fill A vector fill color specification. See Details.

font, fontface, fontfamily
A vector color specification. See Details.

lty A vector color specification. See Details.
lwd A vector color specification. See Details.
alpha A vector alpha-transparency specification. See Details.

Extra arguments. Passed down to panel. superpose from panel. superpose. 2,
and to panel.groups from panel. superpose.

distribute. type
logical controlling interpretation of the type argument.

Details

panel. superpose divides up the x (and optionally y) variable(s) by the unique values of groups[subscripts],
and plots each subset with different graphical parameters. The graphical parameters (col.symbol,

pch, etc.) are usually supplied as suitable atomic vectors, but can also be lists. When panel.groups

is called for the i-th level of groups, the corresponding element of each graphical parameter is

passed to it. In the list form, the individual components can themselves be vectors.

The actual plot for each subgroup is created by the panel.groups function. With the default
panel.groups, the col argument is overridden by col.line and col.symbol for lines and points

F_2_panel.violin 133

respectively, which default to the "superpose.line” and "superpose.symbol” settings. How-
ever, col will still be supplied as an argument to panel.groups functions that make use of it,
with a default of "black”. The defaults of other graphical parameters are also taken from the
"superpose.line"” and "superpose.symbol” settings as appropriate. The alpha parameter takes
it default from the "superpose.line” setting.

panel.superpose and panel. superpose. 2 differ essentially in how type is interpreted by default.
The default behaviour in panel. superpose is the opposite of that in S, which is the same as that of
panel. superpose. 2.

panel.superpose.plain is the same as panel. superpose, except that the default settings for the
style arguments are the same for all groups and are taken from the default plot style. It is used in
xyplot.ts.

Author(s)

Deepayan Sarkar <Deepayan. Sarkar@R-project.org> (panel. superpose. 2 originally contributed
by Neil Klepeis)

See Also

Different functions when used as panel. groups gives different types of plots, for example panel.xyplot,
panel.dotplot and panel.average (This can be used to produce interaction plots).

See Lattice for an overview of the package, and xyplot for common arguments (in particular, the
discussion of the extended formula interface and the groups argument).

F_2_panel.violin Panel Function to create Violin Plots

Description

This is a panel function that can create a violin plot. It is typically used in a high-level call to
bwplot.

Usage

panel.violin(x, y, box.ratio = 1, box.width,
horizontal = TRUE,
alpha, border, 1lty, lwd, col,
varwidth = FALSE,
bw, adjust, kernel, window,
width, n = 50, from, to, cut,
na.rm, ...,
identifier = "violin")

134 F_2_panel.violin

Arguments

X,y numeric vector or factor. Violin plots are drawn for each unique value of y (x) if
horizontal is TRUE (FALSE)

box.ratio ratio of the thickness of each violin and inter violin space

box.width thickness of the violins in absolute units; overrides box. ratio. Useful for speci-
fying thickness when the categorical variable is not a factor, as use of box. ratio
alone cannot achieve a thickness greater than 1.

horizontal logical. If FALSE, the plot is ‘transposed’ in the sense that the behaviours of x

and y are switched. x is now the ‘factor’. See documentation of bwplot for a
fuller explanation.

alpha, border, 1ty, 1wd, col

graphical parameters controlling the violin. Defaults are taken from the "plot.polygon”
settings.

varwidth logical. If FALSE, the densities are scaled separately for each group, so that the
maximum value of the density reaches the limit of the allocated space for each
violin (as determined by box.ratio). If TRUE, densities across violins will have
comparable scale.

bw, adjust, kernel, window, width, n, from, to, cut, na.rm
arguments to density, passed on as appropriate

arguments passed on to density.

identifier A character string that is prepended to the names of grobs that are created by
this panel function.

Details

Creates Violin plot of x for every level of y. Note that most arguments controlling the display can
be supplied to the high-level (typically bwplot) call directly.

Author(s)

Deepayan Sarkar <Deepayan.Sarkar@R-project.org>

See Also

bwplot, density

Examples

bwplot(voice.part ~ height, singer,

panel = function(..., box.ratio) {
panel.violin(..., col = "transparent”,
varwidth = FALSE, box.ratio = box.ratio)
panel.bwplot(..., fill = NULL, box.ratio = .1)

b

F_3_prepanel.default 135

F_3_prepanel.default Default Prepanel Functions

Description

These prepanel functions are used as fallback defaults in various high level plot functions in Lattice.
These are rarely useful to normal users but may be helpful in developing new displays.

Usage
prepanel.default.bwplot(x, y, horizontal, nlevels, origin, stack, ...)
prepanel.default.histogram(x, breaks, equal.widths, type, nint, ...)
prepanel.default.qq(x, vy, ...)
prepanel.default.xyplot(x, y, type, subscripts, groups, ...)

prepanel.default.cloud(perspective, distance,
xlim, ylim, zlim,
screen = list(z = 40, x = -60),
R.mat = diag(4),
aspect = c(1, 1), panel.aspect =1,
., zoom = 0.8)

prepanel.default.levelplot(x, y, subscripts, ...)
prepanel.default.qgmath(x, f.value, distribution, qtype,
groups, subscripts, ..., tails.n = 0)
prepanel.default.densityplot(x, darg, groups, weights, subscripts, ...)
prepanel.default.parallel(x, y, z, ..., horizontal.axis)
prepanel.default.splom(z, ...)
Arguments
X,y x and y values, numeric or factor
horizontal logical, applicable when one of the variables is to be treated as categorical (factor
or shingle).

horizontal.axis
logical indicating whether the parallel axes should be laid out horizontally (TRUE)
or vertically (FALSE).

nlevels number of levels of such a categorical variable.

origin, stack for barcharts or the type="h" plot type
breaks, equal .widths, type, nint
details of histogram calculations. type has a different meaning in prepanel.default.xyplot
(see panel.xyplot)
groups, subscripts
See xyplot. Whenever appropriate, calculations are done separately for each
group and then combined.

weights numeric vector of weights for the density calculations. If this is specified, it is
subsetted by subscripts to match it to x.

136 F_3_prepanel.functions

perspective, distance, xlim, ylim, zlim, screen, R.mat, aspect,
panel.aspect, zoom

see panel.cloud
f.value, distribution, tails.n

see panel.qgmath

darg list of arguments passed to density
z see panel.parallel and panel.pairs
gtype type of quantile

other arguments, usually ignored

Value

A list with components x1im, ylim, dx and dy, and possibly xat and yat, the first two being used
to calculate panel axes limits, the last two for banking computations. The form of these components
are described in the help page for xyplot.

Author(s)

Deepayan Sarkar <Deepayan. Sarkar@R-project.org>

See Also

xyplot, banking, Lattice. See documentation of corresponding panel functions for more details
about the arguments.

F_3_prepanel.functions
Useful Prepanel Function for Lattice

Description

These are predefined prepanel functions available in Lattice.

Usage

prepanel.lmline(x, vy, ...)

prepanel.qgmathline(x, y = x, distribution = gnorm,
probs = c(0.25, 0.75), qtype = 7,
groups, subscripts,

o)
prepanel.loess(x, y, span, degree, family, evaluation,
horizontal = FALSE, ...)

prepanel.spline(x, y, npoints = 101,
horizontal = FALSE, ...,
keep.data = FALSE)

F_3_prepanel. functions 137

Arguments

X,y x and y values, numeric or factor

distribution quantile function for theoretical distribution. This is automatically passed in
when this is used as a prepanel function in qgmath.

qtype type of quantile

probs numeric vector of length two, representing probabilities. If used with aspect="xy",
the aspect ratio will be chosen to make the line passing through the correspond-
ing quantile pairs as close to 45 degrees as possible.

span, degree, family, evaluation
Arguments controlling the underlying loess smooth.

horizontal, npoints
See documentation for corresponding panel function.
keep.data Ignored. Present to capture argument of the same name in smooth.spline.

groups, subscripts
See xyplot. Whenever appropriate, calculations are done separately for each
group and then combined.

Other arguments. These are passed on to other functions if appropriate (in par-
ticular, smooth.spline), and ignored otherwise.

Details

All these prepanel functions compute the limits to be large enough to contain all points as well as
the relevant smooth.

In addition, prepanel.lmline computes the dx and dy such that it reflects the slope of the linear
regression line; for prepanel.qgmathline, this is the slope of the line passing through the quan-
tile pairs specified by probs. For prepanel.loess and prepanel.spline, dx and dy reflect the
piecewise slopes of the nonlinear smooth.

Value

usually a list with components x1im, ylim, dx and dy, the first two being used to calculate panel
axes limits, the last two for banking computations. The form of these components are described
under xyplot. There are also several prepanel functions that serve as the default for high level
functions, see prepanel.default.xyplot

Author(s)

Deepayan Sarkar <Deepayan. Sarkar@R-project.org>

See Also

Lattice, xyplot, banking, panel.loess, panel.spline.

138 G _axis.default

G_axis.default Default axis annotation utilities

Description

Lattice funtions provide control over how the plot axes are annotated through a common interface.
There are two levels of control. The xscale.components and yscale.components arguments can
be functions that determine tick mark locations and labels given a packet. For more direct control,
the axis argument can be a function that actually draws the axes. The functions documented here
are the defaults for these arguments. They can additonally be used as components of user written
replacements.

Usage

xscale.components.default(lim,
packet.number = 0,
packet.list = NULL,
top = TRUE,
oY)
yscale.components.default(lim,
packet.number = 0,
packet.list = NULL,
right = TRUE,
oY)
axis.default(side = c("top"”, "bottom”, "left”, "right"),
scales, components, as.table,
labels = c("default”, "yes"”, "no"),
ticks = c("default”, "yes"”, "no"),
., prefix)

Arguments

lim the range of the data in that packet (data subset corresponding to a combination
of levels of the conditioning variable). The range is not necessarily numeric;
e.g. for factors, they could be character vectors representing levels, and for the
various date-time representations, they could be vectors of length 2 with the
corresponding class.

packet.number which packet (counted according to the packet order, described in print.trellis)
is being processed. In cases where all panels have the same limits, this function
is called only once (rather than once for each packet), in which case this argu-
ment will have the value 0.

packet.list list, as long as the number of packets, giving all the actual packets. Specifically,
each component is the list of arguments given to the panel function when and if
that packet is drawn in a panel. (This has not yet been implemented.)

G _axis.default

top, right

side

scales

components
as.table

labels

ticks

prefix

Details

139

the value of the top and right components of the result, as appropriate. See
below for interpretation.

on which side the axis is to be drawn. The usual partial matching rules apply.

the appropriate component of the scales argument supplied to the high level
function, suitably standardized.

list, similar to those produced by xscale. components.default and yscale.components.default.
the as. table argument in the high level function.

whether labels are to be drawn. By default, the rules determined by scales are
used.

whether labels are to be drawn. By default, the rules determined by scales are
used.

many other arguments may be supplied, and are passed on to other internal func-
tions.

A character string identifying the plot being drawn (see print.trellis). Used
to retrieve location of current panel in the overall layout, so that axes can be
drawn appropriately.

These functions are part of a new API introduced in lattice 0.14 to provide the user more control
over how axis annotation is done. While the API has been designed in anticipation of use that was
previously unsupported, the implementation has initially focused on reproducing existing capabil-
ities, rather than test new features. At the time of writing, several features are unimplemented. If
you require them, please contact the maintainer.

Value

xscale.components.default and yscale.components.default return a list of the form suit-
able as the components argument of axis.default. Valid components in the return value of
xscale.components.default are:

num.limit A numeric limit for the box.

bottom A list with two elements, ticks and labels. ticks must be a list with components at
and tck which give the location and lengths of tick marks. tck can be a vector, and will
be recycled to be as long as at. labels must be a list with components at, labels, and
check.overlap. at and labels give the location and labels of the tick labels; this is usually
the same as the location of the ticks, but is not required to be so. check.overlap is a logical
flag indicating whether overlapping of labels should be avoided by omitting some of the labels
while rendering.

top This can be a logical flag; if TRUE, top is treated as being the same as bottom; if FALSE, axis
annotation for the top axis is omitted. Alternatively, top can be a list like bottom.

Valid components in the return value of yscale.components.default are left and right. Their
interpretations are analogous to (respectively) the bottom and top components described above.

140 G _axis.default

Author(s)

Deepayan Sarkar <Deepayan.Sarkar@R-project.org>

See Also

Lattice, xyplot, print.trellis

Examples

str(xscale.components.default(c(@, 1)))

set.seed(36872)
rln <- rlnorm(100)

densityplot(rln,
scales = list(x = list(log = 2), alternating = 3),
xlab = "Simulated lognormal variates”,

xscale.components = function(...) {
ans <- xscale.components.default(...)
ans$top <- ans$bottom
ans$bottom$labels$labels <- parse(text = ans$bottom$labels$labels)
anstoplabels$labels <-
if (require(MASS))
fractions(2*(anstoplabels$at))
else
2*(anstoplabelssat)
ans

D

Direct use of axis to show two temperature scales (Celcius and
Fahrenheit). This does not work for multi-row plots, and doesn't
do automatic allocation of space

F2C <- function(f) 5 * (f - 32) / 9
C2F <- function(c) 32 + 9 xc / 5

axis.CF <-
function(side, ...)
{
ylim <- current.panel.limits()$ylim
switch(side,
left = {

prettyF <- pretty(ylim)
labF <- parse(text = sprintf("%s ~ degree * F", prettyF))
panel.axis(side = side, outside = TRUE,
at = prettyF, labels = labF)
i
right = {
prettyC <- pretty(F2C(ylim))
labC <- parse(text = sprintf("%s ~ degree * C", prettyC))

G_banking

panel.axis(side = side, outside = TRUE,
at = C2F(prettyC), labels = labC)

}
axis.default(side = side, ...))
3
xyplot(nhtemp ~ time(nhtemp), aspect = "xy", type = "o",
scales = list(y = list(alternating = 3)),
axis = axis.CF, xlab = "Year”, ylab = "Temperature”,
main = "Yearly temperature in New Haven, CT")

version using yscale.components

yscale.components.CF <-

function(.

)

ans <- yscale.components.default(...)

ans$right

<- ans$left

ans$left$labels$labels <-
parse(text = sprintf("%s ~ degree * F", ans$left$labels$at))

prettyC <-

pretty(F2C(ans$num.limit))

ans$right$ticks$at <- C2F(prettyC)
ans$right$labels$at <- C2F(prettyC)
ans$right$labels$labels <-

parse(text = sprintf("%s ~ degree * C", prettyC))

ans

xyplot(nhtemp
scales
yscale.
xlab =
main =

n_n

~ time(nhtemp), aspect = "xy", type = "0",
= list(y = list(alternating = 3)),
components = yscale.components.CF,

"Year"”, ylab = "Temperature"”,

"Yearly temperature in New Haven, CT")

141

G_banking

Banking

Description

Calculates banking slope

Usage

banking(dx, dy)

Arguments

dx, dy

vector of consecutive X, y differences.

142 G_banking

Details

banking is the banking function used when aspect = "xy" in high level Trellis functions. It is
usually not very meaningful except with xyplot. It considers the absolute slopes (based on dx and
dy) and returns a value which when adjusted by the panel scale limits will make the median of the
above absolute slopes correspond to a 45 degree line.

This function was inspired by the discussion of banking in the documentation for Trellis Graphics
available at Bell Labs’ website (see Lattice), but is most likely identical to an algorithm described
by Cleveland et al (see below). It is not clear (to the author) whether this is the algorithm used in
S-PLUS. Alternative banking rules, implemented as a similar function, can be used as a drop-in
replacement by suitably modifying lattice.options("banking").

Author(s)

Deepayan Sarkar <Deepayan.Sarkar@R-project.org>

References

Cleveland, William S. and McGill, Marylyn E. and McGill, Robert (1988) “The Shape Parameter
of a Two-variable Graph”, Journal of the American Statistical Association, 83, 289-300.

See Also

Lattice, xyplot

Examples

with and without banking

plot <- xyplot(sunspot.year ~ 1700:1988, xlab = "", type = "1",
scales = list(x = list(alternating = 2)),
main = "Yearly Sunspots")
print(plot, position = c(@, .3, 1, .9), more = TRUE)
print(update(plot, aspect = "xy", main = "", xlab = "Year"),

position = c(@, @, 1, .3))
cut-and-stack plot (see also xyplot.ts)

xyplot(sunspot.year ~ time(sunspot.year) | equal.count(time(sunspot.year)),
xlab = "", type = "1", aspect = "xy", strip = FALSE,
scales = list(x = list(alternating = 2, relation = "sliced")),
as.table = TRUE, main = "Yearly Sunspots”)

G _latticeParseFormula 143

G_latticeParseFormula Parse Trellis formula

Description
this function is used by high level Lattice functions like xyplot to parse the formula argument and
evaluate various components of the data.

Usage

latticeParseFormula(model, data, dimension = 2,
subset = TRUE, groups = NULL,
multiple, outer,

subscripts,
drop)
Arguments
model the model/formula to be parsed. This can be in either of two possible forms,
one for 2d and one for 3d formulas, determined by the dimension argument.
The 2d formulas are of the form y ~ x| g1 * ... *gn, and the 3d formulas are
of the form z~x xy | g1 * ...* gn. In the first form, y may be omitted. The
conditioning variables g1, ...,gn can be omitted in either case.
data the environment/dataset where the variables in the formula are evaluated.
dimension dimension of the model, see above
subset index for choosing a subset of the data frame
groups the grouping variable, if present

multiple, outer logicals, determining how a ‘+’ in the y and x components of the formula are
processed. See xyplot for details

subscripts logical, whether subscripts are to be calculated
drop logical or list, similar to the drop.unused.levels argument in xyplot, indi-

cating whether unused levels of conditioning factors and data variables that are
factors are to be dropped.

Value

returns a list with several components, including left, right, left.name, right.name, condition
for 2-D, and left, right.x, right.y, left.name, right.x.name, right.y.name, condition
for 3-D. Other possible components are groups, subscr

Author(s)

Saikat DebRoy, Deepayan Sarkar <Deepayan.Sarkar@R-project.org>

See Also

xyplot, Lattice

144 G_packet.panel.default

G_packet.panel.default
Associating Packets with Panels

Description

When a "trellis” object is plotted, panels are always drawn in an order such that columns vary
the fastest, then rows and then pages. An optional function can be specified that determines, given
the column, row and page and other relevant information, the packet (if any) which should be used
in that panel. The function documented here implements the default behaviour, which is to match
panel order with packet order, determined by varying the first conditioning variable the fastest, then
the second, and so on. This matching is performed after any reordering and/or permutation of the
conditioning variables.

Usage

packet.panel.default(layout, condlevels, page, row, column,
skip, all.pages.skip = TRUE)

Arguments
layout the layout argument in high level functions, suitably standardized.
condlevels a list of levels of conditioning variables, after relevant permutations and/or re-

ordering of levels
page, row, column
the location of the panel in the coordinate system of pages, rows and columns.

skip the skip argument in high level functions

all.pages.skip whether skip should be replicated over all pages. If FALSE, skip will be repli-
cated to be only as long as the number of positions on a page, and that template
will be used for all pages.

Value

A suitable combination of levels of the conditioning variables in the form of a numeric vector as
long as the number of conditioning variables, with each element an integer indexing the levels of
the corresponding variable. Specifically, if the return value is p, then the i-th conditioning variable
will have level condlevels[[i]]1[p[il].

Author(s)

Deepayan Sarkar <Deepayan.Sarkar@R-project.org>

See Also

Lattice, xyplot

G_panel.axis 145

Examples

packet.panel.page <- function(n)

{
returns a function that when used as the 'packet.panel'
argument in print.trellis plots page number 'n' only
function(layout, page, ...) {
stopifnot(layout[3] == 1)
packet.panel.default(layout = layout, page = n, ...)
}
}
data(mtcars)
HP <- equal.count(mtcars$hp, 6)
p <-

xyplot(mpg ~ disp | HP * factor(cyl),
mtcars, layout = c(@, 6, 1))

print(p, packet.panel = packet.panel.page(1))
print(p, packet.panel = packet.panel.page(2))

G_panel.axis Panel Function for Drawing Axis Ticks and Labels

Description

panel.axis is the function used by lattice to draw axes. It is typically not used by users, except
those wishing to create advanced annotation. Keep in mind issues of clipping when trying to use
it as part of the panel function. current.panel.limits can be used to retrieve a panel’s x and y
limits.

Usage

panel.axis(side = c("bottom”, "left”, "top", "right"),
at,
labels = TRUE,
draw.labels = TRUE,
check.overlap = FALSE,
outside = FALSE,
ticks = TRUE,
half = l!outside,
which.half,
tck = as.numeric(ticks),
rot = if (is.logical(labels)) 0 else c(90, 0),
text.col, text.alpha, text.cex, text.font,
text.fontfamily, text.fontface, text.lineheight,
line.col, line.lty, line.lwd, line.alpha)

current.panel.limits(unit = "native")

146

Arguments

side
at

labels

draw.labels
check.overlap

outside
ticks

half
which.half
tck

rot
text.col
text.alpha
text.cex

text.font, text.

text.lineheight

line.col
line.1lty
line.lwd
line.alpha
unit

Details

G_panel.axis

A character string indicating which side axes are to be drawn on. Partial speci-
fication is allowed.

Numeric vector giving location of labels. Can be missing, in which case they
are computed from the native coordinates of the active viewport.

The labels to go along with at, as a character vector or a vector of expressions.
This only makes sense provided at is explicitly specified, as otherwise the pro-
vided labels may not match the computed at values. Alternatively, labels can
be a logical flag: If TRUE, the labels are derived from at, otherwise, labels are
empty.

A logical indicating whether labels are to be drawn.

A logical, whether to check for overlapping of labels. This also has the effect of
removing at values that are ‘too close’ to the limits.

A logical flag, indicating whether to draw the labels outside the panel or inside.
Note that outside=TRUE will only have a visible effect if clipping is disabled
for the viewport (panel).

Logical flag, whether to draw the tickmarks.

Logical flag, indicating whether only around half the scales will be drawn for
each side. This is primarily used for axis labeling in splom.

Character string, either "lower"” or "upper”, indicating which half is to be used
for tick locations if half = TRUE. Defaults to whichever is suitable for splom.

A numeric scalar multiplier for tick length. Can be negative, in which case the
ticks point inwards.

Rotation angle(s) for labels in degrees. Can be a vector of length 2 for x- and
y-axes.

Color for the axis label text. See gpar for more details on this and the other
graphical parameters listed below.

Alpha-transparency value for the axis label text.

Size multiplier for the axis label text.
fontfamily, text.fontface
Font for the axis label text.

Line height for the axis label text.

Color for the axis label text.

Color for the axis.

Color for the axis.

Alpha-transparency value for the axis.
Which grid unit the values should be in.

panel.axis can draw axis tick marks inside or outside a panel (more precisely, a grid viewport). It
honours the (native) axis scales. Used in panel.pairs for splom, as well as for all the usual axis
drawing by the print method for "trellis” objects. It can also be used to enhance plots ‘after the
fact’ by adding axes.

G_panel.number 147

Value

current.panel.limits returns a list with components x1im and ylim, which are both numeric
vectors of length 2, giving the scales of the current panel (viewport). The values correspond to the
unit system specified by unit, by default "native”.

Author(s)

Deepayan Sarkar <Deepayan.Sarkar@R-project.org>

See Also

Lattice, xyplot, trellis.focus, unit

G_panel.number Accessing Auxiliary Information During Plotting

Description

Control over lattice plots are provided through a collection of user specifiable functions that perform
various tasks during the plotting. Not all information is available to all functions. The functions doc-
umented here attempt to provide a consistent interface to access relevant information from within
these user specified functions, namely those specified as the panel, strip and axis functions. Note
that this information is not available to the prepanel function, which is executed prior to the actual
plotting.

Usage

current.row(prefix)
current.column(prefix)
panel.number (prefix)
packet.number (prefix)
which.packet(prefix)

trellis.currentlLayout(which = c("packet”, "panel”), prefix)
Arguments
which whether return value (a matrix) should contain panel numbers or packet num-

bers, which are usually, but not necessarily, the same (see below for details).

prefix A character string acting as a prefix identifying the plot of a "trellis” ob-
ject. Only relevant when a particular page is occupied by more than one plot.
Defaults to the value appropriate for the last "trellis” object printed. See
trellis.focus.

148 G _Rows

Value

trellis.currentlLayout returns a matrix with as many rows and columns as in the layout of
panels in the current plot. Entries in the matrix are integer indices indicating which packet (or
panel; see below) occupies that position, with 0 indicating the absence of a panel. current. row and
current. column return integer indices specifying which row and column in the layout are currently
active. panel.number returns an integer counting which panel is being drawn (starting from 1 for
the first panel, a.k.a. the panel order). packet.number gives the packet number according to the
packet order, which is determined by varying the first conditioning variable the fastest, then the
second, and so on. which.packet returns the combination of levels of the conditioning variables in
the form of a numeric vector as long as the number of conditioning variables, with each element an
integer indexing the levels of the corresponding variable.

Note

The availability of these functions make redundant some features available in earlier versions of lat-
tice, namely optional arguments called panel.number and packet.number that were made avail-
able to panel and strip. If you have written such functions, it should be enough to replace in-
stances of panel.number and packet.number by the corresponding function calls. You should
also remove panel.number and packet.number from the argument list of your function to avoid a
warning.

If these accessor functions are not enough for your needs, feel free to contact the maintainer and
ask for more.

Author(s)

Deepayan Sarkar <Deepayan.Sarkar@R-project.org>

See Also

Lattice, xyplot

G_Rows Extract rows from a list

Description

Convenience function to extract subset of a list. Usually used in creating keys.

Usage

Rows(x, which)

Arguments

X list with each member a vector of the same length

which index for members of x

G _utilities.3d 149

Value

A list similar to x, with each x[[1]] replaced by x[[i]][which]

Author(s)

Deepayan Sarkar <Deepayan.Sarkar@R-project.org>

See Also

xyplot, Lattice

G_utilities.3d Utility functions for 3-D plots

Description

These are (related to) the default panel functions for cloud and wireframe.

Usage

ltransform3dMatrix(screen, R.mat)
ltransform3dto3d(x, R.mat, dist)

Arguments
X x can be a numeric matrix with 3 rows for 1transform3dto3d
screen list, as described in panel.cloud
R.mat 4x4 transformation matrix in homogeneous coordinates
dist controls transformation to account for perspective viewing
Details

ltransform3dMatrix and ltransform3dto3d are utility functions to help in computation of pro-
jections. These functions are used inside the panel functions for cloud and wireframe. They may
be useful in user-defined panel functions as well.

The first function takes a list of the form of the screen argument in cloud and wireframe and a
R.mat, a 4x4 transformation matrix in homogeneous coordinates, to return a new 4x4 transformation
matrix that is the result of applying R. mat followed by the rotations in screen. The second function
applies a 4x4 transformation matrix in homogeneous coordinates to a 3xn matrix representing points
in 3-D space, and optionally does some perspective computations. (There has been no testing with
non-trivial transformation matrices, and my knowledge of the homogeneous coordinate system is
very limited, so there may be bugs here.)

Author(s)

Deepayan Sarkar <Deepayan.Sarkar@R-project.org>

150 H_barley

See Also

cloud, panel.cloud

H_barley Yield data from a Minnesota barley trial

Description

Total yield in bushels per acre for 10 varieties at 6 sites in each of two years.

Usage
barley

Format
A data frame with 120 observations on the following 4 variables.

yield Yield (averaged across three blocks) in bushels/acre.

variety Factor with levels "Svansota”, "No. 462", "Manchuria”, "No. 475", "Velvet", "Peatland”,
"Glabron”, "No. 457", "Wisconsin No. 38", "Trebi".

year Factor with levels 1932, 1931

site Factor with 6 levels: "Grand Rapids”, "Duluth”, "University Farm"”, "Morris”, "Crookston”,
"Waseca”

Details

These data are yields in bushels per acre, of 10 varieties of barley grown in 1/40 acre plots at Univer-
sity Farm, St. Paul, and at the five branch experiment stations located at Waseca, Morris, Crookston,
Grand Rapids, and Duluth (all in Minnesota). The varieties were grown in three randomized blocks
at each of the six stations during 1931 and 1932, different land being used each year of the test.

Immer et al. (1934) present the data for each Year*Site*Variety*Block. The data here is the average
yield across the three blocks.

Immer et al. (1934) refer (once) to the experiment as being conducted in 1930 and 1931, then later
refer to it (repeatedly) as being conducted in 1931 and 1932. Later authors have continued the
confusion.

Cleveland (1993) suggests that the data for the Morris site may have had the years switched.

Author(s)

Documentation contributed by Kevin Wright.

Source

Immer, R. F,, H. K. Hayes, and LeRoy Powers. (1934). Statistical Determination of Barley Varietal
Adaptation. Journal of the American Society of Agronomy, 26, 403—419.

Wright, Kevin (2013). Revisiting Immer’s Barley Data. The American Statistician, 67(3), 129-133.

H_environmental 151

References

Cleveland, William S. (1993) Visualizing Data. Hobart Press, Summit, New Jersey.
Fisher, R. A. (1971) The Design of Experiments. Hafner, New York, 9th edition.

See Also

immer in the MASS package for data from the same experiment (expressed as total yield for 3
blocks) for a subset of varieties.

Examples

Graphic suggesting the Morris data switched the years 1931 and 1932
Figure 1.1 from Cleveland
dotplot(variety ~ yield | site, data = barley, groups = year,

key = simpleKey(levels(barley$year), space = "right"),

xlab = "Barley Yield (bushels/acre) ",

aspect=0.5, layout = c(1,6), ylab=NULL)

H_environmental Atmospheric environmental conditions in New York City

Description
Daily measurements of ozone concentration, wind speed, temperature and solar radiation in New
York City from May to September of 1973.

Usage

environmental

Format
A data frame with 111 observations on the following 4 variables.

ozone Average ozone concentration (of hourly measurements) of in parts per billion.
radiation Solar radiation (from 08:00 to 12:00) in langleys.
temperature Maximum daily emperature in degrees Fahrenheit.

wind Average wind speed (at 07:00 and 10:00) in miles per hour.

Author(s)

Documentation contributed by Kevin Wright.

Source

Bruntz, S. M., W. S. Cleveland, B. Kleiner, and J. L. Warner. (1974). The Dependence of Ambient
Ozone on Solar Radiation, Wind, Temperature, and Mixing Height. In Symposium on Atmospheric
Diffusion and Air Pollution, pages 125-128. American Meterological Society, Boston.

152 H ethanol

References

Cleveland, William S. (1993) Visualizing Data. Hobart Press, Summit, New Jersey.

Examples

Scatter plot matrix with loess lines
splom(~environmental,
panel=function(x,y){
panel.xyplot(x,y)
panel.loess(x,y)
}
)

Conditioned plot similar to figure 5.3 from Cleveland

attach(environmental)

Temperature <- equal.count(temperature, 4, 1/2)

Wind <- equal.count(wind, 4, 1/2)

xyplot((ozone*(1/3)) ~ radiation | Temperature * Wind,
aspect=1,

prepanel = function(x, y)

prepanel.loess(x, y, span = 1),

panel = function(x, y){

panel.grid(h = 2, v = 2)

panel.xyplot(x, y, cex = .5)

panel.loess(x, y, span = 1)
})
xlab = "Solar radiation (langleys)",

ylab = "Ozone (cube root ppb)")
detach()

Similar display using the coplot function

with(environmental,{
coplot((ozone”.33) ~ radiation | temperature * wind,
number=c(4,4),
panel = function(x, y, ...) panel.smooth(x, y, span = .8, ...),
xlab="Solar radiation (langleys)"”,
ylab="0zone (cube root ppb)")

»

H_ethanol Engine exhaust fumes from burning ethanol

Description

Ethanol fuel was burned in a single-cylinder engine. For various settings of the engine compression
and equivalence ratio, the emissions of nitrogen oxides were recorded.

H ethanol 153

Usage

ethanol

Format
A data frame with 88 observations on the following 3 variables.

NOx Concentration of nitrogen oxides (NO and NO2) in micrograms/J.
C Compression ratio of the engine.

E Equivalence ratio—a measure of the richness of the air and ethanol fuel mixture.

Author(s)

Documentation contributed by Kevin Wright.

Source

Brinkman, N.D. (1981) Ethanol Fuel—A Single-Cylinder Engine Study of Efficiency and Exhaust
Emissions. SAE transactions, 90, 1410-1424.

References

Cleveland, William S. (1993) Visualizing Data. Hobart Press, Summit, New Jersey.

Examples

Constructing panel functions on the fly
EE <- equal.count(ethanol$E, number=9, overlap=1/4)
xyplot(NOx ~ C | EE, data = ethanol,
prepanel = function(x, y) prepanel.loess(x, y, span = 1),
xlab = "Compression ratio”, ylab = "NOx (micrograms/J)",
panel = function(x, y) {
panel.grid(h=-1, v= 2)
panel.xyplot(x, y, grid = FALSE)
panel.loess(x, y, span = 1)
3

aspect =

"xy")
Wireframe loess surface fit. See Figure 4.61 from Cleveland.
require(stats)
with(ethanol, {
eth.lo <- loess(NOx ~ C x E, span = 1/3, parametric = "C",
drop.square = "C", family="symmetric")
eth.marginal <- list(C = seq(min(C), max(C), length.out = 25),
E = seq(min(E), max(E), length.out = 25))
eth.grid <- expand.grid(eth.marginal)
eth.fit <- predict(eth.lo, eth.grid)
wireframe(eth.fit ~ eth.grid$C * eth.grid$E,
shade=TRUE,
screen = list(z = 40, x = -60, y=0),
distance = .1,

154 H melanoma

xlab = "C", ylab = "E", zlab = "NOx")
»

H_melanoma Melanoma skin cancer incidence

Description

These data from the Connecticut Tumor Registry present age-adjusted numbers of melanoma skin-
cancer incidences per 100,000 people in Connectict for the years from 1936 to 1972.

Usage

melanoma

Format
A data frame with 37 observations on the following 2 variables.

year Years 1936 to 1972.

incidence Rate of melanoma cancer per 100,000 population.

Note

This dataset is not related to the melanoma dataset in the boot package with the same name.

The S-PLUS 6.2 help for the melanoma data says that the incidence rate is per million, but this is
not consistent with data found at the National Cancer Institute (https://www.cancer.gov/).

Author(s)

Documentation contributed by Kevin Wright.

Source

Houghton, A., E. W. Munster, and M. V. Viola. (1978). Increased Incidence of Malignant Melanoma
After Peaks of Sunspot Activity. The Lancet, 8, 759-760.

References

Cleveland, William S. (1993) Visualizing Data. Hobart Press, Summit, New Jersey.

https://www.cancer.gov/

H_singer 155

Examples

Time-series plot. Figure 3.64 from Cleveland.
xyplot(incidence ~ year,
data = melanoma,
aspect = "xy",
panel = function(x, y)
panel.xyplot(x, y, type="o", pch = 16),
ylim = c(@, 6),
xlab = "Year"”,
ylab = "Incidence"”)

H_singer Heights of New York Choral Society singers

Description

Heights in inches of the singers in the New York Choral Society in 1979. The data are grouped
according to voice part. The vocal range for each voice part increases in pitch according to the
following order: Bass 2, Bass 1, Tenor 2, Tenor 1, Alto 2, Alto 1, Soprano 2, Soprano 1.

Usage

singer

Format
A data frame with 235 observations on the following 2 variables.

height Height in inches of the singers.

voice.part (Unordered) factor with levels "Bass 2", "Bass 1", "Tenor 2", "Tenor 1", "Alto 2",
"Alto 1", "Soprano 2", "Soprano 1".

Author(s)

Documentation contributed by Kevin Wright.

Source

Chambers, J.M., W. S. Cleveland, B. Kleiner, and P. A. Tukey. (1983). Graphical Methods for Data
Analysis. Chapman and Hall, New York.

References

Cleveland, William S. (1993) Visualizing Data. Hobart Press, Summit, New Jersey.

156 H_USMortality

Examples

Separate histogram for each voice part (Figure 1.2 from Cleveland)
histogram(~ height | voice.part,
data = singer,

aspect =1,
layout = c(2, 4),
nint = 15,

xlab = "Height (inches)”)

Quantile-Quantile plot (Figure 2.11 from Cleveland)
ggmath(~ height | voice.part,

data = singer,

aspect = 1,

layout = c(2,4),

prepanel = prepanel.qgmathline,

panel = function(x, ...) {
panel.grid()
panel.qgmathline(x, ...)
panel.qgmath(x, ..., grid = FALSE)

}!

xlab = "Unit Normal Quantile”,

ylab="Height (inches)")

H_USMortality Mortality Rates in US by Cause and Gender

Description

These datasets record mortality rates across all ages in the USA by cause of death, sex, and ru-
ral/urban status, 2011-2013. The two datasets represent the national aggregate rates and the region-
wise rates for each administrative region under the Department of Health and Human Services
(HHS).

Usage

USMortality
USRegionalMortality

Format

USRegionalMortality is a data frame with 400 observations on the following 6 variables.

Region A factor specifying HHS Region. See details.
Status A factor with levels Rural and Urban
Sex A factor with levels Female and Male

Cause Cause of death. A factor with levels Alzheimers, Cancer, Cerebrovascular diseases,
Diabetes, Flu and pneumonia, Heart disease, Lower respiratory, Nephritis, Suicide,
and Unintentional injuries

H_USMortality 157

Rate Age-adjusted death rate per 100,000 population

SE Standard error for the rate

USMortality is a data frame with 40 observations, containing the same variables with the exception
of Region.

Details

The region-wise data give estimated rates separately for each of 10 HHS regions. The location of the
regional offices and their coverage area, available from https://www.hhs.gov/about/agencies/
iea/regional-offices/index.html, is given below.

HHS Region 01 - Boston: Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island,
and Vermont

HHS Region 02 - New York: New Jersey, New York, Puerto Rico, and the Virgin Islands

HHS Region 03 - Philadelphia: Delaware, District of Columbia, Maryland, Pennsylvania, Vir-
ginia, and West Virginia

HHS Region 04 - Atlanta: Alabama, Florida, Georgia, Kentucky, Mississippi, North Carolina,
South Carolina, and Tennessee

HHS Region 05 - Chicago: Illinois, Indiana, Michigan, Minnesota, Ohio, and Wisconsin

HHS Region 06 - Dallas: Arkansas, Louisiana, New Mexico, Oklahoma, and Texas

HHS Region 07 - Kansas City: Iowa, Kansas, Missouri, and Nebraska

HHS Region 08 - Denver: Colorado, Montana, North Dakota, South Dakota, Utah, and Wyoming

HHS Region 09 - San Francisco: Arizona, California, Hawaii, Nevada, American Samoa, Com-
monwealth of the Northern Mariana Islands, Federated States of Micronesia, Guam, Marshall
Islands, and Republic of Palau

HHS Region 10 - Seattle: Alaska, Idaho, Oregon, and Washington

References

Rural Health Reform Policy Research Center. _Exploring Rural and Urban Mortality Differences_,
August 2015 Bethesda, MD. https://ruralhealth.und.edu/projects/health-reform-policy-research-center/
rural-urban-mortality

Examples

dotplot(reorder(Cause, Rate) ~ Rate | Status,
data = USMortality, groups = Sex, grid = FALSE,
par.settings = simpleTheme(pch = 16), auto.key = list(columns = 2),
scales = list(x = list(log = TRUE, equispaced.log = FALSE)))
dotplot(reorder(Cause, Rate):Sex ~ Rate | Status,
data = USRegionalMortality, groups = Sex, auto.key = FALSE,
scales = list(x = list(log = TRUE, equispaced.log = FALSE)))

https://www.hhs.gov/about/agencies/iea/regional-offices/index.html
https://www.hhs.gov/about/agencies/iea/regional-offices/index.html
https://ruralhealth.und.edu/projects/health-reform-policy-research-center/rural-urban-mortality
https://ruralhealth.und.edu/projects/health-reform-policy-research-center/rural-urban-mortality

158 I Iset

I_lset Interface to modify Trellis Settings - Defunct

Description

A (hopefully) simpler alternative to trellis.par.get/set. This is deprecated, and the same func-
tionality is now available with trellis.par.set

Usage

lset(theme = col.whitebg())

Arguments
theme a list decribing how to change the settings of the current active device. Valid
components are those in the list returned by trellis.par.get(). Each com-
ponent must itself be a list, with one or more of the appropriate components
(need not have all components). Changes are made to the settings for the cur-
rently active device only.
Author(s)

Deepayan Sarkar <Deepayan.Sarkar@R-project.org>

Index

+* augment
E_interaction, 86

* classes
C_07_shingles, 76
D_trellis.object, 85

+ datasets
H_barley, 150
H_environmental, 151
H_ethanol, 152
H_melanoma, 154
H_singer, 155
H_USMortality, 156

* dplot
A_Q1_Lattice, 3
B_04_qggmath, 35
B_05_qq, 38
B_09_tmd, 55
B_10_rfs, 57
B_11_oneway, 58

C_01_trellis.device, 59 + hplot

C_02a_standard. theme, 61
C_02b_trellis.par.get, 63
C_03_simpleTheme, 66
C_04_lattice.options, 67
C_06_update.trellis, 73
D_draw.colorkey, 78
D_draw.key, 78

D_make. groups, 80
D_simpleKey, 81
D_strip.default, 83

F
F
F
F
F
F
F
F
F
F
F
F
F

1
1
1
1
2
2
2
2
2
2
2
_3
_3

_panel.parallel, 111
_panel.qggmath, 112
_panel.stripplot, 114
_panel.xyplot, 115
_1llines, 118
_panel.functions, 122
_panel.loess, 126
_panel.qgmathline, 127
_panel.spline, 129
_panel.superpose, 131
_panel.violin, 133
_prepanel.default, 135
_prepanel. functions, 136

G_axis.default, 138
G_banking, 141
G_packet.panel.default, 144
G_panel.axis, 145
G_panel.number, 147
G_utilities.3d, 149

B_00_xyplot, 6
B_01_xyplot.ts, 25
B_02_barchart. table, 28
B_@3_histogram, 30
B_06_levelplot, 40
B_07_cloud, 46

B_08_splom, 52
C_05_print.trellis, 69
C_07_shingles, 76
F_2_panel.smoothScatter, 128

E_interaction, 86 * interaction
F_1_panel.barchart, 93 E_interaction, 86
F_1_panel.bwplot, 95 + methods

F_1_panel.cloud, 97

F_1_panel.densityplot, 102 * print

panel.dotplot, 103
panel.histogram, 104 * ts
_panel.levelplot, 105

159

C_07_shingles, 76

C_07_shingles, 76

B_01_xyplot.ts, 25

panel.pairs, 108 + utilities

160

D_level.colors, 79
G_latticeParseFormula, 143
G_Rows, 148
I_lset, 158
[.shingle (C_07_shingles), 76
[.trellis (C_06_update.trellis), 73

A_Q1_Lattice, 3

abbreviate, 15, 21

aperm, 22, 29

arrows, 120, 121

as.character.shinglelLevel
(C_07_shingles), 76

as.data.frame, 29

as.data.frame.shingle (C_07_shingles),
76

as.factorOrShingle (C_07_shingles), 76

as.shingle (C_07_shingles), 76

axis.default, 2/

axis.default (G_axis.default), 138

B_00_xyplot, 6

B_01_xyplot.ts, 25

B_02_barchart.table, 28

B_03_histogram, 30

B_04_qggmath, 35

B_05_

B_06 1eve1plot 40

B_07_cloud, 46

B_08_splom, 52

B_09_tmd, 55

B_10_rfs, 57

B_11_oneway, 58

banking, 12, 13,24, 26, 68, 136, 137

banking (G_banking), 141

barchart, 5, 29, 94

barchart (B_00_xyplot), 6

barchart.array (B_02_barchart.table), 28

barchart.matrix (B_02_barchart.table),
28

barchart.table, 9, 24

barchart.table (B_02_barchart.table), 28

barley (H_barley), 150

bkde2D, 128, 129

boxplot, 95

boxplot.stats, 95, 96

bwplot, 5, 93, 95, 96, 103, 114, 124, 126, 130,
134

bwplot (B_00_xyplot), 6

INDEX

C_01_trellis.device, 59

C_02a_standard. theme, 61

C_02b_trellis.par.get, 63

C_03_simpleTheme, 66

C_04_lattice.options, 67

C_05_print.trellis, 69

C_06_update.trellis, 73

C_07_shingles, 76

canonical.theme (C_02a_standard. theme),
61

classic.theme (C_02a_standard. theme), 61

cloud, 5, 15, 90, 98, 101, 150

cloud (B_07_cloud), 46

co.intervals, 77

coef, 123

col.whitebg (C_02a_standard.theme), 61

colorRampPalette, 80, 128

contourlLines, 107

contourplot, 5

contourplot (B_06_levelplot), 40

current.column (G_panel.number), 147

current.panel.limits (G_panel.axis), 145

current.row (G_panel.number), 147

current.vpTree, 91

curve, 124

custom_theme (C_02a_standard. theme), 61

D_draw.colorkey, 78

D_draw.key, 78

D_level.colors, 79

D_make. groups, 80

D_simpleKey, 81

D_strip.default, 83

D_trellis.object, 85

density, 32-34, 102, 134, 136

densityplot, 5, 102, 103

densityplot (B_@3_histogram), 30

Devices, 59, 60, 63

diag.panel.splom (F_1_panel.pairs), 108

dim.trellis (C_@5_print.trellis), 69

dimnames.trellis (C_05_print.trellis),
69

dnorm, 124

do.breaks (B_03_histogram), 30

dotplot, 5, 104

dotplot (B_00_xyplot), 6

dotplot.array (B_02_barchart.table), 28

dotplot.matrix (B_02_barchart.table), 28

dotplot.table (B_02_barchart.table), 28

INDEX

downViewport, 917

draw.colorkey (D_draw.colorkey), 78
draw.key, 17, 82

draw.key (D_draw.key), 78

E_interaction, 86

environmental (H_environmental), 151
equal.count, 9, 26

equal.count (C_@7_shingles), 76
ethanol (H_ethanol), 152

eval, 10

panel.barchart, 93
panel.bwplot, 95
_1_panel.cloud, 97
1_panel.densityplot, 102
1_panel.dotplot, 103
1_panel.histogram, 104
1_panel.levelplot, 105
1_panel.pairs, 108
_1_panel.parallel, 111
1_panel.qgmath, 112
1_panel.stripplot, 114
1_panel.xyplot, 115
2_1lines, 118
2_panel.functions, 122
2_panel.loess, 126
2_panel.qgmathline, 127
2_p

2_p

2_p

2_p

3

anel.smoothScatter, 128
anel.spline, 129

anel. superpose, 131
anel.violin, 133
_3_prepanel.default, 135
F_3_prepanel.functions, 136
factor, 79
filled.contour, 107

for, 4

T e e e e e e I e e e e e e A e e e A o M |

G_axis.default, 138
G_banking, 141
G_latticeParseFormula, 143
G_packet.panel.default, 144
G_panel.axis, 145
G_panel.number, 147
G_Rows, 148
G_utilities.3d, 149

gpar, 20, 65, 68, 110, 120, 146
grid.layout, 19
grid.path, 121

161

grid.raster, 44, 107
grid.rect, 121

H_barley, 150
H_environmental, 151
H_ethanol, 152
H_melanoma, 154

H_singer, 155
H_USMortality, 156
hist, 32, 105

histogram, 5, 105

histogram (B_03_histogram), 30

I_lset, 158

identify, 89-91, 125

image, 5

immer, 151

interaction, /16

is.shingle (C_07_shingles), 76

jitter, 102, 103,114, 115

larrows (F_2_1lines), 118

Lattice, 24, 29, 34, 37,40, 45, 51, 55, 57-60,
63,65,67,69,72,75,77,81, 82, 85,
86,91, 121, 125, 126, 130, 133, 136,
137, 140, 142—-144, 147-149

Lattice (A_Q1_Lattice), 3

lattice (A_@1_Lattice), 3

lattice-package (A_Q1_Lattice), 3

lattice.getOption, I8

lattice.getOption
(C_04_lattice.options), 67

lattice.options, 4, 12, 17, 60, 62, 89

lattice.options (C_04_lattice.options),
67

latticeParseFormula
(G_latticeParseFormula), 143

level.colors, 43, 107

level.colors (D_level.colors), 79

levelplot, 5, 20, 49, 51, 61, 78, 80, 99,
105-107

levelplot (B_06_levelplot), 40

lines, 6, 121

1llines, 6, 124

1lines (F_2_1lines), 118

locator, 4

loess, 137

loess.smooth, 126

162

lplot.xy (F_2_1lines), 118

lpoints (F_2_1lines), 118

lpolygon (F_2_1lines), 118

lpolypath (F_2_1lines), 118

lrect (F_2_1lines), 118

lsegments (F_2_1lines), 118

lset (I_1set), 158

ltext (F_2_1lines), 118
ltransform3dMatrix (G_utilities.3d), 149
ltransform3dto3d (G_utilities. 3d), 149

make. groups (D_make. groups), 80
make.unique, 42

makeShadePalette (F_1_panel.cloud), 97
melanoma, /54

melanoma (H_melanoma), 154

oneway, 5, 58
oneway (B_11_oneway), 58
options, 69

packet.number, 11, 89
packet.number (G_panel.number), 147
packet.panel.default, 71, 72
packet.panel.default
(G_packet.panel.default), 144
palette.shade (G_utilities.3d), 149
panel.3dscatter, 48, 50
panel.3dscatter (F_1_panel.cloud), 97
panel.3dwire, 49, 50
panel.3dwire (F_1_panel.cloud), 97
panel.abline, 117
panel.abline (F_2_panel.functions), 122
panel.arrows (F_2_11lines), 118
panel.average, 24, 116, 133
panel.average (F_2_panel.functions), 122
panel.axis, 125
panel.axis (G_panel.axis), 145
panel.barchart, 10, 24, 29
panel.barchart (F_1_panel.barchart), 93
panel.brush.splom (E_interaction), 86
panel.bwplot, 24
panel.bwplot (F_1_panel.bwplot), 95
panel.cloud, 48-51, 88, 99, 136, 149, 150
panel.cloud (F_1_panel.cloud), 97
panel.contourplot
(F_1_panel.levelplot), 105
panel.curve (F_2_panel.functions), 122
panel.densityplot, 33, 34

panel.

panel.
panel.
panel.
panel.
panel.
panel.
panel.

panel.
panel.
panel.
panel.

panel.
panel.
panel.
panel.
panel.

panel.
panel.

panel.
panel.
panel.
panel.
panel.
panel.
panel.
panel.
panel.

panel.
panel.
panel.
panel.
panel.
panel.
panel.
panel.
panel.
panel.
panel.
panel.
panel.
panel.

INDEX

densityplot
(F_1_panel.densityplot), 102

dotplot, 24, 133

dotplot (F_1_panel.dotplot), 103

error, 68

error (C_05_print.trellis), 69

fill (F_2_panel.functions), 122

functions, 6

functions (F_2_panel.functions),
122

grid, 103, 104, 114, 116, 117

grid (F_2_panel.functions), 122

histogram, 5, 33, 34

histogram (F_1_panel.histogram),
104

identify, 16, 125

identify (E_interaction), 86

identify.cloud, 51

levelplot, 44, 45, 129

levelplot (F_1_panel.levelplot),
105

levelplot.raster, 44, 129

linejoin (F_2_panel. functions),
122

lines, 6, 126, 130

lines (F_2_1lines), 118

link.splom (E_interaction), 86

Imline, 116

Imline (F_2_panel.functions), 122

loess, 24, 116, 137

loess (F_2_panel.loess), 126

mathdensity, 34

mathdensity
(F_2_panel.functions), 122

number, 11/

number (G_panel.number), 147

pairs, 54, 55, 136, 146

pairs (F_1_panel.pairs), 108

parallel, 55, 136

parallel (F_1_panel.parallel), 111

points (F_2_1llines), 118

polygon (F_2_1lines), 118

polypath (F_2_1lines), 118

qq, 39, 40

qq (F_1_panel.xyplot), 115

ggmath, 36, 37, 56, 88

ggmath (F_1_panel.qgmath), 112

ggmathline, 37

INDEX

panel.qgmathline
(F_2_panel.qgmathline), 127

panel.rect (F_2_11lines), 118

panel.refline (F_2_panel.functions), 122

panel.rug, 102

panel.rug (F_2_panel.functions), 122

panel.segments (F_2_1lines), 118

panel.smoothScatter
(F_2_panel.smoothScatter), 128

panel.spline, 116, 137

panel.spline (F_2_panel.spline), 129

panel.splom (F_1_panel.xyplot), 115

panel.stripplot, 24

panel.stripplot (F_1_panel.stripplot),

114
panel.superpose, 11, 12,24, 26, 102, 116,
117,125
panel.superpose (F_2_panel.superpose),
131

panel.text (F_2_llines), 118

panel.tmd.default (B_09_tmd), 55

panel.tmd.qgmath (B_@9_tmd), 55

panel.violin (F_2_panel.violin), 133

panel.wireframe (F_1_panel.cloud), 97

panel.xyplot, 5, 10, 12, 24, 26, 27, 101, 113,
114,132, 133, 135

panel.xyplot (F_1_panel.xyplot), 115

par, 21, 62, 65

parallel, 5, 112

parallel (B_08_splom), 52

parallelplot, 54

parallelplot (B_@8_splom), 52

persp, 5

plot,4, 115

plot.shingle (C_07_shingles), 76

plot.trellis, 22

plot.trellis (C_05_print.trellis), 69

plot.ts, 27

plotmath, 20

points, 6, 116, 120, 121, 129

prepanel.default.bwplot
(F_3_prepanel.default), 135

prepanel.default.cloud
(F_3_prepanel.default), 135

prepanel.default.densityplot
(F_3_prepanel.default), 135

prepanel.default.histogram
(F_3_prepanel.default), 135

163

prepanel.default.levelplot
(F_3_prepanel.default), 135
prepanel.default.parallel
(F_3_prepanel.default), 135
prepanel.default.qq
(F_3_prepanel.default), 135
prepanel.default.qgmath
(F_3_prepanel.default), 135
prepanel.default.splom
(F_3_prepanel.default), 135
prepanel.default.xyplot, 137
prepanel.default.xyplot
(F_3_prepanel.default), 135
prepanel.lmline
(F_3_prepanel.functions), 136
prepanel.loess, 126
prepanel.loess
(F_3_prepanel.functions), 136
prepanel.qgmathline, 37, 127
prepanel.qggmathline
(F_3_prepanel.functions), 136
prepanel.spline, 130
prepanel.spline
(F_3_prepanel.functions), 136
prepanel.tmd.default (B_09_tmd), 55
prepanel.tmd.qgmath (B_09_tmd), 55

pretty, 123
print, 4, 23,27,29, 34, 37,40, 45, 50, 54, 57,
58, 85

print.shingle (C_07_shingles), 76

print.shinglelevel (C_07_shingles), 76
print.trellis, 4, 24, 86, 89, 91, 138-140
print.trellis (C_05_print.trellis), 69

gnorm, 36

qg, 5, 57

qq (B_05_qq), 38

qamath, 5, 40, 57, 58, 90, 113, 127
qgmath (B_04_qggmath), 35

qt, 36
quantile, 36, 37,39, 113, 127, 136, 137
qunif, 36

rasterGrob, 44
rbind, 8/

rect, 121
reshape, 9, 24
rfs, 5, 59
rfs(B_10_rfs), 57

164

Rows (G_Rows), 148
rug, 125

seekViewport, 91

segments, 121

shingle, 9, 24

shingle (C_07_shingles), 76

show.settings (C_02b_trellis.par.get),
63

simpleKey, 12, 17,24

simpleKey (D_simpleKey), 81

simpleTheme, 13, 26, 62

simpleTheme (C_03_simpleTheme), 66

singer (H_singer), 155

smooth.spline, 130, 137

splom, 5, 16,90, 111, 117, 146

splom (B_08_splom), 52

standard. theme, 60

standard. theme (C_02a_standard. theme),
61

strip.custom (D_strip.default), 83

strip.default, /4, 24

strip.default (D_strip.default), 83

stripplot, 5, 115

stripplot (B_0@_xyplot), 6

strptime, 16

summary.shingle (C_07_shingles), 76

summary.trellis (C_@5_print.trellis), 69

t, 29

t.trellis (C_06_update.trellis), 73

table, 29

text, 121

textGrob, 20, 43

tmd, 5

tmd (B_09_tmd), 55

topo.colors, 80

trellis.currentLayout, 91

trellis.currentlLayout (G_panel.number),
147

trellis.device, 4, 62, 63, 65, 67, 69

trellis.device (C_01_trellis.device), 59

trellis.focus, 4, 11,68,71, 72,74, 147

trellis.focus (E_interaction), 86

trellis.grobname (E_interaction), 86

trellis.last.object, 75

trellis.last.object
(C_06_update.trellis), 73

trellis.object, 75

INDEX

trellis.object (D_trellis.object), 85
trellis.panelArgs (E_interaction), 86
trellis.par.get, 13,63,69, 82,116, 131
trellis.par.get
(C_02b_trellis.par.get), 63
trellis.par.set, 4, 22, 24, 26, 59, 62, 63,
67, 68, 125
trellis.par.set
(C_02b_trellis.par.get), 63
trellis.switchFocus (E_interaction), 86
trellis.unfocus (E_interaction), 86
trellis.vpname (E_interaction), 86
tryCatch, 68, 71
ts, 26, 27

unit, 68, 72, 146, 147

update, 23, 27, 29, 34, 37, 40, 45, 50, 54, 57,
58

update.trellis, 4,22,72

update.trellis (C_06_update.trellis), 73

USMortality (H_USMortality), 156

USRegionalMortality (H_USMortality), 156

utilities.3d, 101

utilities.3d(G_utilities.3d), 149

viewports, 91

which.packet, 83

which.packet (G_panel.number), 147
while, 4

wireframe, 5, 20, 99

wireframe (B_07_cloud), 46

xscale.components.default, 2/

xscale.components.default
(G_axis.default), 138

xyplot, 4, 5, 26, 27, 31-34, 36, 37, 39, 40,
4245, 48, 50, 51, 54-58, 63, 67-69,
75-79, 82, 83, 85, 86, 91, 109, 117,
131, 133, 135-137, 140, 142—144,
147-149

xyplot (B_00_xyplot), 6

xyplot.ts, 133

xyplot.ts (B_@1_xyplot.ts), 25

xyplot.zoo, 27

yscale.components.default
(G_axis.default), 138

	A_01_Lattice
	B_00_xyplot
	B_01_xyplot.ts
	B_02_barchart.table
	B_03_histogram
	B_04_qqmath
	B_05_qq
	B_06_levelplot
	B_07_cloud
	B_08_splom
	B_09_tmd
	B_10_rfs
	B_11_oneway
	C_01_trellis.device
	C_02a_standard.theme
	C_02b_trellis.par.get
	C_03_simpleTheme
	C_04_lattice.options
	C_05_print.trellis
	C_06_update.trellis
	C_07_shingles
	D_draw.colorkey
	D_draw.key
	D_level.colors
	D_make.groups
	D_simpleKey
	D_strip.default
	D_trellis.object
	E_interaction
	F_1_panel.barchart
	F_1_panel.bwplot
	F_1_panel.cloud
	F_1_panel.densityplot
	F_1_panel.dotplot
	F_1_panel.histogram
	F_1_panel.levelplot
	F_1_panel.pairs
	F_1_panel.parallel
	F_1_panel.qqmath
	F_1_panel.stripplot
	F_1_panel.xyplot
	F_2_llines
	F_2_panel.functions
	F_2_panel.loess
	F_2_panel.qqmathline
	F_2_panel.smoothScatter
	F_2_panel.spline
	F_2_panel.superpose
	F_2_panel.violin
	F_3_prepanel.default
	F_3_prepanel.functions
	G_axis.default
	G_banking
	G_latticeParseFormula
	G_packet.panel.default
	G_panel.axis
	G_panel.number
	G_Rows
	G_utilities.3d
	H_barley
	H_environmental
	H_ethanol
	H_melanoma
	H_singer
	H_USMortality
	I_lset
	Index

