Contents

Using lumberjack

Mark van der Loo

March 29, 2023 | Package version 1.3.1

1 Purpose of this package: tracking changes in data

2 Tracking changes in scripts that process data

3 A little background

4 Controlling where the logging data is written

5 Tracking multiple datasets

6 Tracking changes in data in interactive sessions

7 Available loggers
7.1 In the lumberjack
7.2 In other packages

package L

8 Properties of the lumberjack pipe operator

9 Extending lumberjack

9.1 The lumberjack logging APl

9.2 R6 classes . . .

9.3 Reference classes

9.4 Advice for package authors

o 0 N o O

1 Purpose of this package: tracking changes in data

This package allows one to monitor changes in data as they get processed, with very little effort. It offers a
clear and sharp separation of concerns between the primary goal of a data processing script, and a secondary
goal: namely gathering data about the data process itself. The following diagram demonstrates the idea.

(R
. - J
1 ¢ Programmerw
[data]—>[process]—>[data’]
. n

(i R
L A(data,data’) Iumberjack)

A programmer writes a script that transforms data into data’, possibly based on externally provided parameters.
The lumberjack package automatically gathers information on how a each process step changed the data. The
way the difference between two versions of a data set is computed (4, in the diagram) is fully customizable.

2 Tracking changes in scripts that process data

Consider as an example the following simple data analysis script in a file called process.R.

data(women)

women$height <- women$height * 0.0254
women$weight <- women$weight * 0.453592
women$bmi <- women$weight/(women$height~2)
outfile <- tempfile(fileext=".csv")
write.csv(women, file=outfile, row.names=FALSE)

This script loads the women dataset, converts height and weight to S| units (meters and kg), and adds a Body-
Mass Index column. We can run the code in this file using source and read the result from the temporary file
in outfile.

To check what happens with the women dataset at each step we need to do two things. First, we define which
dataset must me tracked, in what way, and for what part of the script. This can be done by adding one line of
code.

data(women)
start_log(women, logger=simple$new())

women$height <- women$height * 0.0254
women$weight <- women$weight * 0.453592
women$bmi <- women$weight/(women$height~2)
outfile <- tempfile(fileext=".csv")
write.csv(women, file=outfile, row.names=FALSE)

Second, we run our script using lumberjack: :run_file.

library(lumberjack)
out <- run_file("process.R")

All variables created during run_file are stored in out.

head (out$women, 3)

2 lumberjack 1.3.1

height weight bmi
11.4732 52.16308 24.03476
2 1.4986 53.07026 23.63087
3 1.5240 54.43104 23.43563

The logging information is by default written to a file with a name that is the combination of the data set name
and the logger name, here: women_simple.csv (but this can be customized, see ?simple).

read.csv("women_simple.csv")

step time srcref expression
1 1 2023-03-29 10:35:23 process.R#5-5 start_log(women, logger = simple$new(verbose=TRUE))
2 2 2023-03-29 10:35:23 process.R#8-8 women$height <- women$height * 0.0254
3 3 2023-03-29 10:35:23 process.R#10-10 women$weight <- women$weight * 0.453592
4 4 2023-03-29 10:35:23 process.R#12-12 women$bmi <- women$weight/(women$height~2)
5 5 2023-03-29 10:35:23 process.R#14-14 outfile <- tempfile(fileext=".csv")
6 6 2023-03-29 10:35:23 process.R#15-15 write.csv(women, file=outfile, row.names=FALSE)
changed
1 FALSE
2 TRUE
3 TRUE
4 TRUE
5 FALSE
6 FALSE

The simple logger records for each expression in the script whether it changed the data that is being tracked.
An overview of available loggers is given in Section 7.

Summarizing, to track chages in a data set one needs to do the following.

1. Define a logger. Here this is done with simple$new ().

2. Tell lumberjack which dataset(s) to log. Here, this is done with start_log(dataset, logger). When
tracking multiple datasets, each dataset must get its own logger (see Section 5).

3. Develop the analyses as usual.

Optionally dump the logging information and close the logger explicitly (see Section 4).

5. Run the whole file using lumberjack: :run_file.

>

3 A little background

We give a rough sketch on how lumberjack works. Two concepts govern its behavior. The first concept is the
logger. A logger is an R object that capable of comparing two datasets. Depending on the type of logger it can
compare various things. The built-in simple logger just records whether two versions of a dataset are identical
or not. The cellwise logger compares two versions of a data set cell-by-cell and records the old and new
values if they differ. The expression_logger tracks the value of an R expression as the data gets processed.
A logger also offers functionality to dump logging information to file or elsewhere.

The second concept is the runtime. lumberjack intercepts the R expressions written by the user and calls the
logger to compare the current version of a data set with the previous version. The runtime also takes care of
keeping an old version of the data in memory for comparison. When the user calls dump_log() it makes sure
that the ‘dump’ functionality of the active logger(s) is called.

We have already seen the run_file() implementation of the lumberjack runtime. There is a second im-
plementation for interactive use. This is the so-called lumberjack ‘pipe’ operator %L>%, which is discussed in
Section 6.

3 lumberjack 1.3.1

4 Controlling where the logging data is written

The location of output is determined by the logger when dump_log is called. This is done by default by
run_file after executing the script. All loggers in lumberjack write output to a csv file with default location
dataset_logger.csv. If run_file is used to to execute an R file, then the log is written in the same directory
as where the R file resides. You can control where and when logging information is dumped by calling dump_log
explicitly.

For the lumberjack loggers, dump_log has an argument file to control explicitly where logging data is saved.
For example, to dump logging information for mtcars in hihi.csv one can do the following.

start_log(mtcars, logger=simple$new())
all data transformations here...
dump_log(file="hihi.csv")

Note that we took care to state ‘loggers in lumberjack' every time. This is because lumberjack is extensible
and other loggers can be developed that output logs to a data base for example. In fact, the parameters that
dump_log() accepts, apart from data, logger and stop, can be different for each logger in principle. For a
specification of arguments and values, see the help pages for each logger.

5 Tracking multiple datasets

Call start_log, with a new logger on each dataset to track. For example to track both women and mtcars
with the simple logger, do the following.

start_log(women, logger=simple$new())
start_log(mtcars, logger=simple$new())
all data transformations here...
dump_log()

Calling dump_log() will cause all loggers to stop tracking changes and write changes to file. To dump all
loggers for a specific dataset, provide the dataset when dumping.

dump_log(data=mtcars)

It is also possible to use multiple loggers on a single dataset. To is is done by calling start_log multiple times
for the same data set, with different loggers. Here we track the women dataset with the simple logger and
with the cellwise logger.

women$id <- 1:15

start_log(women, logger=simple$new())
start_log(women, logger=cellwise(key="1id"))
all data transformations here...
dump_log()

Here, the cellwise logger records every change in every cell as the data gets processed. It needs a key column
to be able to identify and store the location of each cell for each record. To dump a specific logger for a specific
dataset, pass the data and the name of the logger.

dump_log(women, "cellwise")

6 Tracking changes in data in interactive sessions

The lumberjack operator is a forward ‘pipe’ operator that enables logging. In this example we compute again
the BMI index of records in the women dataset that comes with R. We use the transform function from base
R to derive the new columns.

4 lumberjack 1.3.1

data(women)

women$id <- 1:15

out <- women %L>%
start_log(logger = cellwise$new(key="1id")) %L>%
transform(height = height*0.0254) %L>%
transform(weight = weight*0.453592) %L>%

transform(bmi = weight/height~2) %L>%
dump_log()
head(read.csv("cellwise.csv"), 3)
step time srcref expression key variable old new
1 1 2023-03-29 10:35:23 CEST NA transform(height = height * 0.0254) 1 height 58 1.4732
2 1 2023-03-29 10:35:23 CEST NA transform(height = height * 0.0254) 10 height 67 1.7018
3 1 2023-03-29 10:35:23 CEST NA transform(height = height * 0.0254) 11 height 68 1.7272

The logging data consists of a step number, a timestamp, the location of the expression in the script (here: NA,
since there is no script file), the expression that transformed the data, the record key, the variable, the old and
the new value.

The variable out contains the output of the calculation.
head(out, 3)

height weight id bmi
1 1.4732 52.16308 1 24.03476
2 1.4986 53.07026 2 23.63087
3 1.5240 54.43104 3 23.43563

7 Available loggers

lumberjack is extensible and users can provide their own loggers, for example to offload logging results to a
data base or to define new ways to measure the difference between two data sets. Below we list loggers that
we know of.

7.1 In the lumberjack package

simple Just check whether data has changed.

cellwise Track changes per cell (incl. old value, new value)
filedump Dump a file after each step (including the zeroth step.)
e expression_logger Track the result of any expression.

Both cellwise and simple have been discussed before. The expression logger tracks the result of one or more
expressions that will be evaluated after each data processing step. For example, suppose we want to follow the
mean and variance of variables in the ‘women’ dataset as it gets processed.

logger <- expression_logger$new(mean_h = mean(height), sd_h = sd(height))
out <- women %L>%

start_log(logger) %L>%

transform(height = height*2.54) %L>%

transform(weight = weight*0.453592) JL>%

dump_log()
read.csv("expression.csv",stringsAsFactors = FALSE)

step srcref expression mean_h sd_h
1 1 NA transform(height = height * 2.54) 165.1 11.35923
2 2 NA transform(weight = weight * 0.453592) 165.1 11.35923

5 lumberjack 1.3.1

7.2 In other packages

e validate::1bj_rules Track changes in data quality measured by validation rules.
e validate::1bj_cells Track changes in cell filling and cell counts.
e daff::1bj_daff Use data-diff to track changes in data frame-like objects.

8 Properties of the lumberjack pipe operator

There are several ‘forward pipe’ operators in the R community, including magrittr, pipeR and yapo. All have
different behavior. The lumberjack operator behaves as a simplified version of the ‘magrittr’ pipe operator.
Here are some examples.

pass the first argument to a function
1:3 %L>% mean()

[1] 2

pass arguments using "."
TRUE %L>% mean(c(1,NA,3), na.rm = .)

[1] 2

pass arguments to an expression, using "."
1:3 %L>%h { 3 * .}

[1] 369

in a more complicated expression, return "." explicitly

women %L>% { .$height <- 2*.$height; . } %L>% head(3)

height weight id
1 116 115 1
2 118 117 2
3 120 120 3

The main differences with ‘magrittr’ are that

e there is no assignment-pipe like %<>%.
e it does not allow you to define functions in the magrittr style: a <- . %>% sin(.)
e you cannot do things like pi %>% sin and expect an answer.

9 Extending lumberjack

There are many ways to register changes in data. That is why lumberjack is extensible with new loggers.

9.1 The lumberjack logging API

In short, a logger is a reference object with the following mandatory elements:

1. A method $add (meta, input, output). Thisis a function that computes the difference between input
and output and adds it to a log. The meta argument is a 1ist with the following elements:

e expr The expression used to turn input into output.

e src The same expression, but turned into a string.

e file The name of the file that was run. This element is only available when code is run from a
script.

e lines A named integer vector containing the first and last line of the expression in the source file.
This element is only available when code is run from a script.

6 lumberjack 1.3.1

https://CRAN.R-project.org/package=validate
https://CRAN.R-project.org/package=validate
https://CRAN.R-project.org/package=daff
https://cran.r-project.org/package=magrittr
https://cran.r-project.org/package=pipeR
https://github.com/piccolbo/yapo

2. A method $dump(...) this function writes the current logging info somewhere. Often this will be
a file, but it really can be any place where R can send data. It is recommended that dump has the
argument file if it writes anything to file. $dump must have the ... argument because when a user
calls dump_log(...) the extra arguments are passed to $dump.

3. aslot called $1abel. The label is set by start_log and is used to keep track of logging streams when
multiple datasets are tracked with instances of the same logger type. start_log will try to create a label
if none is provided. If it fails to create a label, it will be set to the empty string ‘"""

The following element is optional
1. A method $stop() called by stop_log() before removing the logger from the data.

There are several systems in R to build such a reference object. We recommend using R6 classes or reference
classes. Below an example for each system is given. The example loggers only register whether something has
ever changed. A dump results in a simple message on screen.

9.2 R6 classes

An introduction to R6 classes can be found here.
Let us define the ‘trivial’ logger.

library(R6)
trivial <- R6Class("trivial",
public = list(
changed = NULL
, label=NULL
, initialize = function(){
self$changed <- FALSE

, add = function(meta, input, output){
self$changed <- self$changed | !identical (input, output)

, dump = function(){
msg <- if(self$changed) "" else "not "
cat(sprintf ("The data has %schanged\n",msg))

)
Here is how to use it.

library(lumberjack)

out <- women %L>%
start_log(trivial$new()) %L>%
identity () %L>%
dump_log(stop=TRUE)

The data has not changed

out <- women %L>%
start_log(trivial$new()) %L>%
head () %L>%
dump_log(stop=TRUE)

The data has changed

7 lumberjack 1.3.1

https://cran.r-project.org/package=R6
http://adv-r.had.co.nz/R5.html
http://adv-r.had.co.nz/R5.html
https://cran.r-project.org/package=R6/vignettes/Introduction.html

9.3 Reference classes

Reference classes (RC) come with the R recommended ‘methods’ package. An introduction can be found here.
Here is how to define the trivial logger as a reference class.

library (methods)
trivial <- setRefClass("trivial",
fields = list(
changed = "logical", label="character"
),
methods = list(
initialize = function(){
.self$changed = FALSE
.self$label = "
}
, add = function(meta, input, output){
.self$changed <- .self$changed | !identical (input,output)

}
, dump = function(){
msg <- if(.self$changed) "" else "not "
cat(sprintf ("The data has %schanged\n",msg))
}

)
And here is how to use it.

library(lumberjack)

out <- women %L>%
start_log(trivial()) %L>%
identity () %L>%
dump_log(stop=TRUE)

The data has not changed

out <- women %L>%
start_log(trivial()) %L>%
head () %L>%
dump_log(stop=TRUE)

The data has changed

Observe that there are subtle differences between R6 and Reference classes (RC).

e In R6 the object is referred to with ‘self’, in RC this is done with “.self".
e An R6 object is initialized with classname$new (), an RC object is initialized with classname().

9.4 Advice for package authors

If you have a package that has interesting functionality that can be offered also inside a logger, you might
consider exporting a logger object that works with lumberjack. To keep things uniform, we give the following
advice.

Documenting logging objects. Most package authors use roxygen?2 to generate documentation. Below is an
example of how to document the class and its methods. To show how to document arguments, a new allcaps

8 lumberjack 1.3.1

http://adv-r.had.co.nz/R5.html
https://cran.r-project.org/package=roxygen2

argument is added to the dump function.

#' The trivial logger.
#
#' The trivial logger only registers whether something has changed at all.
#' A “dump” leads to an informative message on the console.
#
#' @section Creating a logger:
#' \code{trivial$new()}
#
#' @section Dump options:
#' \code{$dump(allcaps)}
#' \tabular{11}{
#' \code{allcaps}\tab \code{[logicall} print message in capitals?
#' 3}
#l
#
#' Q@docType class
#' @format An \code{R6} class object.
#
#' Qexamples
#' out <- women %L>Y
#' start_log(trivial$new()) %L>%
#' head() %L>%
#' dump_log(stop=TRUE)
#
#l
#' Qexport
trivial <- R6Class("trivial",

public = list(

changed = NULL
, initialize = function(){
self$changed <- FALSE

, add = function(meta, input, output){
self$changed <- self$changed | !identical(input, output)

, dump = function(allcaps=FALSE){
msg <- if(self$changed) "" else "not "
msg <- sprintf("The data has %schanged\n",msg)

if (allcaps) msg <- toupper (msg)
cat (msg)

Adding lumberjack to the DESCRIPTION of your package Once you have exported a logger, it is a
good idea to add the line

Enhances: lumberjack

To the DESCRIPTION file. It can then be found by other users via lumberjack's CRAN webpage.

9 lumberjack 1.3.1

	Purpose of this package: tracking changes in data
	Tracking changes in scripts that process data
	A little background
	Controlling where the logging data is written
	Tracking multiple datasets
	Tracking changes in data in interactive sessions
	Available loggers
	In the lumberjack package
	In other packages

	Properties of the lumberjack pipe operator
	Extending lumberjack
	The lumberjack logging API
	R6 classes
	Reference classes
	Advice for package authors

