
Getting started with maximum likelihood and

maxLik

Ott Toomet

March 24, 2024

1 Introduction

This vignette is intended for readers who are unfamiliar with the concept
of likelihood, and for those who want a quick intuitive brush-up. The potential
target group includes advanced undergraduate students in technical fields, such
as statistics or economics, graduate students in social sciences and engineering
who are devising their own estimators, and researchers and practitioners who
have little previous experience with ML. However, one should have basic knowl-
edge of R language. If you are familiar enough with the concept of likelihood and
maximum likelihood, consult instead the other vignette “Maximum Likelihood
Estimation with maxLik”.

Maximum Likelihood (ML) in its core is maximizing the likelihood over the
parameters of interest. We start with an example of a random experiment that
produces discrete values to explain what is likelihood and how it is related to
probability. The following sections cover continuous values, multiple parame-
ters in vector form, and we conclude with a linear regression example. The
final section discusses the basics of non-linear optimization. The examples are
supplemented with very simple code and assume little background besides basic
statistics and basic R knowledge.

2 Discrete Random Values

We start with a discrete case. “Discrete” refers to random experiments or
phenomena with only limited number of possible outcomes, and hence we can
compute and tabulate every single outcome separately.

Imagine you are flipping a fair coin. What are the possible outcomes and
what are the related probabilities? Obviously, in case of a coin there are only
two outcomes, heads H and tails T . If the coin is fair, both of these will
have probability of exactly 0.5. Such random experiment is called Bernoulli
process. More specifically, this is Bernoulli(0.5) process as for the fair coin the
probability of “success” is 0.5 (below we consider success to be heads, but you
can choose tails as well). If the coin is not fair, we denote the corresponding
process Bernoulli(p), where p is the probability of heads.

Now let us toss the coin two times. What is the probability that we end up
with one heads and one tails? As the coin flips are independent,1 we can just

1Events are independent when outcome of one event does not carry information about the

1

multiply the probabilities: 0.5 for a single heads and 0.5 for a single tails equals
0.25 when multiplied. However, this is not the whole story–there are two ways
to get one heads and one tails, either H first and T thereafter or T first and H
thereafter. Both of these events are equally likely, so the final answer will be
0.5.

But now imagine we do not know if the coin is fair. Maybe we are not tossing
a coin but an object of a complex shape. We can still label one side as “heads”
and the other as “tails”. But how can we tell what is the probability of heads?
Let’s start by denoting this probability with p. Hence the probability of tails
will be 1 − p, and the probability to receive one heads, one tails when we toss
the object two times will be 2p(1− p): p for one heads, 1− p for one tails, and
“2” takes into account the fact that we can get this outcome in two different
orders.

This probability is essentially likelihood. We denote likelihood with L(p),
stressing that it depends on the unknown probability p. So in this example we
have

L(p) = 2 p (1− p). (1)

p is the model parameter, the unknown number we want to compute with the
help of likelihood.

Let’s repeat here what did we do above:

1. We observe data. In this example data contains the counts: one heads,
one tails.

2. We model the coin toss experiment, the data generating process, as Bernoulli(p)
random variable. p, the probability of heads, is the model parameter we
want to calculate. Bernoulli process has only a single parameter, but more
complex processes may contain many more.

3. Thereafter we compute the probability to observe the data based on the
model. Here it is equation (1). This is why we need a probability model.
As the model contains unknown parameters, the probability will also con-
tain parameters.

4. And finally we just call this probability likelihood L(p). We write it as
a function of the parameter to stress that the parameter is what we are
interested in. Likelihood also depends on data (the probability will look
different for e.g. two heads instead of a head and a tail) but we typically
do not reflect this in notation.

The next task is to use this likelihood function to estimate the parameter, to
use data to find the best possible parameter value. Maximum likelihood (ML)
method finds such parameter value that maximizes the likelihood function. It
can be shown that such parameter value has a number of desirable properties,
in particular it will become increasingly similar to the “true value” on an in-
creasingly large dataset (given that our probability model is correct).2 These
desirable properties, and relative simplicity of the method, have made ML one
of the most widely used statistical estimators.

outcome of the other event. Here the result of the second toss is not related to the outcome

of the first toss.
2This property is formally referred to as consistency. ML is a consistent estimator.

2

Let us generalize the example we did above for an arbitrary number of coin
flips. Assume the coin is of unknown “fairness” where we just denote the prob-
ability to receive heads with p. Further, assume that out of N trials, NH trials
were heads and NT trials were tails. The probability of this occuring is

(
N

NH

)

pNH (1− p)NT (2)

pNH is the probability to get NH heads, (1− p)NT is the probability to get NT

tails, and the binomial coefficient

(
N

NH

)

=
N !

NH !(N −NH)!
takes into account

that there are many ways how heads and tail can turn up while still resulting NH

heads and NT tails. In the previous example N = 2, NH = 1 and there were just

two possible combinations as

(
2

1

)

= 2. The probability depends on both the

parameter p and data–the corresponding counts NH and NT . Equation (2) is
essentially likelihood–probability to observe data. We are interested how does
it depend on p and stress this by writing p in the first position followed by
semicolon and data as we care less about the dependency on data:

L(p;NH , NT) =

(
N

NH

)

pNH (1− p)NT (3)

Technically, it is easier to work with log-likelihood instead of likelihood
(as log is monotonic function, maximum of likelihood and maximum of log-
likelihood occur at the same parameter value). We denote log-likelihood by ℓ
and write

ℓ(p;NH , NT) = logL(p;NH , NT) = log

(
N

NH

)

+NH log p+NT log(1− p). (4)

ML estimator of p is the value that maximizes this expression. Fortunately, in

this case the binomial coefficient

(
N

NH

)

depends only on data but not on the p.

Intuitively, p determines the probability of various combinations of heads and
tails, but what kind of combinations are possible does not depend on p. Hence
we can ignore the first term on the right hand side of (4) when maximizing
the log-likelihood. Such approach is very common in practice, many terms that
are invariant with respect to parameters are often ignored. Hence, with we can
re-define the log-likelihood as

ℓ(p;NH , NT) = NH log p+NT log(1− p). (5)

It is easy to check that the solution, the value of p that maximizes log-likelihood (5)
is3

p∗ =
NH

NH +NT

=
NH

N
. (6)

This should be surprise to no-one: the intuitive “fairness” of the coin is just the
average percentage of heads we get.

Now it is time to try this out on computer with maxLik. Let’s assume we
toss a coin and receive HH = 3 heads and HT = 7 tails:

3Just differentiate ℓ(p) with respect to p, set the result to zero, and isolate p.

3

> NH <- 3

> NT <- 7

Next, we have to define the log-likelihood function. It has to be a function of
the parameter, and the parameter must be its first argument. We can access
data in different ways, for instance through the R workspace environment. So
we can write the log-likelihood as

> loglik <- function(p) {

+ NH*log(p) + NT*log(1-p)

+ }

And finally, we can use maxLik function to compute the likelihood. In its sim-
plest form, maxLik requires two arguments: the log-likelihood function, and the
start value for the iterative algorithm (see Section 6, and the documentation
and vignette Maximum Likelihood Estimation with maxLik for more detailed
explanations). The start value must be a valid parameter value (the loglik func-
tion must not give errors when called with the start value). We can choose
p0 = 0.5 as the initial value, and let the algorithm find the best possible p from
there:

> library(maxLik)

> m <- maxLik(loglik, start=0.5)

> summary(m)

--

Maximum Likelihood estimation

Newton-Raphson maximisation, 2 iterations

Return code 1: gradient close to zero (gradtol)

Log-Likelihood: -6.108643

1 free parameters

Estimates:

Estimate Std. error t value Pr(> t)

[1,] 0.3000 0.1449 2.07 0.0384 *

Signif. codes:

0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

--

As expected, the best bet for p is 0.3. Our intuitive approach–the percentage of
heads in the experiment–turns also out to be the ML estimate.

Next, we look at an example with continuous outcomes.

3 Continuous case: probability density and like-

lihood

In the example above we looked at a discrete random process, a case where
there were only a small number of distinct possibilities (heads and tails). Dis-
crete cases are easy to understand because we can actually compute the respec-
tive probabilities, such as the probability to receive one heads and one tails in

4

our experiment. Now we consider continuous random variables where the out-
come can be any number in a certain interval. Unfortunately, in continuous case
we cannot compute probability of any particular outcome. Or more precisely–we
can do it, but the answer is always 0. This may sound a little counter-intuitive
but perhaps the following example helps. If you ask the computer to generate
a single random number between 0 and 1, you may receive 0.444768540561199.
What is the probability to get the same number again? You can try, you will get
close but you won’t get exactly the same number.4 But despite the probability
to receive this number is zero, we somehow still produced it in the first place.
Clearly, zero probability does not mean the number was impossible. However, if
we want to receive a negative number from the same random number generator,
it will be impossible (because we chose a generator that only produces numbers
between 0 and 1). So probability 0-events may be possible and they may also
be impossible. And to make matter worse, they may also be more likely and
less likely. For instance, in case of standard normal random numbers (these
numbers are distributed according to “bell curve”) the values near 0 are much
more likely than values around −2, despite of the probability to receive any
particular number still being 0 (see Figure 1).

The solution is to look not at the individual numbers but narrow interval
near these numbers. Consider the number of interest x1, and compute the
probability that the random outcome X falls into the narrow interval of width
δ, [x1 − δ/2, x1 + δ/2], around this number (Figure 1). Obviously, the smaller
the width δ, the less likely it is that X falls into this narrow interval. But it
turns out that when we divide the probability by the width, we get a stable
value at the limit which we denote by f(x1):

f(x1) = lim
δ→0

Pr(X ∈ [x1 − δ/2, x1 + δ/2])

δ
. (7)

In the example on the Figure the values around x1 are less likely than around x2

and hence f(x1) < f(x2). The result, f(x), is called probability density function,
often abbreviated as pdf. In case of continuous random variables, we have to
work with pdf-s instead of probabilities.

Consider the following somewhat trivial example: we have sampled two in-
dependent datapoints x1 and x2 from normal distribution with variance 1 and
mean (expected value) equal to µ. Say, x1 = 2.976 and x2 = −0.711. Assume
we do not know µ and use ML to estimate it. We can proceed in a similar
steps as what we did for the discrete case: i) observe data, in this case x1 and
x2; ii) set up the probability model; iii) use the model to compute probability
to observe the data; iv) write the probability as ℓ(µ), log-likelihood function
of the parameter µ; v) and finally, find µ∗, the µ value that maximizes the
corresponding log-likelihood. This will be our best estimate for the true mean.

As we already have our data points x1 and x2, our next step is the probability
model. The probability density function (pdf) for normal distribution with mean
µ and variance 1 is

f(x;µ) =
1√
2π

e
−1

2
(x− µ)2

(8)

4As computers operate with finite precision, the actual chances to repeat any particular

random number are positive, although small. The exact answer depends on the numeric

precision and the quality of random number generator.

5

x1 = −1.695

width δ

f(x1) = 0.095

x2 = 0.3

width δ

f(x2) = 0.381

x
-2 -1 0 1 2

Figure 1: Standard normal probability density (thick black curve). While Pr(X =
x1) = 0, i.e. the probability to receive a random number exactly equal to x1 is 0, the
probability to receive a random number in the narrow interval of width δ around x1

is positive. In this example, the probability to get a random number in the interval
around x2 is four times larger than for the interval around x1.

(This is the thick curve in Figure 1). We write it as f(x;µ) as pdf is usually
written as a function of data. But as our primary interest is µ, we also add this as
an argument. Now we use this pdf and (7) to find the probability that we observe
a datapoint in the narrow interval around x. Here it is just f(x;µ) · δ. As x1

and x2 are independent, we can simply multiply the corresponding probabilities
to find the combined probability that both random numbers are near their
corresponding values:

Pr
(

X1 ∈ [x1 − δ/2, x1 + δ/2] and X2 ∈ [x2 − δ/2, x2 + δ/2]
)

=

=
1√
2π

e
−1

2
(x1 − µ)2

· δ
︸ ︷︷ ︸

First random value near x1

× 1√
2π

e
−1

2
(x2 − µ)2

· δ
︸ ︷︷ ︸

Second random value near x2

≡

≡ L̃(µ;x1, x2). (9)

The interval width δ must be small for the equation to hold precisely. We
denote this probability with L̃ to stress that it is essentially the likelihood, just
not written in the way it is usually done. As in the coin-toss example above,
we write it as a function of the parameter µ, and put data x1 and x2 after
semicolon. Now we can estimate µ by finding such a value µ∗ that maximizes
the expression (9).

But note that δ plays no role in maximizing the likelihood. It is just a
multiplicative factor, and it cannot be negative because it is a width. So for
our maximization problem we can just ignore it. This is what is normally done
when working with continuous random variables. Hence we write the likelihood
as

L(µ;x1, x2) =
1√
2π

e
−1

2
(x1 − µ)2

× 1√
2π

e
−1

2
(x2 − µ)2

. (10)

We denote this by L instead of L̃ to stress that this is how likelihood function
for continuous random variables is usually written.

Exactly as in the discrete case, it is better to use log-likelihood instead of
likelihood to actually compute the maximum. From (10) we get log-likelihood

6

as

ℓ(µ;x1, x2) = − log
√
2π − 1

2
(x1 − µ)2 + (− log

√
2π)− 1

2
(x2 − µ)2 =

= −2 log
√
2π − 1

2

2∑

i=1

(xi − µ)2. (11)

The first term, −2 log
√
2π, is just an additive constant and plays no role in the

actual maximization but it is typically still included when defining the likelihood
function.5

One can easily check by differentiating the log-likelihood function that the
maximum is achieved at µ∗ = 1

2
(x1 + x2). It is not surprising, our intuitive

understanding of mean value carries immediately over to the normal distribution
context.

Now it is time to demonstrate these results with maxLik package. First,
create our “data”, just two normally distributed random numbers:

> x1 <- rnorm(1) # centered around 0

> x2 <- rnorm(1)

> x1

[1] 1.026914

> x2

[1] 0.575752

and define the log-likelihood function. We include all the terms as in the final
version of (11):

> loglik <- function(mu) {

+ -2*log(sqrt(2*pi)) - 0.5*((x1 - mu)^2 + (x2 - mu)^2)

+ }

We also need the parameter start value–we can pick 0. And we use maxLik to
find the best µ:

> m <- maxLik(loglik, start=0)

> summary(m)

--

Maximum Likelihood estimation

Newton-Raphson maximisation, 2 iterations

Return code 1: gradient close to zero (gradtol)

Log-Likelihood: -1.888764

1 free parameters

Estimates:

Estimate Std. error t value Pr(> t)

[1,] 0.8013 0.7071 1.133 0.257

--

5Additive or multiplicative constants do not play any role for optimization, but they are

important when comparing different log-likelihood values. This is often needed for likelihood-

based statistical tests.

7

The answer is the same as sample mean:

> (x1 + x2)/2

[1] 0.8013328

4 Vector arguments

The previous example is instructive but it does have very few practical appli-
cations. The problem is that we wrote the probability model as normal density
with unknown mean µ but standard deviation σ equal to one. However, in
practice we hardly ever know that we are dealing with unit standard deviation.
More likely both mean and standard deviation are unknown. So we have to
incorporate the unknown σ into the model.

The more general normal pdf with standard deviation σ is

f(x;µ, σ) =
1√
2π

1

σ
e
−

1

2

(x− µ)2

σ2 . (12)

Similar reasoning as what we did above will give the log-likelihood

ℓ(µ, σ;x1, x2) = −2 log
√
2π − 2 log σ − 1

2

2∑

i=1

(xi − µ)2

σ2
. (13)

We write the log-likelihood as function of both parameters, µ and σ; the semi-
colon that separates data x1 and x2 shows that though the log-likelihood de-
pends on data too, we are not much interested in that dependency for now.
This formula immediately extends to the case of N datapoints as

ℓ(µ, σ) = −N log
√
2π −N log σ − 1

2

N∑

i=1

(xi − µ)2

σ2
(14)

where we have dropped the dependency on data in the notation. In this case
we can actually do the optimization analytically, and derive the well-known
intuitive results: the best estimator for mean µ is the sample average, and the
best estimator for σ2 is the sample variance.

However, in general the expression cannot be solved analytically. We have
to use numeric optimization to search for the best µ and σ combination. The
common multi-dimensional optimizers rely on linear algebra and expect all the
parameters submitted as a single vector. So we can write the log-likelihood as

ℓ(θ) where θ = (µ, σ). (15)

Here we denote both parameters µ and σ as components of a single parameter
vector θ. (Traditionally vectors are denoted by bold symbols.) We have also
dropped dependency on data in notation, but remember that in practical appli-
cations log-likelihood always depends on data. This notation can be converted
to computer code almost verbatim, just remember to extract the parameters µ
and σ from θ in the log-likelihood function.

Let us illustrate this using the CO2 dataset (in package datasets). It de-
scribes CO2 uptake (µmol/m2sec, variable uptake) by different grasses in various
conditions. Let us start by plotting the histogram of uptake:

8

> data(CO2)

> hist(CO2$uptake)

Histogram of CO2$uptake

CO2$uptake

F
re

qu
en

cy

10 20 30 40 50

0
5

10
15

Let us model the uptake as a normal random variable with expected value
µ and standard deviation σ. We code (14) while keeping both parameters in a
single vector as in (15):

> loglik <- function(theta) {

+ mu <- theta[1]

+ sigma <- theta[2]

+ N <- nrow(CO2)

+ -N*log(sqrt(2*pi)) - N*log(sigma) -

+ 0.5*sum((CO2$uptake - mu)^2/sigma^2)

+ }

The function is similar to the function loglik we used in Section 3. There are
just two main differences:

• both arguments, µ and σ are passed as components of θ, and hence the
function starts by unpacking the values.

• instead of using variables x1 and x2, we now extract data directly from
the data frame.

Besides these two differences, the formula now also includes σ and sums over all
observations, not just over two observations.

As our parameter vector now contains two components, the start vector must
also be of length two. Based on the figure we guess that a good starting value
might be µ = 30 and σ = 10:

9

> m <- maxLik(loglik, start=c(mu=30, sigma=10))

> summary(m)

--

Maximum Likelihood estimation

Newton-Raphson maximisation, 5 iterations

Return code 8: successive function values within relative tolerance limit (reltol)

Log-Likelihood: -318.6817

2 free parameters

Estimates:

Estimate Std. error t value Pr(> t)

mu 27.2131 1.1633 23.39 <2e-16 ***

sigma 10.7498 0.8389 12.81 <2e-16 ***

Signif. codes:

0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

--

Indeed, our guess was close.

5 Final Example: Linear Regression

Now we have the main tools in place to extend the example above to a real
statistical model. Let us build the previous example into linear regression. We
describe CO2 uptake (variable uptake) by CO2 concentration in air (variable
conc). We can write the corresponding regression model as

uptakei = β0 + β1 · conci + ϵi. (16)

In order to turn this regression model into a ML problem, we need a probability
model. Assume that the disturbance term ϵ is normally distributed with mean 0
and (unknown) variance σ2 (this is a standard assumption in linear regression).
Now we can follow (13) and write log of pdf for a single observation as

ℓ(σ; ϵi) = − log
√
2π − log σ − 1

2

ϵ2
i

σ2
. (17)

Here we have replaced xi by the random outcome ϵi. As the expected value
µ = 0 by assumption, we do not include µ in (17) and hence we drop it also
from the argument list of ℓ. We do not know ϵi but we can express it using
linear regression model (16):

ϵi = uptakei − β0 − β1 · conci. (18)

This expression depends on two additional unknown parameters, β0 and β1.
These are the linear regression coefficients we want to find.

Now we plug this into (17):

ℓ(β0, β1, σ; uptakei, conci) =

= − log
√
2π − log σ − 1

2

(uptakei − β0 − β1 · conci)2
σ2

. (19)

10

We have designed log-likelihood formula for a single linear regression observa-
tion. It depends on three parameters, β0, β1 and σ. For N observations we
have

ℓ(β0, β1, σ;uptake , conc) =

= −N log
√
2π −N log σ − 1

2

N∑

i=1

(uptakei − β0 − β1 · conci)2
σ2

(20)

where vectors uptake and conc contain the data values for all the observations.
This is a fully specified log-likelihood function that we can use for optimization.
Let us repeat what we have done:

• We wrote log-likelihood as a function of parameters β0, β1 and σ. Note
that in case of linear regression we typically do not call σ a parameter.
But it is still a parameter, although one we usually do not care much
about (sometimes called “nuisance parameter”).

• The likelihood function also depends on data, here the vectors uptake

and conc.

• The function definition itself is just sum of log-likelihood contributions of
individual normal disturbance terms, but as we do not observe the distur-
bance terms, we express those through the regression equation in (19).

Finally, we combine the three parameters into a single vector θ, suppress de-
pendency on data in the notation, and write

ℓ(θ) = −N log
√
2π −N log σ − 1

2

N∑

i=1

(uptakei − β0 − β1 · conci)2
σ2

. (21)

This is the definition we can easily code and estimate. We guess start values
β0 = 30 (close to the mean), β1 = 0 (uptake does not depend on concentration)
and σ = 10 (close to sample standard deviation). We can convert (21) into
code almost verbatim, below we choose to compute the expected uptake µ as
an auxiliary variable:

> loglik <- function(theta) {

+ beta0 <- theta[1]

+ beta1 <- theta[2]

+ sigma <- theta[3]

+ N <- nrow(CO2)

+ ## compute new mu based on beta1, beta2

+ mu <- beta0 + beta1*CO2$conc

+ ## use this mu in a similar fashion as previously

+ -N*log(sqrt(2*pi)) - N*log(sigma) -

+ 0.5*sum((CO2$uptake - mu)^2/sigma^2)

+ }

> m <- maxLik(loglik, start=c(beta0=30, beta1=0, sigma=10))

> summary(m)

--

Maximum Likelihood estimation

11

Newton-Raphson maximisation, 6 iterations

Return code 8: successive function values within relative tolerance limit (reltol)

Log-Likelihood: -307.409

3 free parameters

Estimates:

Estimate Std. error t value Pr(> t)

beta0 19.500306 1.978074 9.858 < 2e-16 ***

beta1 0.017731 0.003681 4.817 1.46e-06 ***

sigma 9.399847 0.744019 12.634 < 2e-16 ***

Signif. codes:

0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

--

These are the linear regression estimates: β0 = 19.5 and β1 = 0.018. Note that
maxLik output also provides standard errors, z-values and p-values, hence we
see that the results are highly statistically significant.

One can check that a linear regression model will give similar results:

> summary(lm(uptake ~ conc, data=CO2))

Call:

lm(formula = uptake ~ conc, data = CO2)

Residuals:

Min 1Q Median 3Q Max

-22.831 -7.729 1.483 7.748 16.394

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 19.500290 1.853080 10.523 < 2e-16 ***

conc 0.017731 0.003529 5.024 2.91e-06 ***

Signif. codes:

0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 9.514 on 82 degrees of freedom

Multiple R-squared: 0.2354, Adjusted R-squared: 0.2261

F-statistic: 25.25 on 1 and 82 DF, p-value: 2.906e-06

Indeed, the results are close although not identical.

6 Non-linear optimization

Finally, we discuss the magic inside maxLik that finds the optimal parameter
values. Although not necessary in everyday work, this knowledge helps to un-
derstand the issues and potential solutions when doing non-linear optimization.
So how does the optimization work?

Consider the example in Section 4 where we computed the normal distri-
bution parameters for CO2 intake. There are two parameters, µ and σ, and

12

maxLik returns the combination that gives the largest possible log-likelihood
value. We can visualize the task by plotting the log-likelihood value for differ-
ent combinations of µ, σ (Figure 2).

mu

sig
m

a

log − likelihood

Figure 2: Log-likelihood surface as a function of µ and σ. The optimum, denoted as
the red dot, is at µ = 27.213 and σ = 10.75. The corresponding countour plot is shown
at the bottom of the figure box.

So how does the algorithm find the optimal parameter value θ
∗, the red dot

on the figure? All the common methods are iterative, i.e. they start with a
given start value (that’s why we need the start value), and repeatedly find a
new and better parameter that gives a larger log-likelihood value. While humans
can look at the figure and immediately see where is its maximum, computers
cannot perceive the image in this way. And more importantly–even humans
cannot visualize the function in more than three dimensions. This visualization
is so helpful for us because we can intuitively understand the 3-dimensional
structure of the surface. It is 3-D because we have two parameters, µ and
σ, and a single log-likelihood value. Add one more parameter as we did in
Section 5, and visualization options are very limited. In case of 5 parameters,
it is essentially impossible to solve the problem by just visualizations.

Non-linear optimization is like climbing uphill in whiteout conditions where
you cannot distinguish any details around you–sky is just a white fog and the
ground is covered with similar white snow. But you can still feel which way the
ground goes up and so you can still go uphill. This is what the popular algo-
rithms do. They rely on the slope of the function, the gradient, and follow the
direction suggested by gradient. Most optimizers included in the maxLik pack-

13

age need gradients, including the default Newton-Raphson method. But how do
we know the gradient if the log-likelihood function only returns a single value?
There are two ways: i) provide a separate function that computes gradient;
ii) compute the log-likelihood value in multiple points nearby and deduce the
gradient from that information. The first option is superior, in high dimensions
it is much faster and much less error prone. But computing and coding gradient
can easily be days of work. The second approach, numeric gradient, forces the
computer to do more work and hence it is slower. Unfortunately importantly, it
may also unreliable for more complex cases. In practice you may notice how the
algorithm refuses to converge for thousands of iterations. But numeric gradient
works very well in simple cases we demonstrated here.

This also hints why it is useful to choose good start values. The closer we
start to our final destination, the less work the computer has to do. And while
we may not care too much about a few seconds of computer’s work, we also
help the algorithm to find the correct maximum. The less the algorithm has
to work, the less likely it is that it gets stuck in a wrong place or just keeps
wandering around in a clueless manner. If this is the case, you may see how
the algorithm gets slow, does not converge (returns the “maximum number of
iterations exceeded” message), how the results look weird, or standard errors
are extremely large.

14

