
mdsOpt – Searching for Optimal MDS Procedure

for Metric and Interval-Valued Data

Marek Walesiak

Wrocław University of Economics

Andrzej Dudek

Wrocław University of Economics

Abstract

In multidimensional scaling (MDS) carried out on the basis of a metric data ma-
trix (interval, ratio) or interval-valued data table three approaches can be distinguished:
classic-to-classic – for metric data, symbolic-to-classic and symbolic-to-symbolic – for
interval-valued data. The article presents the mdsOpt package which helps to solve the
problem of choosing the optimal multidimensional scaling procedure. It uses two criteria
for selecting the optimal multidimensional scaling procedure: Kruskal’s Stress-1 fit mea-
sure (I-Stress in case of symbolic-to-symbolic approach) and Hirschman-Herfindahl HHI

index calculated based on Stress per point (Interval stress per box in case of symbolic-to-
symbolic approach) values. In first part three possible approaches are characterised with
theoretical background of used methods and the relationships between mdsOpt package
and existing R packages. Second part explains procedure and criteria for selection of the
optimal multidimensional scaling procedure for metric and interval-valued data. The last
contains in details the usage of package and examples (R scripts) on real data sets related
to tourist attractiveness of Polish voivodships (provinces) and Lower-Silesian counties.

Keywords: multidimensional scaling, metric and interval-valued data, tourist attractiveness,
HHI index, R.

1. Introduction

1.1. The aim of multidimensional scaling

Classical multidimensional scaling (MDS) is a method that represents (dis)similarity data as
distances in a low-dimensional space (typically 2 or 3 dimensional) in order to make these data
accessible to visual inspection and exploration (Borg and Groenen (2005), p. 3). Classical
MDS requires that each entry of dissimilarity matrix be a single numerical value. Dissimilarity
between object i and object k can be fuzzy (Groenen, Winsberg, Rodriguez, and Diday
(2006), p. 361). The fuzzy dissimilarity is represented by an interval and n × n dissimilarity

matrix is an interval of values
[
δl

ik , δu
ik

]
, where δl

ik(δu
ik) denotes the lower (upper) bound of

the dissimilarity of objects i and k in m-dimensional space. Multidimensional scaling of
interval dissimilarities represents the lower and upper bounds of the dissimilarities as distances
between hypercubes (rectangles in two-dimensional space and cubes in three-dimensional
space). The dimensions are not directly observable. They have the nature of latent variables.
MDS allows the similarities and differences between the analyzed objects to be explained.
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Multidimensional scaling is a widely used technique in many areas, including psychology
(Takane (2007)), sociology (Pinkley, Gelfand, and Duan (2005)), linguistics (Embleton, Uritescu,
and Wheeler (2013)), marketing research (Cooper (1983)), tourism (Marcussen (2014)), mu-
sicology (McAdams, Winsberg, Donnadieu, De Soete, and Krimphoff (1995)).

1.2. The approaches in multidimensional scaling via mdsOpt package

In MDS carried out on the basis of a metric data matrix (interval, ratio) or interval-valued
data table, via mdsOpt package, three approaches can be distinguished:

1. Classic-to-classic – for metric data:

X = [xij ]n×m → Z = [zij ]n×m → [δik(Z)]nxn → f : [δik (Z) → dik(V)] → V = [vij ]n×q, (1)

where: xij – the value of the j-th variable for the i-th object, zij – the normalized value of
the j-th variable for the i-th object, i, k = 1, . . ., n – the number of the object, j = 1, . . ., m
– the number of variable, [δik(Z)]nxn – a distance matrix (dissimilarities) between objects in
m-dimensional space (distances between objects are calculated via e.g. city-block, Euclidean,
Chebyshev, squared Euclidean), [dik(V)] – a distance matrix between objects in q-dimensional
space (q < m), f – function which mapping distances in m-dimensional space δik (Z) into
corresponding distances dik(V) in q-dimensional space, V = [vij ]n×q – data matrix in q-
dimensional space.

The starting point of multidimensional scaling in classic-to-classic approach is a metric data
matrix X = [xij ]n×m, for which observations are obtained from secondary data sources. It
is typical situation in socio-economic research. Methods of determining the distance matrix
[δik ] can be divided into direct (typically result from similarity ratings on object pairs, from
rankings, or from card-sorting tasks) and indirect (see (1)) methods (see e.g. Borg and
Groenen (2005), pp. 111-133).

2. Symbolic-to-classic – for interval-valued data:

X = [xl
ij , xu

ij ]n×m → Z = [zl
ij , zu

ij ]n×m → [δik(Z)]nxn →

f : [δik (Z) → dik(V)] → V = [vij ]n×q,
(2)

where: X = [xl
ij , xu

ij ]n×m – an interval-valued data table in m-dimensional space (xl
ij≤xu

ij), xl
ij

(xu
ij) – the lower (upper) bound of interval, Z = [zl

ij , zu
ij ]n×m – the normalized interval-valued

data table in m-dimensional space, δik (Z) – a distance matrix (dissimilarities) between objects
in m-dimensional space (distances between objects are calculated via distance measures for
interval-valued data – see Table 3).

3. Symbolic-to-symbolic – for interval-valued data:

X = [xl
ij , xu

ij ]n×m → Z = [zl
ij , zu

ij ]n×m →
[
δl

ik , δu
ik

]
→

f :
([

δl
ik , δu

ik

]
→

[
dl

ik , du
ik

])
→ V = [vl

ij , vu
ij ]n×q,

(3)
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where: δl
ik(δu

ik) – the lower (upper) bound of the dissimilarity of objects i and k in m-
dimensional space, dl

ik(du
ik) – the lower (upper) bound of the dissimilarity of objects i and k in

q-dimensional space, f – function which represent the lower and upper bounds of the dissimi-
larities by minimum and maximum distances between rectangles (cubes in three-dimensional
space) as well as possible distances in the sense of least-squares (Groenen et al. (2006), p.
363), V = [vl

ij , vu
ij ]n×q – an interval-valued data table in q-dimensional space.

In symbolic-to-classic and symbolic-to-symbolic approaches we assume that the starting point
of multidimensional scaling is data table X = [xl

ij , xu
ij ]n×m (xl

ij≤xu
ij). In article (Gioia and

Lauro (2006), p. 344) we can find different kind of data that in real life are of interval type:

• financial data (e.g. opening value and closing value in a session),

• customer satisfaction data (expected or perceived characteristic of the quality of a prod-
uct),

• tolerance limits in quality control,

• confidence intervals of estimates from sample surveys,

• query on a database.

Additional suggestions about real life interval-valued data we can find in Brito, Noirhomme-
Fraiture, and Arroyo (2015):

• high–low intervals of financial prices,

• some questions in the questionnaire surveys (e.g. age, income, time spent).

Interval-valued data we can obtain by generalization of classical single-valued variables into
interval-valued variables (see e.g. Bock (2000), pp. 43-44). For example, 380 Polish counties
are described by 9 metric variables (see the second demonstration example). Counties are part
of 16 Polish voivodships. After aggregation of data from counties to voivodships, interval-
valued data are obtained. Interval of a given variable for the voivodship covers all or selected
(e.g. from first to ninth decile, from first to third quartile) observations from counties.

1.3. The main idea of the mdsOpt package

The authors of the monograph (Borg, Groenen, and Mair (2013); Borg, Groenen, and Mair
(2018), chapter 7) pointed out the typical mistakes made by users of multidimensional scaling.
A frequent mistake on the part of users of MDS results is to evaluate Stress mechanically
(rejecting an MDS solution because its Stress seems “too high”). In their opinion (Borg
et al. (2018), pp. 85-86) “The Stress value is, however, merely a technical index, a target
criterion for an optimization algorithm. An MDS solution can be robust and replicable, even
if its Stress value is high” and “Stress is a summative index for all proximities. It does
not inform the user how well a particular proximity value is represented in the given MDS
space (...) The least one can do is to take a look at the Stress-per-point values”. Considering
that we should take into account stress per point values (Borg and Mair (2017)) and Shepard
diagram (Mair, Borg, and Rusch (2016); De Leeuw and Mair (2015)) for classic-to-classic and
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symbolic-to-classic approaches or the I-Stress per box index (ispb) and the I-dist diagram for
symbolic-to-symbolic approach.

1.4. Criteria for selection of the optimal MDS procedure

To solve the problem of choosing the optimal multidimensional scaling procedure in:

• Classic-to-classic and symbolic-to-classic approaches two criteria were applied in md-

sOpt package: Kruskal’s Stress-1 (standardized residual sum of squares) fit measure
and the Hirschman-Herfindahl HHI index, calculated based on Stress per point values
(spp).

• Symbolic-to-symbolic approach two criteria were applied in mdsOpt package: I-Stress

fit measure and the Hirschman-Herfindahl HHI index, calculated based on I-Stress per
box index values (ispb).

1.5. Package mdsOpt versus other packages

The algorithms implemented in the mdsOpt package have not been used in other R program
packages so far and it can be treated as a complementary package for well-known libraries
smacof (Mair, De Leeuw, Borg, and Groenen (2019); De Leeuw and Mair (2009)) and smds

(Terada and Groenen (2015)), extending theirs possibilities. The relationships between md-

sOpt and other R packages present Table 1.

Additionally mdsOpt contain functions for calculation of I-Stress per box index (ispb) and
charting I-dist diagram for interval-valued data.

2. Selection of the optimal multidimensional scaling procedure

The article proposes a solution that allows the optimal multidimensional scaling procedure,
for metric and interval-valued data, to be chosen.

2.1. Basic decision problems

For classic-to-classic and symbolic-to-classic approaches the study uses the function smacof-
Sym of smacof package of R program. In smacofSym function basic decision problems involve
the following selection:

– normalization method (the analysis include 18 normalization methods – see Table 2),

– distance measure: 5 for metric data (Manhattan, Euclidean, Chebyshev, Squared Euclidean,
GDM11 – see e.g. Everitt, Landau, Leese, and Stahl (2011), pp. 49-50) and 4 for interval-
valued data (see Table 3),

– MDS model (the analysis include 3 MDS models: ratio, interval, polynomial).

For symbolic-to-symbolic approach the study uses the function IMDS of smds package. In
function IMDS basic decision problems involve the following selection:

– normalization method – the analysis include 18 normalization methods,

1 Cf. Jajuga, Walesiak, and Bąk (2003).



Marek Walesiak, Andrzej Dudek 5

MDS approach

Classic-to-classic Symbolic-to-classic Symbolic-to-symbolic

Type of data

metric (ratio, interval) interval-valued interval-valued

Functions of mdsOpt package

optSmacofSym_mMDS optSmacofSymInterval optIscalInterval

Decision problem 1: normalization method

clusterSim

(data.Normalization)

base (R Core Team (2019))
(scale)

clusterSim

(interval_normalization)
clusterSim

(interval_normalization)

Decision problem 2: distance measure

Manhattan, Euclidean,
Chebyshev, Squared
Euclidean, GDM1
stats (R Core Team
(2019)) (dist)

clusterSim (dist.GDM)

Ichino-Yaguchi, Euclidean
Ichino-Yaguchi, Hausdorff,
Euclidean Hausdorff
clusterSim (dist.Symbolic)

–

Decision problem 3: MDS model / optimization method

ratio, interval, polynomial
smacof (smacofSym)

ratio, interval, polynomial
smacof (smacofSym)

majorization-minimization
(MM), quasi-Newton (BFGS)
smds (IMDS)

Table 1: Relationships between mdsOpt and other R packages

– optimization method – the analysis include 2 methods: the majorization minimization
algorithm “MM” (Groenen et al. (2006), p. 366); quasi-Newton method “BFGS” (Nash
(1990), chapter 15).

Table 2 presents normalization methods, given by linear formula (4), which were used in the
selection of the optimal MDS procedure (see Jajuga and Walesiak (2000), pp. 106-107):

zij = bjxij + aj =
xij − Aj

Bj
=

1

Bj
xij −

Aj

Bj
(bj > 0), (4)

where: xij – the value of j-th variable for the i-th object, zij – the normalized value of j-th
variable for the i-th object, Aj – shift parameter to arbitrary zero for the j-th variable, Bj –
scale parameter for the j-th variable.

The normalization of variables is carried out when the variables describing the analyzed
objects are metric or interval-valued. The purpose of normalization is to achieve the compa-
rability of variables (Milligan and Cooper (1988)).

For classical metric data an observation on the j-th variable for the i-th object in a data
matrix X = [xij ]n×m is expressed as one real number. Column 1 in Table 2 presents the type
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Type Method
Parameter

Bj Aj

n1 Standardization sj xj

n2 Positional standardization madj medj

n3 Unitization rj xj

n3a Positional unitization rj medj

n4 Unitization with zero minimum rj min
i

{xij}

n5 Normalization in range [–1; 1] max
i

|xij − xj | xj

n5a Positional normalization in range [–1; 1] max
i

|xij − medj | medj

n6

Quotient
transformations

sj 0

n6a madj 0

n7 rj 0

n8 max
i

{xij} 0

n9 xj 0

n9a medj 0

n10
∑n

i=1
xij 0

n11
√∑n

i=1
x2

ij 0

n12 Normalization
√∑n

i=1
(xij − xj)2 xj

n12a Positional normalization
√∑n

i=1
(xij − medj)2 medj

n13 Normalization with zero being the central point rj/2 mj

xj – mean for the j-th variable, sj – standard deviation for the j-th variable, rj – range for

the j-th variable, mj =

(
max

i
{xij} + min

i
{xij}

)
/2 – mid-range for the j-th variable, medj =

med
i

(xij) – median for the j-th variable, madj = mad
i

(xij) – median absolute deviation for

the j-th variable.

Table 2: Normalization methods (based on Jajuga and Walesiak (2000); Walesiak (2018))

of normalization method adopted as the function data.Normalization of clusterSim package
(Walesiak and Dudek (2019)). Similar procedure for data normalization is available as the
function scale of base package. In this function the researcher defines the parameters Aj and
Bj .

For interval-valued variables each cell xij in a data table represents the interval xij = [xl
ij , xu

ij ]

(xl
ij≤xu

ij). Interval-valued data require a special normalization approach. The lower and
upper bound of the interval of the j-th variable for n objects are combined into one vector
containing 2n observations. This approach makes it possible to apply normalization methods
used for classical metric data. Other approaches to normalization of interval-valued data are
presented in (Młodak (2014)). After normalization process observations on each variable
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from 1 to n create the lower bound of intervals while observations from n + 1 to 2n create
the upper bound. The data were normalized using the interval_normalization function from
the clusterSim package.

Table 3 presents selected distance measures for interval-valued data that have been used in
the selection of the optimal multidimensional scaling procedure. The methods for calculating
these distances are available in dist.symbolic function of clusterSim package.

Symbol Name Distance measure δik (Z)

U_2_q1
Ichino-Yaguchi

q = 1, γ = 0.5

∑m
j=1

φ (zij , zkj)

U_2_q2
Euclidean Ichino-Yaguchi

q = 2, γ = 0.5

√∑m
j=1

φ (zij , zkj)
2

H_q1
Hausdorff
q = 1

∑m
j=1

[
max

(∣∣∣zl
ij − zl

kj

∣∣∣ ,
∣∣∣zu

ij − zu
kj

∣∣∣
)]

H_q2
Euclidean Hausdorff
q = 2

{∑m
j=1

[
max

(∣∣∣zl
ij − zl

kj

∣∣∣ ,
∣∣∣zu

ij − zu
kj

∣∣∣
)]

2
}

1/2

φ (zij , zkj) = |zij ⊕ zkj | − |zij ⊗ zkj | + γ (2· |zij ⊗ zkj | − |zij | − |zkj |); || – length of interval, zij ⊕
zkj = zij∪zkj , zij ⊗ zkj = zij∩zkj .

Table 3: Distance measures for interval-valued data (based on Billard and Diday (2006), pp.
244-246; Esposito et al. (2000), pp. 165-185; Ichino and Yaguchi (1994))

2.2. Stages in selecting the optimal procedure for MDS

The initial point of the application of smacofSym function is to determine e.g. the following
values of arguments (all parameters can be changed by the user):

– initial configuration (“torgerson” classical scaling starting solution),

– convergence criterion (eps=1e-06),

– maximum number of iterations (itmax=1000).

The initial point of the application of IMDS function of smds package is to determine e.g.
the following values of arguments (all parameters can be changed by the user):

– initial configuration (the hyper-rectangles with centres assigned as the result of classical
multidimensional scaling of primary space interval centres and vertices distant from the centres
by one),

– convergence criterion (eps=1e-5),

– maximum number of iterations (maxit=1000).

Selecting the optimal procedure for multidimensional scaling takes place in several stages:

1. Set the number of dimensions in MDS to two (ndim=2).

2. Taking into account in the analysis:
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• In classic-to-classic approach 10 normalization methods, 5 distance measures and 4 MDS
models (mspline model – polynomial function of second and third degree), there are 200
multidimensional scaling procedures.

Due to the fact that the groups of A, B, C and D (see Table 4) normalization methods give
identical multidimensional scaling results, further analysis covers the first methods of the
identified groups (n1, n2, n3, n9), as well as the other methods (n5, n5a, n8, n9a, n11, n12a).

• In symbolic-to-classic approach 18 normalization methods, 4 distance measures for
interval-valued data and 4 MDS models, there are 288 multidimensional scaling pro-
cedures.

• In symbolic-to-symbolic approach 18 normalization methods and 2 optimization meth-
ods there are 36 multidimensional scaling procedures.

Groups
Normalization methods

GDM1 distance Minkowski distances, squared Euclidean distance*

A n1, n6, n12 n1, n6, n12

B n2, n6a n2, n6a

C n3, n3a, n4, n7, n13 n3, n3a, n4, n7, n13

D n9, n10 n9, n10

* after dividing distances in each distance matrix by the maximum value.

Table 4: The groups of normalization methods resulting in identical distance matrices (Wale-
siak and Dudek (2017))

3. Multidimensional scaling is performed for each procedure separately. It then orders the
procedures by increasing:

• Stress-1 fit measure in classic-to-classic and in symbolic-to-classic approaches (see e.g.
Borg et al. (2018), p. 32):

Stress-1p =

√∑

i<k

[
dik (V) − d̂ik

]
2

/
∑

i<k

d2

ik (V), (5)

where: p – multidimensional scaling procedure number, d̂ik – d-hats, disparities, target dis-
tances or pseudo distances (see Borg and Groenen (2005), p. 199), d̂ik = f(δik) by defining f
in different ways (ratio, interval, polynomial MDS).

• I-Stress fit measure in symbolic-to-symbolic approach (Groenen et al. (2006), p. 363):

I-Stressp =

∑n
i<k wik [δu

ik − du
ik ]2 +

∑n
i<k wik

[
δl

ik − dl
ik

]
2

∑n
i<k wik [δu

ik ]2 +
∑n

i<k wik

[
δl

ik

]2
, (6)

where: δl
ik , δu

ik (dl
ik , du

ik) – the lower and upper bound of the dissimilarity in m-dimensional
space (q-dimensional space), wik – nonnegative weight (in general wik = 1).
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4. Based on Stress per point (spp) values (Stress contribution in percentages), the Hirschman-
Herfindahl index is calculated (Herfindahl (1950); Hirschman (1964)) in classic-to-classic
and in symbolic-to-classic approaches:

HHI p =
n∑

i=1

spp2

pi , (7)

where: i, k = 1, . . ., n – object number.

Based on Interval stress per box (ispb) values (Interval Stress contribution in percentages),
the Hirschman-Herfindahl index is calculated in symbolic-to-symbolic approach:

HHI p =
n∑

i=1

ispb2

pi , (8)

where:

ispbi =

(∑n
k=1

wik [δu
ik − du

ik ]2 +
∑n

k=1
wik

[
δl

ik − dl
ik

]
2
)

/n

∑n
i=1

[(∑n
k=1

wik [δu
ik − du

ik ]2 +
∑n

k=1
wik

[
δl

ik − dl
ik

]2
)

/n
] ·100

The HHI p index takes values in the interval
[

10,000

n ; 10, 000
]
. The value 10,000

n means

that the distribution of errors for individual objects is uniform. Maximal value appears when
summary fit measure (Stress-1, I-Stress) is the result of loss assigned only to one object. For
other objects, loss function will be equal to zero. The optimal situation for a multidimensional
scaling procedure is the minimal value of the HHI p index.

5. The chart with Stress-1p (I-Stressp) fit measure value on x-axis and HHI p index on
y-axis for p procedures of multidimensional scaling is drawn.

6. The maximal acceptable value of Stress-1 (I-Stress) is assumed as cs (may be calculated
as a midrange or median of Stress-1 (I-Stress)). For all multidimensional scaling
procedures, for which Stress-1p≤cs (I-Stressp≤cs), we choose the one for each occurs
min

p
{HHI p}.

7. Multidimensional scaling for the selected procedure is performed along with checkout
that in the sense of interpretation results are acceptable. Based on the Shepard diagram
(I-dist diagram) and Stress (I-Stress) plot, the correctness of the model scaling will
be evaluated. If the results are acceptable the procedure ends, otherwise it returns to
step 1 and multidimensional scaling for three dimensions is performed (ndim=3).

3. Using the package – examples

3.1. Metric data (classic-to-classic approach)

In first example we will find the optimal solution for classic-to-classic MDS approach. The
package mdsOpt contains dataset called data_lower_silesian referring to the attractiveness
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level of 31 objects (29 Lower Silesian counties, Pattern and Anti-pattern object) described by
16 metric variables:

x1 – beds in hotels per 1 km2 of a county area,

x2 – number of nights spent daily by resident tourists per 1,000 inhabitants of a county,

x3 – number of nights spent daily by foreign tourists per 1,000 inhabitants of a county,

x4 – gas pollution emission in tons per 1 km2 of a county area,

x5 – number of criminal offences and crimes against life and health per 1,000 inhabitants of
a county,

x6 – number of property crimes per 1,000 inhabitants of a county,

x7 – number of historical buildings per 100 km2 of a county area,

x8 – % of a county forest cover,

x9 – % share of legally protected areas within a county area,

x10 – number of events as well as cultural and tourist ventures in a county,

x11 – number of natural monuments calculated per 1 km2 of a county area,

x12 – number of tourist economy entities per 1,000 inhabitants of a county (natural and legal
persons),

x13 – expenditure of municipalities and counties on tourism, culture and national heritage
protection as well as physical culture per 1 inhabitant of a county in Polish zloty amounts
(PLN),

x14 – cinema attendance per 1,000 inhabitants of a county,

x15 – museum visitors per 1,000 inhabitants of a county,

x16 – number of construction permits (hotels and accommodation buildings, commercial
and service buildings, transport and communication buildings, civil and water engineering
constructions) issued in the county in the years 2011-2012, per 1 km2 of the county area.

The statistical data were collected in 2012 and come from the Local Data Bank of the Statistics
Poland (GUS); the data for x7 variable only were obtained from the regional conservation
officer. Variables x1-x3, x7, x8, x10-x16 represent stimulants (where higher values are more p

rred), variables x4, x5 and x6 take the form of destimulants (where lower values are more
preferred), and x9 is a nominant (nominal value is the best value and lies within range of
variable – 50% level was adopted as the optimal one). Variable x9 was transformed into a
stimulant. The coordinates of a Pattern object cover the most preferred preference variable
values (maximum for stimulant, minimum for destimulant). The coordinates of an Anti-
pattern object cover the least preferred preference variable values (minimum for stimulant,
maximum for destimulant).

First we load package and dataset.

R> library(mdsOpt)

R> data(data_lower_silesian)

Then set the normalizations methods, distance measures and MDS models used in selection
of optimal MDS procedure.
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R> metnor<-c("n1","n2","n3","n5","n5a","n8","n9","n9a","n11","n12a")

R> metscale<-c("ratio","interval","mspline")

R> metdist<-c("euclidean","manhattan","seuclidean","maximum","GDM1")

The normalizations methods, distance measures and MDS models are used in next step (please
notice that model mspline is used twice with spline.degree parameter equals 2 or 3) for
selecting the optimal multidimensional scaling procedure.

R> res<-optSmacofSym_mMDS(data_lower_silesian,normalizations=metnor,

+ distances=metdist,mdsmodels=metscale,spline.degrees=c(2:3),outDec=".",

+ stressDigits=6,HHIDigits=2)

The results contain 200 rows (10 normalization methods x 5 distance measures x 4 MDS
models) each describing one procedure with the six columns: Normalization method, MDS
model, Spline degree, Distance measure, STRESS 1, HHI spp. The values are ordered by
STRESS 1 value.

Before displaying the result we need to change the max.print system option to value greater or
equals 1200 (10 normalization methods x 5 distance measures x 4 MDS models x 6 columns).

R> options(max.print=1200)

R> print(res)

Normalization MDS model Spline Distance STRESS 1 HHI spp

method degree measure

[1,] "n9a" "mspline" "3" "euclidean" "0.026339" " 821.90"

[2,] "n9a" "mspline" "2" "euclidean" "0.026451" " 856.47"

[3,] "n9a" "mspline" "2" "seuclidean" "0.026967" " 791.68"

...

[198,] "n8" "ratio" "" "maximum" "0.261772" " 414.10"

[199,] "n3" "ratio" "" "maximum" "0.265246" " 414.13"

[200,] "n5" "ratio" "" "maximum" "0.266663" " 404.71"

Then we convert Stress-1 and HHI values to numeric vectors.

R> stress<-as.numeric(res[,"STRESS 1"])

R> hhi<-as.numeric(res[,"HHI spp"])

The maximal acceptable cs value is calculated as a mid-range of Stress-1 values.

R> cs<-(min(stress)+max(stress))/2

R> print(cs)

[1] 0.146501

Then the best MDS procedure from all combinations is chosen.
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# Elements of optimal MDS procedure

R> t<-findOptimalSmacofSym(res,cs)

R> print(t)

\$`Nr`

[1] 117

\$Normalization_method

[1] "n12a"

\$MDS_model

[1] "interval"

\$Spline_degree

[1] ""

\$Distance_measure

[1] "euclidean"

\$STRESS_1

[1] 0.132176

\$HHI_spp

[1] 420.74

In next step we can plot dependency between Stress-1 and HHI index (see Figure 1) with best
solution marked by red circle and finally we choose the MDS solution that satisfies condition
Stress-1≤cs and minimizes HHI .

# Plot dependency between Stress-1 and HHI index

R> plot(stress[-t$Nr],hhi[-t$Nr],xlab="Stress-1",ylab="HHI",

+ type="n",font.lab=3)

R> text(stress[-t$Nr],hhi[-t$Nr],labels=(1:nrow(res))[-t$Nr])

R> abline(v=cs,col="red")

R> points(stress[t$Nr],hhi[t$Nr],cex=5,col="red")

R> text(stress[t$Nr],hhi[t$Nr],labels=(1:nrow(res))[t$Nr],col="red")

The results of optimal multidimensional scaling procedure (117), via below script, for 31
objects (29 Lower Silesian counties, Pattern and Anti-pattern object) according to the level
of tourist attractiveness are presented on Figure 2.

R> library(mdsOpt)

R> data(data_lower_silesian)

R> z<-data.Normalization(data_lower_silesian,type="n12a")

R> d<-dist(z,method="euclidean")

R> res<-smacofSym(delta=d,ndim=2,type="interval")

R> par(mfrow=c(2,2),pty="s")

# Shepard Diagram

R> plot(res,plot.type="Shepard",cex.main=0.8,cex.lab=0.8,cex.axis=0.8,cex=0.2)

# Stress plot

R> spp<-sort(res$spp,decreasing=TRUE)

R> names(spp)<-order(res$spp,decreasing=TRUE)
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Figure 1: The values of Stress-1 fit measure and HHI index
for p multidimensional scaling procedures (with best solution marked by red circle)

R> plot(spp,main="Stress plot",ylab="Stress contribution in percents",

+ xlab="Objects",ylim=c(-2,30),cex=0.4,cex.main=0.8,cex.lab=0.8,cex.axis=0.8)

R> text(spp,pos=3,names(spp),cex=0.4)

# Configuration plot with bubble

R> bubsize=res$spp/length(spp)*4

R> plot(res$conf,main="Configuration plot with bubble",xlab="Dimension 1",

+ ylab="Dimension 2",cex=bubsize,cex.main=0.8,cex.lab=0.8,cex.axis=0.8,asp=1)

R> text(res$conf[,1],res$conf[,2],pos=3,1:nrow(res$conf),cex=0.7)

R> arrows(res$conf[nrow(z),1],res$conf[nrow(z),2],res$conf[nrow(z)-1,1],

+ res$conf[nrow(z)-1,2],length=0.05,col="black")

R> plot.new()

R> legend("center",paste(1:nrow(res$conf),rownames(res$conf)),

+ bty="n",cex=0.7,ncol=2,title="Legend")

Figure 2 (Configuration plot with bubble) presents additional the quota of each object in total
error is shown by the size of radius of the circle around each object. Shepard Diagram and
Stress plot confirm the correctness of the chosen scaling model. On Figure 2 (Configuration
plot with bubble), the axis of the set, which means the shortest connection between Pattern
and Anti-pattern object, is designated. It indicates the level of development of the tourist
attractiveness of counties. Objects that are closer to Pattern object have higher level of tourist
attractiveness.

To opposite to the best MDS procedure (117) we show the results for the one of the worst
procedures (13): n9a normalization method, mspline of third degree MDS model, maximum
(Chebyshev) distance. In relation to the previous script, changes in lines 3-5 and in Shepard
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Figure 2: The results of multidimensional scaling (procedure 117) of 31 objects
(29 Lower Silesian counties, Pattern and Anti-pattern) according to the level of tourist at-
tractiveness

diagram are required.

R> z<-data.Normalization(data_lower_silesian,type="n9a")

R> d<-dist(z,method="maximum")

R> res<-smacofSym(delta=d,ndim=2,type="mspline",spline.degree=3)

...

# Shepard Diagram

R> plot(res,plot.type="Shepard",cex.main=0.8,cex.lab=0.8,cex.axis=0.8,cex=0.2)

R> t1<-as.matrix(res$delta)

R> t2<-as.matrix(res$confdist)

R> text(t1[7,3],t2[7,3],pos=4,"7,3",cex=0.6)

R> text(t1[31,3],t2[31,3],pos=1,"31,3",cex=0.6)

The results of multidimensional scaling for procedure 13 according to the level of tourist
attractiveness are presented on Figure 3.
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Figure 3: The results of multidimensional scaling (procedure 13) of 31 objects
(29 Lower Silesian counties, Pattern and Anti-pattern) according to the level of tourist at-
tractiveness

Overall Stress for procedure 13 (0.0381) is much better than for procedure 117 (0.1322). Figure
3 (Stress plot) exhibits that objects Jeleniogorski (3), Anti-pattern (31) and Zgorzelecki (7)
contribute most to the overall Stress (56.62%). It also shows (see Shepard Diagram – in the
lower left-hand corner) that two points (distance between Jeleniogorski county (3) and Anti-
pattern object (31); Jeleniogorski county (3) and Zgorzelecki (7) county) are outliers. These
outliers contribute over-proportionally to the total Stress. MDS configuration (Figure 3 –
Configuration plot with bubble) does not represent all proximities equally good. Jeleniogorski
county (3) is one of the best of Lower Silesian counties according to the level of tourist
attractiveness. In Configuration plot with bubble this county lies near Anti-pattern object
(the worst object). The greater the value of the HHI p index, the worse is the effect of
multidimensional scaling in terms of representation real relationships between objects.

3.2. Interval-valued data (symbolic-to-symbolic approach)

In second example we will find the optimal solution for symbolic-to-symbolic MDS approach.
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The dataset data_symbolic_interval_polish_voivodships comes from clusterSim package.
For the evaluation of tourist attractiveness of Polish voivodships (provinces) in the year 2016
a two-stage data collection has been carried out.

Step 1. Data on tourist attractiveness were collected for 380 Polish counties for the following
metric variables:

x1 – beds in hotels per 1,000 inhabitants of a county,

x2 – number of nights spent daily by resident tourists per 1,000 inhabitants of a county,

x3 – number of nights spent daily by foreign tourists per 1,000 inhabitants of a county,

x4 – dust pollution emission in tons per 10 km2 of a county area,

x5 – gas pollution emission in tons per 1 km2 of a county area,

x6 – number of criminal offences, crimes against life and health and property crimes per 1,000
inhabitants of a county,

x7 – forest cover of the county in %,

x8 – participants of mass events per 1,000 inhabitants of a county,

x9 – number of tourist economy entities (sections: I, N79) registered in the system REGON
per 1,000 inhabitants of a county.

Three variables x4, x5 i x6 can be treated as destimulants. All other variables are stimulants.

Step 2. Data table has been aggregated up to the voivodships with interval-valued data as
an a result. The lower bound of the interval for each variable was obtained by calculating the
first quartile based on data from the counties. In turn, the upper bound of the interval was
obtained by calculating the third quartile. In result dataset contains data about 18 objects
(16 voivodships, Pattern and Anti-pattern) described by 9 interval-valued variables.

First we load package mdsOpt and dataset (please notice that there is no need to load clus-

terSim package – it is auto-loaded automatically by mdsOpt).

R> library(mdsOpt)

R> data("data_symbolic_interval_polish_voivodships")

R> data<-data_symbolic_interval_polish_voivodships

Then set the normalizations methods and optimization methods used in selection of optimal
MDS procedure.

R> metnor<-c("n1","n2","n3","n3a","n4","n5","n5a","n6","n6a","n7","n8","n9",

+ "n9a","n10","n11","n12","n12a","n13")

R> methods<-c("MM","BFGS")

In next step we run I-scal algorithm for all combinations of normalization methods and
optimization methods with default parameters.

R> res<-optIscalInterval(x=data,dataType="simple",normalizations=metnor,

+ optMethods=methods,outDec=".",stressDigits=6,HHIDigits=2)

initial value 568.744280

iter 100 stress = 33.568175
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....

final (iter 1000) stress = 9.392537

stopped after 1000 iterations

initial value 217.126687

final value 3.943757

converged

R> print(res)

Normalization method Opt method I-STRESS HHI spb

[1,] "n9a" "MM" "0.000087" " 746.31"

[2,] "n9a" "BFGS" "0.000108" "1156.36"

[3,] "n2" "BFGS" "0.000200" " 863.13"

...

[34,] "n4" "MM" "0.007690" "1316.30"

[35,] "n12" "MM" "0.008430" "1148.12"

[36,] "n12a" "MM" "0.009668" "1058.55"

The values are ordered by I-Stress value. Then we convert I-Stress and HHI values to numeric
vectors.

R> Istress<-as.numeric(res[,"I-STRESS"])

R> hhi<-as.numeric(res[,"HHI spb"])

The maximal acceptable cs value is calculated as an median of I-Stress values.

R> cs<-median(Istress)

R> print(cs)

[1] 0.003215

Then the best MDS procedure from all combinations is chosen.

# Elements of optimal MDS procedure

R> t<-findOptimalIscalInterval(res,cs)

R> print(t)

$Nr

[1] 5

$Normalization_method

[1] "n2"

$Opt_method

[1] "MM"

$I_STRESS

[1] 0.000268

$HHI_spb

[1] 743.61
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In next step we can plot dependency between I-Stress and HHI index (see Figure 4) with best
solution marked by red circle and finally we choose the MDS solution that satisfies condition
I-Stress≤cs and minimizes HHI .

# Plot dependency between I-Stress and HHI index

R> plot(Istress[-t$Nr],hhi[-t$Nr], xlab="I-Stress",ylab="HHI",

+ type="n",font.lab=3)

R> text(Istress[-t$Nr],hhi[-t$Nr],labels=(1:nrow(res))[-t$Nr])

R> abline(v=cs,col="red")

R> points(Istress[t$Nr],hhi[t$Nr], cex=5,col="red")

R> text(Istress[t$Nr],hhi[t$Nr],labels=(1:nrow(res))[t$Nr],col="red")
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Figure 4: The values of I-Stress fit measure and HHI index
for p multidimensional scaling procedures (with best solution marked by red circle)

Now we will display the results of the best MDS procedure (5). First we need to load smds

library.

R> library(smds)

The results of optimal multidimensional scaling procedure (5), via below script, for 18 objects
(16 voivodships, Pattern and Anti-pattern object) according to the level of tourist attractive-
ness are presented on Figure 5.

R> library(mdsOpt)

R> data("data_symbolic_interval_polish_voivodships")

R> data<-data_symbolic_interval_polish_voivodships
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R> normalized<-interval_normalization(x=data,dataType="simple",type="n2")

R> x<-normalized$simple[,,1];y<-normalized$simple[,,2]

R> my.idiss<-idistBox(X=(x+y)/2,R=(y-x)/2)

R> cmat<-(my.idiss[2,,]+my.idiss[1,,])/2

R> iniX<-cmdscale(as.dist(cmat),k=2)

R> n=dim(my.idiss)[2]

R> iniR<-matrix(rep(1,n*2),nrow=n,ncol=2)

R> res.box<-IMDS(IDM=my.idiss,p=2,model="box",opt.method="MM",

+ report=1001,ini=list(iniX,iniR))

R> x_l<-res.box$EIDM[1,,];x_u<-res.box$IDM[2,,]

R> y_l<-res.box$IDM[1,,];y_u<-res.box$EIDM[2,,]

R> spb<-ispb(res.box$EIDM,my.idiss)

R> HHI<-sum(spb^2)

R> par(mfrow=c(2,2),pty="s")

# I-dist diagram

R> plot(x_u,y_u, main="I-dist diagram",

+ ylab="The lower (red) and upper (green)\n configuration distances",

+ xlab="The lower (red) and upper\n (green) dissimilarities",

+ col="green",cex.main=0.8,cex.lab=0.8,cex.axis=0.8,cex=0.5)

R> points(x_l,y_l,col="red",cex=0.5)

# I-Stress plot

R> w<-sort(spb,decreasing=TRUE)

R> names(w)<-order(spb,decreasing=TRUE)

R> plot(w,main="I-Stress plot",xlab="Object",ylab="ispb in percents",

+ ylim=c(-2,25),cex=0.4,cex.main=0.8,cex.lab=0.8,cex.axis=0.8)

R> text(w,pos=3,names(w),cex=0.6)

# Configuration plot

R> x<-(res.box$X-res.box$R);y<-(res.box$X+res.box$R)

R> plot(NULL,xlim=c(min(x[,1]),max(y[,1])),ylim=c(min(x[,2]),max(y[,2])),

+ pch=1,cex=0.4,main="Configuration plot",xlab="Dimension 1",

+ ylab="Dimension 2",cex.main=0.8,cex.lab=0.8,asp=1,cex.axis=0.8)

R> rect(x[,1],x[,2],y[,1],y[,2])

R> text(res.box$X[,1],res.box$X[,2],labels=1:18,cex=0.8)

R> plot.new()

R> legend("center",legend=paste(1:dim(data)[[1]],attr(data,"row.names")),

+ bty="n",ncol=2,cex=0.65,title="Legend")

Figure 5 (I-dist diagram and I-Stress plot) confirms the correctness of the MDS results
(Configuration plot). Objects that are closer to pattern of development have higher level of
tourist attractiveness.

To opposite to the best MDS procedure (5) we show, via below script, the results for the
one of the worst procedures (12) according to HHI index. In relation to the previous script,
changes in lines 5, 13-14 and I-dist diagram are required.

R> normalized<-interval_normalization(x=data,dataType="simple",type="n5a")

...

R> res.box<-IMDS(IDM=my.idiss,p=2,model="box",opt.method="BFGS",
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Figure 5: The results of multidimensional scaling (procedure 5) of 18 objects
(16 voivodships, Pattern and Anti-pattern) according to the level of tourist attractiveness

+ report=1001,ini=list(iniX,iniR))

...

# I-dist diagram

R> plot(x_u,y_u, main="I-dist diagram",

+ ylab="The lower (red) and upper (green)\n configuration distances",

+ xlab="The lower (red) and upper\n (green) dissimilarities",col="green",

+ cex.main=0.8,cex.lab=0.8,cex.axis=0.8,cex=0.5)

R> points(x_l,y_l,col="red",cex=0.5)

R> text(x_u[17,16],y_u[17,16],pos=2,"17,16",cex=0.6)

R> text(x_u[17,4],y_u[17,4],pos=1,"17,4",cex=0.6)

R> text(x_l[16,9],y_l[16,9],pos=3,"16,9",cex=0.6)

The results of multidimensional scaling for procedure 12 according to the level of tourist
attractiveness are presented on Figure 6.

Figure 6 (I-Stress plot) exhibits that objects Lubuskie (4), Pattern (17) and Zachodniopo-
morskie (16) contribute most to the overall I-Stress (57,68%). It also shows (see Figure
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Figure 6: The results of multidimensional scaling (procedure 5) of 18 objects
(16 voivodships, Pattern and Anti-pattern) according to the level of tourist attractiveness

6 – I-dist diagram) that some points (upper distances between Zachodniopomorskie (16)
voivodship and Pattern object (17); Pattern object (17) and Lubuskie voivodship (4); lower
distance between Zachodniopomorskie (16) voivodship and Podkarpackie voivodship (9)) are
outliers. These outliers contribute over-proportionally to the total I-Stress. MDS con-
figuration (Figure 6 – Configuration plot) does not represent all proximities equally good.
Zachodniopomorskie (16) is the best of Polish voivodships according to the level of tourist
attractiveness. In Figure 6 (Configuration plot) this voivodship lies further from Pattern
object than Lubuskie (4). The greater the value of the HHI p index, the worse is the effect of
multidimensional scaling in terms of representation real relationships between objects.

4. Summary

The article proposes a methodology that allows the selection of the optimal MDS procedure for
classical metric and interval-valued data. For classic-to-classic approach we choose best MDS
procedure due to the used methods of normalization, distance measures and scaling models
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carried out on the basis of the metric data matrix. On the basis of this methodology research
results are illustrated by first example to find the optimal procedure for multidimensional
scaling of set of objects representing 29 counties in Lower Silesia according to the level of
tourist attractiveness.

For symbolic-to-classic approach we choose the best MDS procedure due to the used methods
of normalization, distance measures for interval-valued data and scaling models carried out
on the basis of the interval-valued data table.

For symbolic-to-symbolic approach we choose the best MDS procedure due to the used meth-
ods of normalization and optimization methods carried out on the basis of the interval-valued
data table. On the basis of this methodology research results are illustrated by second exam-
ple to find the optimal procedure for multidimensional scaling of set of objects representing
16 Polish voivodships according to the level of tourist attractiveness.

To solve the problem of choosing the optimal multidimensional scaling procedure two criteria
were applied in mdsOpt package Kruskal’s Stress-1 fit measure and the Hirschman-Herfindahl
HHI index (in classic-to-classic and symbolic-to-classic approaches) and I-Stress fit measure
and the Hirschman-Herfindahl HHI index (in symbolic-to-symbolic approach).

In step 6 the maximal acceptable value of fit measures Stress-1 and I-Stress has been arbitrary
assumed. It is not determined how much error distribution for each object may deviate
from the uniform distribution. Among the procedures of multidimensional scaling for which
Stress-1≤cs (I-Stress≤cs) the one for which occurs min

p
{HHI p} is selected. This constraint

does not essentially limit the presented proposal, as additional criteria for acceptability such
as Shepard diagram (De Leeuw and Mair (2015)) and Stress plot or I-dist diagram and
I-Stress plot confirm the correctness of the MDS results.
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