Package ‘mildsvim’

October 13, 2022

Type Package
Title Multiple-Instance Learning with Support Vector Machines
Version 0.4.0

Description Weakly supervised (WS), multiple instance (MI) data lives in
numerous interesting applications such as drug discovery, object
detection, and tumor prediction on whole slide images. The 'mildsvm'
package provides an easy way to learn from this data by training
Support Vector Machine (SVM)-based classifiers. It also contains
helpful functions for building and printing multiple instance data
frames. The core methods from 'mildsvm' come from the following
references: Kent and Yu (2022) <arXiv:2206.14704>; Xiao, Liu, and Hao
(2018) <doi:10.1109/TNNLS.2017.2766164>; Muandet et al. (2012)
<https://proceedings.neurips.cc/paper/2012/file/
9bf31c7ff062936a96d3c8bd1f8f2ff3-Paper.pdf>;

Chu and Keerthi (2007) <doi:10.1162/nec0.2007.19.3.792>; and Andrews

et al. (2003)

<https://papers.nips.cc/paper/
2232-support-vector-machines-for-multiple-instance-learning.pdf>.
Many functions use the 'Gurobi' optimization back-end to improve the
optimization problem speed; the 'gurobi' R package and associated

software can be downloaded from <https://www.gurobi.com> after

obtaining a license.

License MIT + file LICENSE
URL https://github.com/skent259/mildsvm

BugReports https://github.com/skent259/mildsvm/issues
Depends R (>=3.5.0)

Imports dplyr, e1071, kernlab, magrittr, mvtnorm, pillar, pROC, purrr,
rlang, stats, tibble, tidyr, utils

Suggests covr, gurobi, Matrix, testthat
Config/testthat/edition 3

Encoding UTF-8

LazyData true

https://arxiv.org/abs/2206.14704
https://doi.org/10.1109/TNNLS.2017.2766164
https://proceedings.neurips.cc/paper/2012/file/9bf31c7ff062936a96d3c8bd1f8f2ff3-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/9bf31c7ff062936a96d3c8bd1f8f2ff3-Paper.pdf
https://doi.org/10.1162/neco.2007.19.3.792
https://papers.nips.cc/paper/2232-support-vector-machines-for-multiple-instance-learning.pdf
https://papers.nips.cc/paper/2232-support-vector-machines-for-multiple-instance-learning.pdf
https://www.gurobi.com
https://github.com/skent259/mildsvm
https://github.com/skent259/mildsvm/issues

R topics documented:

RoxygenNote 7.1.2

NeedsCompilation no

Author Sean Kent [aut, cre] (<https://orcid.org/0000-0001-8697-9069>),

Yifei Liou [aut]

Maintainer Sean Kent <skent259@gmail.com>
Repository CRAN
Date/Publication 2022-07-14 09:00:04 UTC

R topics documented:

Index

as mild_df . ..o e 3
as mi_df . .o e 4
bag_instance_sampling Lo 5
build_fm 6
build_instance_feature e 7
classify_bags e e 8
CVUIMISVINL . o v v v v o o e e e e e e e e e e e e e 9
formatting e e e e 12
generate_mild_df L 13
kfm_exact e e 16
kfm_nystrom e 17
kme . . . e 19
ML .o e 20
mild . . . 21
mild_df e 22
1Y (o) oA 23
MISMIM . . . o v v e s e 26
001 15070 1 30
MISVINL_OTOVA . .« v v v v o v e e e e e e e e e e e e e e 33
mi_df ..o 36
OMISVITL + v v v v v v e i e 37
OFdMVNOIM v v vt i e e e e e e e e e e e e e e e e e e e 40
predict.CV_mMISVINL« o oL e e e e e e e 41
predict.mioro L. e e e e e e e e 42
predictmismm e e e e e e 44
predictmisvim L. e e e e e e e 46
Predict.miSVIM_Orova v v i u e e e e e e e e e e e e e 47
predict.omiSvm e e e e e e e e 49
predict.sSmm e e e e e e 50
PrediCt.SVOr_eXC v v v v it s e e e e e e 52
] 101 10 1 53
summarize_samples L. oL e e e 56
SVOT_EXC . v v v e e e e e e e e e s, 57

https://orcid.org/0000-0001-8697-9069

as_mild_df 3

as_mild_df Coerce to MILD data frame

Description

as_mild_df () turns an existing object, such as a data frame, into a MILD data frame, a data
frame with *mild_df’. This is in contrast with mild_df (), which builds a MILD data frame from
individual columns.

Usage
as_mild_df(
X)
bag_label = "bag_label”,
bag_name = "bag_name",
instance_name = "instance_name",
instance_label = "instance_label”,
)
Arguments
X A data-frame or similar to convert.
bag_label A character (default 'bag_label') describing which column refers to the bag
label.
bag_name A character (default 'bag_name') describing which column refers to the bag
name.

instance_name A character (default 'instance_name') describing which column refers to the
instance name.

instance_label A character (default 'instance_label') describing which column refers to the
instance labels. If NULL, no instance_labels will be used.

Arguments reserved for other methods.

Value
A ’mild_df” object. This data.frame-like has columns bag_label, bag_name, instance_name, and
potentially others. It also inherits from the 'tbl_df' and 'tbl' classes.

Author(s)

Sean Kent

See Also
mild_df () to build a mild_df object.

4 as_mi_df

Examples

x <- data.frame('bag_LABEL' = factor(c(1, 1, 0)),
'bag_name' = c(rep('bag_1"', 2), 'bag_2'),
'instance_name' = c('bag_1_inst_1', 'bag_1_inst_2', 'bag_2_inst_1'),
'X1' = c(-0.4, 0.5, 2),
"instance_label' = c(@, 1, 0))

df <- as_mild_df(x)

as_mi_df Coerce to MI data frame

Description

as_mi_df () turns an existing object, such as a data frame, into a MI data frame, a data frame with
’mi_df’. This is in contrast with mi_df (), which builds a MI data frame from individual columns.

Usage
as_mi_df(
X,
bag_label = "bag_label”,
bag_name = "bag_name”,
instance_label = "instance_label”,
)
Arguments
X A data-frame or similar to convert.
bag_label A character (default 'bag_label") describing which column refers to the bag
label.
bag_name A character (default 'bag_name') describing which column refers to the bag
name.

instance_label A character (default 'instance_label') describing which column refers to the
instance labels. If NULL, no instance_labels will be used.

Arguments reserved for other methods.

Value

A ’mi_df’ object. This data.frame-like has columns bag_label, bag_name, and potentially others.
It also inherits from the 'tbl_df' and 'tbl' classes.

Author(s)

Sean Kent

bag_instance_sampling 5

See Also
mi_df () to build a mi_df object.

Examples

x = data.frame('bag_LABEL' = factor(c(1, 1, 9)),
'bag_name' = c(rep('bag_1"', 2), 'bag_2'),
'X1' = c(-0.4, 0.5, 2),
'instance_label' = c(@, 1, 0))

df <- as_mi_df(x)

bag_instance_sampling Sample mild_df object by bags and instances

Description

From a mild_df object, return a sample that evenly pulls from the unique bags and unique instances
from each bag as much as possible. This is a form of stratified sampling to avoid randomly sampling
many rows from a few bags.

Usage

bag_instance_sampling(data, size)

Arguments

data A mild_df object containing the data.

size A non-negative integer giving the number of rows to choose from data.
Value

A numeric vector of length size indicating which rows were sampled.

Author(s)
Sean Kent
Examples
mil_data <- generate_mild_df(positive_dist = "mvnormal”,
nbag = 2,
ninst = 2,
nsample = 2)

rows <- bag_instance_sampling(mil_data, 6)
table(mil_data$bag_name[rows])

6 build_fm

table(mil_data$instance_name[rows])

rows <- bag_instance_sampling(mil_data, 4)
table(mil_datas$bag_name[rows])
table(mil_data$instance_name[rows])

build_fm Build a feature map on new data

Description

Feature maps provide a set of covariates in a transformed space. The build_fm() function creates
these covariates based on an object that specifies the feature map and a provided dataset.

Usage
build_fm(kfm_fit, new_data, ...)

S3 method for class 'kfm_exact'
build_fm(kfm_fit, new_data, ...)

S3 method for class 'kfm_nystrom'
build_fm(kfm_fit, new_data, ...)

Arguments
kfm_fit An object from a function in the kfm_x* family, such as kfm_nystrom().
new_data The data to generate features from.
Additional arguments for methods.
Value

A matrix of covariates in the feature space, with the same number of rows as new_data. If new_data
is amild_df object, build_fm() will also return the columns containing ’bag_label’, ’bag_name’,
’instance_name’.

Methods (by class)

e kfm_exact: Method for kfm_exact class.

e kfm_nystrom: Method for kfm_nystrom class.

Author(s)

Sean Kent

build_instance_tfeature 7

See Also

e kfm_nystrom() fit a Nystrom kernel feature map approximation.

* kfm_exact() create an exact kernel feature map.

Examples

df <- data.frame(
X1 = c(2, 3, 4,
X2 = c(1, 1.2, 1.3
X3 = rnorm(7)

)

5? 67 7! 8)7
, 1.4, 11,7, 1),

fit <- kfm_nystrom(df, m = 7, r = 6, kernel = "radial”, sigma = 0.05)
fm <- build_fm(fit, df)

fit <- kfm_exact(kernel = "polynomial”, degree = 2, const = 1)
fm <- build_fm(fit, df)

build_instance_feature
Flatten mild_df data to the instance level

Description

Flatten mild_df type of data to regular multiple instance data where each instance is a vector by
extracting distribution sample quantiles, mean and sd.

Usage
build_instance_feature(
data,
qtls = seq(@.05, 0.95, length.out = 10),
mean = TRUE,
sd = TRUE
)
Arguments
data A mild_df object.
gtls Quantiles to be extracted from each instance empirical distribution.
mean A logical for whether or not to extract mean.
sd A logical for whether or not to extract standard deviation.
Value

A summarized data.frame at the instance level.

8 classify_bags
Author(s)
Yifei Liu

See Also

summarize_samples() for a more general way to make a similar data frame.

Examples

mild_df1 <- generate_mild_df(positive_degree = 3, nbag = 3)
df1 <- build_instance_feature(mild_df1, seq(@.05, .95, length.out = 10))

classify_bags Classify y from bags

Description

Formally, this function applies max () on y for each level of bags.

Usage

classify_bags(y, bags, condense = TRUE)

Arguments
y A numeric, character, or factor vector of bag labels for each instance. Must
satisfy length(y) == nrow(x). Suggest that one of the levelsis 1, ’1’, or TRUE,
which becomes the positive class; otherwise, a positive class is chosen and a
message will be supplied.
bags A vector specifying which instance belongs to each bag. Can be a string, nu-
meric, of factor.
condense A logical (default TRUE) for whether to return classification at the level of unique
bags or not.
Value

a named vector of length length(unique(b)) which gives the classification for each bag. Names
come from bags.

Author(s)

Sean Kent

cv_misvm 9

Examples

y<-c(1, 0,0, 1, 1,1, 0,0, 0
bags <- rep(1:3, each = 3)

classify_bags(y, bags)
classify_bags(y, bags, condense = FALSE)

works with regular vector too
scores <- 1:9
classify_bags(scores, bags)

cv_misvm Fit MI-SVM model to the data using cross-validation

Description

Cross-validation wrapper on the misvm() function to fit the MI-SVM model over a variety of speci-
fied cost parameters. The optimal cost parameter is chosen by the best AUC of the cross-fit models.
See ?misvm for more details on the fitting function.

Usage

Default S3 method:
cv_misvm(
X)
\
bags,
cost_seq,
n_fold,
fold_id,
method = c("heuristic”, "mip", "gp-heuristic”),
weights = TRUE,
control = list(kernel = "linear”, sigma = 1, nystrom_args = list(m = nrow(x), r =
nrow(x), sampling = "random”), max_step = 500, type = "C-classification”, scale =
TRUE, verbose = FALSE, time_limit = 60, start = FALSE),

S3 method for class 'formula’
cv_misvm(formula, data, cost_seq, n_fold, fold_id, ...)

S3 method for class 'mi_df'
cv_misvm(x, ...)

10 cv_misvin

Arguments

X A data.frame, matrix, or similar object of covariates, where each row represents
a sample.

y A numeric, character, or factor vector of bag labels for each instance. Must
satisfy length(y) == nrow(x). Suggest that one of the levelsis 1, ’1’, or TRUE,
which becomes the positive class; otherwise, a positive class is chosen and a
message will be supplied.

bags A vector specifying which instance belongs to each bag. Can be a string, nu-
meric, of factor.

cost_seq A sequence of cost arguments (default 2*(-2:2)) in misvm().

n_fold The number of folds (default 5). If this is specified, fold_id need not be speci-
fied.

fold_id The ids for the specific the fold for each instance. Care must be taken to ensure
that ids respect the bag structure to avoid information leakage. If n_fold is
specified, fold_id will be computed automatically.

method The algorithm to use in fitting (default 'heuristic'). Whenmethod = 'heuristic’,
which employs an algorithm similar to Andrews et al. (2003). When method =
'mip', the novel MIP method will be used. When method = 'gp-heuristic,
the heuristic algorithm is computed using the dual SVM. See details.

weights named vector, or TRUE, to control the weight of the cost parameter for each
possible y value. Weights multiply against the cost vector. If TRUE, weights are
calculated based on inverse counts of instances with given label, where we only
count one positive instance per bag. Otherwise, names must match the levels of
y.

control list of additional parameters passed to the method that control computation with
the following components:

e kernel either a character the describes the kernel (’linear’ or ’radial’) or a
kernel matrix at the instance level.

* sigma argument needed for radial basis kernel.

* nystrom_args a list of parameters to pass to kfm_nystrom(). This is used
when method = 'mip' and kernel = 'radial’ to generate a Nystrom ap-
proximation of the kernel features.

* max_step argument used when method = 'heuristic'. Maximum steps
of iteration for the heuristic algorithm.

e type: argument used when method = 'heuristic'. The type argument is
passed to €1071: :svm().

* scale argument used for all methods. A logical for whether to rescale the
input before fitting.

* verbose argument used when method = 'mip'. Whether to message output
to the console.

e time_limit argument used when method = 'mip'. FALSE, or a time limit
(in seconds) passed to gurobi() parameters. If FALSE, no time limit is
given.

cv_misvm 11

* start argument used when method = 'mip'. If TRUE, the mip program
will be warm_started with the solution from method = 'qp-heuristic' to
potentially improve speed.

Arguments passed to or from other methods.

formula a formula with specification mi (y, bags) ~ x which uses the mi function to cre-
ate the bag-instance structure. This argument is an alternative to the x, y, bags
arguments, but requires the data argument. See examples.

data If formula is provided, a data.frame or similar from which formula elements
will be extracted.

Value
An object of class cv_misvm. The object contains the following components:
* misvm_fit: A fit object of class misvm trained on the full data with the cross-validated choice
of cost parameter. See misvm() for details.
* cost_seq: the input sequence of cost arguments

* cost_aucs: estimated AUC for the models trained for each cost_seq parameter. These are
the average of the fold models for that cost, excluding any folds that don’t have both levels of
y in the validation set.

* best_cost: The optimal choice of cost parameter, chosen as that which has the maximum
AUC. If there are ties, this will pick the smallest cost with maximum AUC.

Methods (by class)

* default: Method for data.frame-like objects
» formula: Method for passing formula

* mi_df: Method for mi_df objects, automatically handling bag names, labels, and all covari-
ates.

Author(s)

Sean Kent, Yifei Liu

See Also

misvm() for fitting without cross-validation.

Examples

set.seed(8)
mil_data <- generate_mild_df(nbag = 20,
positive_prob = 0.15,
dist = rep("mvnormal”, 3),
mean = list(rep(1, 10), rep(2, 10)),
sd_of_mean = rep(0.1, 3))
df <- build_instance_feature(mil_data, seq(@.05, 0.95, length.out = 10))
cost_seq <- 2*seq(-5, 7, length.out = 3)

12 formatting

Heuristic method

mdl1 <- cv_misvm(x = df[, 4:123], y = df$bag_label,
bags = df$bag_name, cost_seq = cost_seq,
n_fold = 3, method = "heuristic"”)

mdl2 <- cv_misvm(mi(bag_label, bag_name) ~ X1_mean + X2_mean + X3_mean, data = df,
cost_seq = cost_seq, n_fold = 3)

if (require(gurobi)) {
solve using the MIP method
mdl3 <- cv_misvm(x = df[, 4:123], y = df$bag_label,
bags = df$bag_name, cost_seq = cost_seq,
n_fold = 3, method = "mip")
3

[l

predict(mdll, new_data = df, type = "raw", layer = "bag")

summarize predictions at the bag layer

suppressWarnings(library(dplyr))

df %>%
bind_cols(predict(mdl2, df, type = "class")) %>%
bind_cols(predict(mdl2, df, type = "raw")) %>%
distinct(bag_name, bag_label, .pred_class, .pred)

formatting Printing multiple instance data frames

Description

Specialized print methods for the mi_df, mild_df classes. These return helpful information such
as the number of rows, columns, bags, and instances (for mild_df objects).

These methods print the data frame based on the underlying subclass. This allows for additional
arguments that can be passed to print.tbl() when the subclass is a tibble (tb1l_df, tbl), docu-
mented below.

Usage
S3 method for class 'mi_df'

print(x, ...)

S3 method for class 'mild_df"'
print(x, ...)
Arguments

X Object to format or print.

Passed to other methods. See print.tb1l() or details for more information.

generate_mild_df 13

Details
The following extra arguments are available when x has subclass tb1:
* n: Number of rows to show. If NULL, the default, will print all rows if less than the print_max
option. Otherwise, will print as many rows as specified by the print_min option.

* width: Width of text output to generate. This defaults to NULL, which means use the width
option.

* max_extra_cols: Number of extra columns to print abbreviated information for, if the width
is too small for the entire tibble. If NULL, the max_extra_cols option is used. The previously
defined n_extra argument is soft-deprecated.

* max_footer_lines: Maximum number of footer lines. If NULL, the max_footer_lines op-
tion is used.

Value

The object passed in x, invisibly. Primarily called to print the object to the console.

Examples

data("ordmvnorm")

print(as_mi_df (ordmvnorm, instance_label = "inst_label”))
print(as_mi_df(ordmvnorm, instance_label = "inst_label”), n = 2)
generate_mild_df Generate mild_df using multivariate t and normal distributions.
Description

This function samples multiple instance distributional data (a mild_df object) where each row cor-
responds to a sample from a given instance distribution. Instance distributions can be multivariate t
and normal, with mean and variance parameters that can be fixed or sampled based on prior param-
eters. These instances are grouped into bags and the bag labels follow the standard MI assumption.

Usage

generate_mild_df(
nbag = 50,
ninst = 4,
nsample = 50,
ncov = 10,
nimp_pos = 1:ncov,
nimp_neg = 1:ncov,
positive_prob = 9.2,
dist = c("mvt”, "mvnormal”, "mvnormal”),
mean = list(rep(@, length(nimp_pos)), rep(@, length(nimp_neg)), 0),

14 generate_mild_df

sd_of_mean = c(0.5, 0.5, 0.5),

cov = list(diag(1, nrow = length(nimp_pos)), diag(1, nrow = length(nimp_neg)), 1),
sample_cov = FALSE,

df_wishart_cov = c(length(nimp_pos), length(nimp_neg), ncov - length(nimp_pos)),
degree = c(3, NA, NA),

positive_bag_prob = NULL,

n_noise_inst = NULL,

)
Arguments
nbag The number of bags (default 50).
ninst The number of instances for each bag (default 4).
nsample The number of samples for each instance (default 50).
ncov The number of total covariates (default 10).
nimp_pos An index of important covariates for positve instances (default 1:ncov).
nimp_neg An index of important covariates for negative instances (default 1:ncov). (de-

fault 1:ncov).

positive_prob A numeric value between 0 and 1 indicating the probability of an instance being
positive (default 0.2).

dist A vector (length 3) of distributions for the positive, negative, and remaining
instances, respectively. Distributions can be one of 'mvnormal' for multivariate
normal or 'mvt' for multivariate student’s t.

mean A list (length 3) of mean vectors for the positive, negative, and remaining dis-
tributions. mean[[1]] should match nimp_pos in length; mean[[2]] should
match nimp_neg in length.

sd_of_mean A vector (length 3) of standard deviations in sampling the mean for positive,
negative, and remaining distributions, where the prior is given by mean. Use
sd_of_mean =c(9@, @, @) to keep the mean consistent across all instances.

cov A list (length 3) of covariance matrices for the positive, negative, and remaining
distributions. cov[[3]] should be an integer since the dimension of remain-
ing features can vary depending on if the important distribution is positive or
negative.

sample_cov A logical value for whether to sample the covariance for each distribution. If
FALSE (the default), each covariance is fixed at cov. If TRUE, the prior is given
by cov and sampled from a Wishart distribution with df _wishart_cov degrees
of freedom to have an expectation of cov.

df_wishart_cov A vector (length 3) of degrees-of-freedom to use in the Wishart covariance ma-
trix sampling.

degree A vector (length 3) of degrees-of-freedom used when any of dist is 'mvt’.
This parameter is ignored when dist[i] == 'mvnormal’, in which case NA can
be specified.

generate_mild_df 15

positive_bag_prob
A numeric value between 0 and 1 indicating the probability of a bag being posi-
tive. Must be specified jointly with n_noise_inst, in which case positive_prob
is ignored. If NULL (the default), instance labels are sampled first according to
positive_prob.

n_noise_inst An integer indicating the number of negative instances in a positive bag. Must
be specified jointly with positive_bag_prob. n_noise_inst should be less
than ninst.

Arguments passed to or from other methods.

Details

The first consideration to use this function is to determine the number of bags, instances per bag,
and samples per instance using the nbag, ninst, and nsample arguments. Next, one must consider
the number of covariates ncov, and how those covariates will differ between instances with positive
and negative labels. Some covariates can be common between the positive and negative instances,
which we call the remainder distribution. Use nimp_pos and nimp_neg to specify the index of the
important (non-remainder) covariates in the distributions with positive and negative instance labels.

The structure of how many instances/bags are positive and negative is determined by positive_prob
or the joint specification of positive_bag_prob and n_noise_inst. In the first case, instances la-

bels have independent Bernoulli draws based on positive_prob and bag labels are determined by

the standard MI assumption (i.e. positive if any instance in the bag is positive). In the second case,

bag labels are drawn independently as Bernoilli with positive_bag_prob chance of success. Each

positive bag will be given n_noise_inst values with instance label of 0, and the remaining with

instance label of 1.

The remaining arguments are used to determine the distributions used for the positive, negative,
and remaining features. Each argument will be a vector of list of length 3 corresponding to these 3
different groups. To create different distributions, the strategy is to first draw the mean parameter
from Normal(mean, sd_of_mean * I) and the covariance parameter from Wishart(df_wishart_cov,
cov), with expectation equal to cov. Then we can sample i.i.d. draws from the specified distribution
(either multivariate normal or student’s t). To ensure that each instance distribution has the same
mean, set sd_of_mean to 0. To ensure that each instance distribution has the same covariance, set
sample_cov = FALSE.

The final data.frame will have nsample * nbag * ninst rows and ncov + 3 columns including the
bag_label, bag_name, instance_name, and ncov sampled covariates.
Value

A mild_df object.

Author(s)

Yifei Liu, Sean Kent

Examples

set.seed(8)
mild_data <- generate_mild_df(nbag = 7, ninst = 3, nsample = 20,

16 kfm_exact

ncov = 2,

nimp_pos = 1,

dist = rep("mvnormal”, 3),
mean = list(

rep(5, 1),
rep(15, 2),
0

D)

library(dplyr)
distinct(mild_data, bag_label, bag_name, instance_name)
split(mild_datal, 4:5], mild_data$instance_name) %>%
sapply(colMeans) %>%
round(2) %>%
tO

kfm_exact Create an exact kernel feature map

Description

For some kernels, it is possible to create the exact features from given data. This function stores the
information needed to build those exact features.

Usage
kfm_exact(kernel = "polynomial”, degree = 2, const = 1)
Arguments
kernel A character determining the kernel to use. Currently, only 'radial’ is imple-
mented.
degree A numeric value (default 2) that provides the degree for kernel = "polynomial’
const A numeric value (default 1) for the constant term when kernel = 'polynomial"'.
Details

Currently, the following kernels are supported:

e 'polynomial', with degree =d and const =c¢

Value
An object of class kfm_exact with the following components, returned from the inputs:
e kernel

e degree

* const

kfm_nystrom

Author(s)

Sean Kent

See Also

Other kernel feature map functions: kfm_nystrom()

Examples

df <- data.frame(

X1 = c(2, 3, 4, 5 6,7, 8)),
X2 =c(1, 1.2, 1.3, 1.4, 1.1, 7, 1),
X3 = rnorm(7)

)

fit <- kfm_exact(kernel = "polynomial”, degree = 2, const = 1)
fm <- build_fm(fit, df)

17

kfm_nystrom Fit a Nystrom kernel feature map approximation

Description

Use the Nystrom method to fit a feature map that approximates a given kernel.

Usage

kfm_nystrom(df, m, r, kernel, sampling, ...)

Default S3 method:
kfm_nystrom(

df,

m = nrow(df),

r=m,

kernel = "radial”,
sampling = "random”,

)

S3 method for class 'mild_df'
kfm_nystrom(

df,

m = nrow(df),

r=m,

kernel = "radial”,
sampling = "random”,

18

Arguments

df
m

r

kernel

sampling

Details

For the . ..

ktm_nystrom

An object containing covariates for training. Usually a data.frame or matrix.
The number of examples from df to sample in fitting.

The rank of matrix approximation to use. Must be less than or equal to m, the
default.

A character determining the kernel to use. Currently, only 'radial’ is imple-
mented.

A character determining how to sample instances. Default is 'random'. For
kfm_nystrom.mild_df (), one can specify sampling = 'stratified’ to en-
sure that samples are chosen evenly from bags and instances. sampling can
also be a numeric vector of length m of pre-determined samples.

additional parameters needed for the kernels. See details.

argument, the additional parameters depend on which kernel is used:

* For kernel = 'radial’, specify sigma to define kernel bandwidth.

Value

an object of class kfm_nystrom with the following components:

 df_sub the sub-sampled version of df

* dv pre-multiplication matrix which contains information on the eigenvalues and eigenvectors

of df _sub

* method 'nystrom'

* kernel the input parameter kernel

* kernel_params parameters passed to . . .

Methods (by class)

» default: For use on objects of class data.frame or matrix.

* mild_df: Ignore the information columns 'bag_label', 'bag_name', and 'instance_name'
when calculating kernel approximation.

Author(s)

Sean Kent

References

Williams, C., & Seeger, M. (2001). Using the Nystrom Method to Speed Up Kernel Machines.
Advances in Neural Information Processing Systems, 13, 682—688.

Kent, S., & Yu, M. (2022). Non-convex SVM for cancer diagnosis based on morphologic features
of tumor microenvironment arXiv preprint arXiv:2206.14704

https://arxiv.org/abs/2206.14704

kme 19

See Also

Other kernel feature map functions: kfm_exact ()

Examples
df <- data.frame(
X1 = c(2, 3, 4, 5, 6, 7, 8),
X2 = c(1, 1.2, 1.3, 1.4, 1.1, 7, 1),
X3 = rnorm(7)
)

fit <- kfm_nystrom(df, m = 7, r = 6, kernel = "radial”, sigma = 0.05)
fm <- build_fm(fit, df)

kme Calculate the kernel mean embedding matrix

Description

Function to calculate the kernel mean embedding for to distributional data sets. It uses the empirical

approximation for the integral
xJYy

for a given kernel K (-, -). Currently only supports radial basis function kernel for fast computation.

Usage
Default S3 method:
kme(df, df2 = NULL, sigma = ©.05, ...)

S3 method for class 'mild_df'
kme(df, df2 = NULL, sigma = .05, ...)

Arguments
df A data.frame of mild_df object, must have column 'instance_name' which
defines the instances.
df2 A data.frame, mild_df object, or NULL (default NULL).
sigma The parameter for 'radial' kernel (default 0. @5).
Additional arguments passed to methods.
Details

If df2 = NULL, calculate the kernel mean embedding matrix of (df, df)) otherwise calculate (df, df2)

20 mi

Value

A matrix of kernel mean embedding at the instance level.

Methods (by class)

e default: Default S3 method
e mild_df: S3 method for class mild_df

Author(s)

Yifei Liu, Sean Kent

Examples
x = data.frame('instance_name' = c('inst_1', 'inst_2', 'inst_1'),
"X1' = c(-0.4, 0.5, 2))
kme (x)

mild_df1 <- generate_mild_df(nbag = 10, positive_degree = 3)
kme(mild_df1)

mi Create an mi object

Description

Create an mi object, usually used as a response variable in a model formula.

Usage
mi(bag_label, bag_name)

Arguments
bag_label The bag label or response, recorded as 0 = negative, 1 = positive.
bag_name A unique bag identifier for each instance.

Value

An object of class mi. Currently, no methods are implemented for this.

Author(s)

Sean Kent

mild 21

See Also

Other multiple instance formula helper functions: mild()

Examples

mil_data <- generate_mild_df(positive_degree = 3, nbag = 10)
with(mil_data, head(mi(bag_label, bag_name)))

df <- get_all_vars(mi(bag_label, bag_name) ~ X1 + X2, data = mil_data)
head(df)

mild Create a mild object

Description

Create a mild object, usually used as a response variable in a model formula.

Usage

mild(bag_label, bag_name, instance_name)

Arguments
bag_label The bag label or response, recorded as 0 = negative, 1 = positive.
bag_name A unique bag identifier for each instance.

instance_name A unique instance identifier for each sample.

Value

An object of class mild. Currently, no methods are implemented for this.

Author(s)

Sean Kent

See Also

Other multiple instance formula helper functions: mi ()

Examples

mil_data <- generate_mild_df(positive_degree = 3, nbag = 10)
with(mil_data, head(mild(bag_label, bag_name, instance_name)))

df <- get_all_vars(mild(bag_label, bag_name) ~ X1 + X2, data = mil_data)
head(df)

22 mild_df

mild_df Build a MILD data frame

Description

mild_df () constructs a data frame that corresponds to Multiple Instance Learning with Distribu-
tional Instances (MILD) data. A mild_df object must have three special columns:

* bag_label, determines the label of each bag, typically from c(0, 1)

* bag_name, character or factor that specifies the bag that each sample belongs to.

* instance_name, character or factor that specifies the instance that each sample belongs to.

Usage

mild_df(
bag_label = character(),
bag_name = character(),
instance_name = character(),

L

instance_label = NULL

)

Arguments
bag_label A character, factor, or numeric vector.
bag_name A character or factor vector.

instance_name A character or factor vector.
A set of name-value pairs. These construct the covariates for a mild_df.

instance_label A character, factor, or numeric vector, or NULL.

Details
We refer to the rows of a mild_df as samples, since they are thought of as draws from the distribu-
tion that determines each instance. Each instance is contained in a bag, with a corresponding label.
Instance labels can be provided, but they will be pulled in as an attribute.

Value
A ’mild_df” object. This data.frame-like has columns bag_label, bag_name, instance_name, and
those specified in It also inherits from the 'tb1l_df' and 'tbl' classes.

Author(s)

Yifei Liu, Sean Kent

mior 23

See Also

e as_mild_df () to convert data.frames to mild_dfs.
* generate_mild_df () for simulating a mild_df object.

* summarize_samples() for summarizing the mild_df into a multiple instance learning data
set.

Examples

mild_df('bag_label' = factor(c(1, 1, 0)),
'bag_name' = c(rep('bag_1', 2), 'bag_2'),
'instance_name' = c('bag_1_inst_1', 'bag_1_inst_2', 'bag_2_inst_1"),
'X1' = c(-0.4, 0.5, 2),
'instance_label' = c(@, 1, 0))

mior Fit MIOR model to the data

Description

This function fits the MIOR model, proposed by Xiao Y, Liu B, and Hao Z (2018) in "Multiple-
instance Ordinal Regression". MIOR is a modified SVM framework with parallel, ordered hyper-
planes where the error terms are based only on the instance closest to a midpoint between hyper-

planes.
Usage
Default S3 method:
mior(
X)
Y,
bags,
cost =1,
cost_eta =1,
method = "gp-heuristic”,
weights = NULL,
control = list(kernel = "linear"”, sigma = if (is.vector(x)) 1 else 1/ncol(x),
max_step = 500, scale = TRUE, verbose = FALSE, time_limit = 60, option =
c("corrected”, "xiao")),
)

S3 method for class 'formula’
mior(formula, data, ...)

S3 method for class 'mi_df'
mior(x, ...)

24 mior

Arguments

X A data.frame, matrix, or similar object of covariates, where each row represents
an instance. If a mi_df object is passed, y, bags are automatically extracted,
and all other columns will be used as predictors.

y A numeric, character, or factor vector of bag labels for each instance. Must
satisfy length(y) == nrow(x). Suggest that one of the levelsis 1, ’1’, or TRUE,
which becomes the positive class; otherwise, a positive class is chosen and a
message will be supplied.

bags A vector specifying which instance belongs to each bag. Can be a string, nu-
meric, of factor.

cost The cost parameter in SVM. If method = "heuristic’, this will be fed to kernlab: : ksvm(),
otherwise it is similarly in internal functions.

cost_eta The additional cost parameter in MIOR which controls how far away the first
and last separating hyperplanes are relative to other costs.

method The algorithm to use in fitting (default 'heuristic'). When method = '"heuristic’,
which employs an algorithm similar to Andrews et al. (2003). When method =
'mip', the novel MIP method will be used. When method = 'gp-heuristic,
the heuristic algorithm is computed using the dual SVM. See details.

weights named vector, or TRUE, to control the weight of the cost parameter for each
possible y value. Weights multiply against the cost vector. If TRUE, weights are
calculated based on inverse counts of instances with given label, where we only
count one positive instance per bag. Otherwise, names must match the levels of
y.

control list of additional parameters passed to the method that control computation with
the following components:

¢ kernel either a character the describes the kernel ("linear’ or ’radial’) or a
kernel matrix at the instance level.

* sigma argument needed for radial basis kernel.

* max_step argument used when method = 'heuristic'. Maximum steps
of iteration for the heuristic algorithm.

* scale argument used for all methods. A logical for whether to rescale the
input before fitting.

* verbose argument used when method = 'mip'. Whether to message output
to the console.

e time_limit argument used when method = 'mip'. FALSE, or a time limit
(in seconds) passed to gurobi() parameters. If FALSE, no time limit is
given.

* option argument the controls the constraint calculation. See details.

Arguments passed to or from other methods.

formula a formula with specification mi (y, bags) ~ x which uses the mi function to cre-
ate the bag-instance structure. This argument is an alternative to the x, y, bags
arguments, but requires the data argument. See examples.

data If formula is provided, a data.frame or similar from which formula elements
will be extracted

mior

Details

25

Predictions (see predict.mior()) are determined by considering the smallest distance from each
point to the midpoint hyperplanes across all instances in the bag. The prediction corresponds to the
hyperplane having such a minimal distance.

It appears as though an error in Equation (12) persists to the dual form in (21). A corrected version
of this dual formulation can be used with control$option = 'corrected', or the formulation as
written can be used with control$option = 'xiao'.

Value

An object of class mior The object contains at least the following components:

Methods

gurobi_fit: A fit from model optimization that includes relevant components.
call_type: A character indicating which method misvm() was called with.
features: The names of features used in training.

levels: The levels of y that are recorded for future prediction.

cost: The cost parameter from function inputs.

weights: The calculated weights on the cost parameter.

repr_inst: The instances from positive bags that are selected to be most representative of the
positive instances.

n_step: If method %in% c('heuristic', 'gp-heuristic'), the total steps used in the heuris-
tic algorithm.

x_scale: If scale = TRUE, the scaling parameters for new predictions.

(by class)
default: Method for data.frame-like objects
formula: Method for passing formula

mi_df: Method for mi_df objects, automatically handling bag names, labels, and all covari-
ates.

Author(s)

Sean

Kent

References

Xiao,

Y., Liu, B., & Hao, Z. (2017). Multiple-instance ordinal regression. IEEE Transactions on

Neural Networks and Learning Systems, 29(9), 4398-4413. doi: 10.1109/TNNLS.2017.2766164

See Also

predict.misvm() for prediction on new data.

https://doi.org/10.1109/TNNLS.2017.2766164

26 mismm

Examples

if (require(gurobi)) {

set.seed(8)

make some data

n <- 15

X <= rbind(
mvtnorm: :rmvnorm(n/3, mean = c(4, -2, 0)),
mvtnorm: :rmvnorm(n/3, mean = c(0, 0, 0)),
mvtnorm: :rmvnorm(n/3, mean = c(-2, 1, 0))

)

score <- X %*% c(2, -1, @)

y <- as.numeric(cut(score, c(-Inf, quantile(score, probs = 1:2 / 3), Inf)))

bags <- 1:length(y)

add in points outside boundaries
X <= rbind(
X,
mvtnorm: :rmvnorm(n, mean = c(6, -3, 0)),
mvtnorm: :rmvnorm(n, mean = c(-6, 3, 0))
)
y <= c(y, rep(-1, 2*n))
bags <- rep(bags, 3)
repr <- c(rep(1, n), rep(@, 2*n))

y_bag <- classify_bags(y, bags, condense = FALSE)

mdl1 <- mior(X, y_bag, bags)
predict(mdll, X, new_bags = bags)

mismm Fit MILD-SVM model to the data

Description

This function fits the MILD-SVM model, which takes a multiple-instance learning with distribu-
tions (MILD) data set and fits a modified SVM to it. The MILD-SVM methodology is based on
research in progress.

Usage

Default S3 method:
mismm(

X)

Y,

bags,

instances,

cost = 1,

mismm 27

method = c("heuristic”, "mip", "gp-heuristic"”),
weights = TRUE,
control = list(kernel = "radial”, sigma = if (is.vector(x)) 1 else 1/ncol(x),

nystrom_args = list(m = nrow(x), r = nrow(x), sampling = "random”), max_step = 500,
scale = TRUE, verbose = FALSE, time_limit = 60, start = FALSE),

)

S3 method for class 'formula'
mismm(formula, data, ...)

S3 method for class 'mild_df"'
mismm(x, ...)

Arguments

X A data.frame, matrix, or similar object of covariates, where each row represents
asample. If amild_df objectis passed, y, bags, instances are automatically
extracted, and all other columns will be used as predictors.

y A numeric, character, or factor vector of bag labels for each instance. Must
satisfy length(y) == nrow(x). Suggest that one of the levelsis 1, ’1’, or TRUE,
which becomes the positive class; otherwise, a positive class is chosen and a
message will be supplied.

bags A vector specifying which instance belongs to each bag. Can be a string, nu-
meric, of factor.

instances A vector specifying which samples belong to each instance. Can be a string,
numeric, of factor.

cost The cost parameter in SVM. If method = "heuristic', this will be fed to kernlab: :ksvm(),
otherwise it is similarly in internal functions.

method The algorithm to use in fitting (default 'heuristic'). Whenmethod = '"heuristic’,
the algorithm iterates between selecting positive witnesses and solving an un-
derlying smm() problem. When method = 'mip', the novel MIP method will
be used. When method = 'gp-heuristic’, the heuristic algorithm is computed
using a slightly modified dual SMM. See details

weights named vector, or TRUE, to control the weight of the cost parameter for each
possible y value. Weights multiply against the cost vector. If TRUE, weights are
calculated based on inverse counts of instances with given label, where we only
count one positive instance per bag. Otherwise, names must match the levels of
y.
control list of additional parameters passed to the method that control computation with
the following components:
¢ kernel either a character the describes the kernel (’linear’ or ’radial’) or a
kernel matrix at the instance level.
* sigma argument needed for radial basis kernel.
* nystrom_args a list of parameters to pass to kfm_nystrom(). This is used
when method = 'mip' and kernel = 'radial’ to generate a Nystrom ap-
proximation of the kernel features.

28 mismm

* max_step argument used when method = 'heuristic'. Maximum steps
of iteration for the heuristic algorithm.

* scale argument used for all methods. A logical for whether to rescale the
input before fitting.

* verbose argument used when method = 'mip'. Whether to message output
to the console.

e time_limit argument used when method = 'mip'. FALSE, or a time limit
(in seconds) passed to gurobi() parameters. If FALSE, no time limit is
given.

e start argument used when method = 'mip'. If TRUE, the mip program
will be warm_started with the solution from method = 'gp-heuristic' to
potentially improve speed.

Arguments passed to or from other methods.

formula A formula with specification mild(y, bags, instances) ~ x which uses the
mild function to create the bag-instance structure. This argument is an alterna-
tive to the x, y, bags, instances arguments, but requires the data argument.
See examples.

data If formula is provided, a data.frame or similar from which formula elements
will be extracted.

Details

Several choices of fitting algorithm are available, including a version of the heuristic algorithm
proposed by Andrews et al. (2003) and a novel algorithm that explicitly solves the mixed-integer
programming (MIP) problem using the gurobi package optimization back-end.

Value
An object of class mismm The object contains at least the following components:

o x_fit: A fit object depending on the method parameter. If method = 'heuristic’, this will
be a ksvm fit from the kernlab package. If method = "'mip' this will be gurobi_fit from a
model optimization.

e call_type: A character indicating which method misvm() was called with.
* x: The training data needed for computing the kernel matrix in prediction.

» features: The names of features used in training.

* levels: The levels of y that are recorded for future prediction.

* cost: The cost parameter from function inputs.

* weights: The calculated weights on the cost parameter.

* sigma: The radial basis function kernel parameter.

* repr_inst: The instances from positive bags that are selected to be most representative of the
positive instances.

* n_step: If method %in% c('heuristic', 'qp-heuristic'), the total steps used in the heuris-
tic algorithm.

mismm 29

» useful_inst_idx: The instances that were selected to represent the bags in the heuristic
fitting.
* inst_order: A character vector that is used to modify the ordering of input data.

* x_scale: If scale = TRUE, the scaling parameters for new predictions.

Methods (by class)

* default: Method for data.frame-like objects
» formula: Method for passing formula
* mild_df: Method for mild_df objects

Author(s)

Sean Kent, Yifei Liu

References

Kent, S., & Yu, M. (2022). Non-convex SVM for cancer diagnosis based on morphologic features
of tumor microenvironment arXiv preprint arXiv:2206.14704

See Also

predict.mismm() for prediction on new data.

Examples

set.seed(8)
mil_data <- generate_mild_df(nbag = 15, nsample = 20, positive_prob = 0.15,
sd_of_mean = rep(0.1, 3))

Heuristic method
mdll <- mismm(mil_data)
mdl2 <- mismm(mild(bag_label, bag_name, instance_name) ~ X1 + X2 + X3, data = mil_data)

MIP method

if (require(gurobi)) {
mdl3 <- mismm(mil_data, method = "mip", control = list(nystrom_args = list(m=10, r =10)))
predict(mdl3, mil_data)

3

”

predict(mdll, new_data = mil_data, type = "raw

n

, layer = "bag")

summarize predictions at the bag layer

library(dplyr)

mil_data %>%
bind_cols(predict(mdl2, mil_data, type = "class")) %>%
bind_cols(predict(mdl2, mil_data, type = "raw")) %>%
distinct(bag_name, bag_label, .pred_class, .pred)

https://arxiv.org/abs/2206.14704

30 misvm

misvm Fit MI-SVM model to the data

Description

This function fits the MI-SVM model, first proposed by Andrews et al. (2003). It is a variation
on the traditional SVM framework that carefully treats data from the multiple instance learning
paradigm, where instances are grouped into bags, and a label is only available for each bag.

Usage

Default S3 method:

misvm(
X!
Y,
bags,
cost = 1,
method = c("heuristic”, "mip", "gp-heuristic"”),
weights = TRUE,
control = list(kernel = "linear"”, sigma = if (is.vector(x)) 1 else 1/ncol(x),

nystrom_args = list(m = nrow(x), r = nrow(x), sampling = "random”), max_step = 500,
type = "C-classification”, scale = TRUE, verbose = FALSE, time_limit = 60, start =
FALSE),

)

S3 method for class 'formula'
misvm(formula, data, ...)

S3 method for class 'mi_df'
misvm(x, ...)

S3 method for class 'mild_df"'

misvm(x, .fns = list(mean = mean, sd = stats::sd), cor = FALSE, ...)
Arguments
X A data.frame, matrix, or similar object of covariates, where each row represents

an instance. If a mi_df object is passed, y, bags are automatically extracted,
and all other columns will be used as predictors. If a mild_df object is passed,
y, bags, instances are automatically extracted, and all other columns will
be used as predictors.

y A numeric, character, or factor vector of bag labels for each instance. Must
satisfy length(y) == nrow(x). Suggest that one of the levelsis 1, ’1’, or TRUE,
which becomes the positive class; otherwise, a positive class is chosen and a
message will be supplied.

misvim 31

bags A vector specifying which instance belongs to each bag. Can be a string, nu-
meric, of factor.
cost The cost parameter in SVM. If method = "heuristic', this will be fed to kernlab: :ksvm(),

otherwise it is similarly in internal functions.

method The algorithm to use in fitting (default 'heuristic'). When method = '"heuristic’,
which employs an algorithm similar to Andrews et al. (2003). When method =
'mip', the novel MIP method will be used. When method = 'gp-heuristic,
the heuristic algorithm is computed using the dual SVM. See details.

weights named vector, or TRUE, to control the weight of the cost parameter for each
possible y value. Weights multiply against the cost vector. If TRUE, weights are
calculated based on inverse counts of instances with given label, where we only
count one positive instance per bag. Otherwise, names must match the levels of
y.

control list of additional parameters passed to the method that control computation with
the following components:

e kernel either a character the describes the kernel (’linear’ or ’radial’) or a
kernel matrix at the instance level.

* sigma argument needed for radial basis kernel.

* nystrom_args a list of parameters to pass to kfm_nystrom(). This is used
when method = 'mip' and kernel = 'radial’ to generate a Nystrom ap-
proximation of the kernel features.

* max_step argument used when method = 'heuristic'. Maximum steps
of iteration for the heuristic algorithm.

* type: argument used when method = 'heuristic'. The type argument is
passed to €1071: :svm().

* scale argument used for all methods. A logical for whether to rescale the
input before fitting.

* verbose argument used when method = 'mip'. Whether to message output
to the console.

e time_limit argument used when method = 'mip'. FALSE, or a time limit
(in seconds) passed to gurobi() parameters. If FALSE, no time limit is
given.

* start argument used when method = 'mip'. If TRUE, the mip program
will be warm_started with the solution from method = 'gp-heuristic' to
potentially improve speed.

Arguments passed to or from other methods.

formula a formula with specification mi (y, bags) ~ x which uses the mi function to cre-
ate the bag-instance structure. This argument is an alternative to the x, y, bags
arguments, but requires the data argument. See examples.

data If formula is provided, a data.frame or similar from which formula elements
will be extracted.

.fns (argument for misvm.mild_df () method) list of functions to summarize in-
stances over.

cor (argument for misvm.mild_df () method) logical, whether to include correla-
tions between all features in the summarization.

32 misvm

Details

Several choices of fitting algorithm are available, including a version of the heuristic algorithm
proposed by Andrews et al. (2003) and a novel algorithm that explicitly solves the mixed-integer
programming (MIP) problem using the gurobi package optimization back-end.

Value

An object of class misvm. The object contains at least the following components:

* x_fit: A fit object depending on the method parameter. If method = "heuristic', this will
be an svm fit from the 1071 package. If method = 'mip', 'gp-heuristic' this will be
gurobi_fit from a model optimization.

* call_type: A character indicating which method misvm() was called with.
* features: The names of features used in training.

* levels: The levels of y that are recorded for future prediction.

* cost: The cost parameter from function inputs.

* weights: The calculated weights on the cost parameter.

* repr_inst: The instances from positive bags that are selected to be most representative of the
positive instances.

e n_step: If method %in% c('heuristic', 'gp-heuristic'), the total steps used in the heuris-
tic algorithm.

* x_scale: If scale = TRUE, the scaling parameters for new predictions.

Methods (by class)

* default: Method for data.frame-like objects
e formula: Method for passing formula

* mi_df: Method for mi_df objects, automatically handling bag names, labels, and all covari-
ates.

* mild_df: Method for mild_df objects. Summarize samples to the instance level based on
specified functions, then perform misvm() on instance level data.
Author(s)

Sean Kent, Yifei Liu

References

Andrews, S., Tsochantaridis, 1., & Hofmann, T. (2002). Support vector machines for multiple-
instance learning. Advances in neural information processing systems, 15.

Kent, S., & Yu, M. (2022). Non-convex SVM for cancer diagnosis based on morphologic features
of tumor microenvironment arXiv preprint arXiv:2206.14704

See Also

* predict.misvm() for prediction on new data.

e cv_misvm() for cross-validation fitting.

https://arxiv.org/abs/2206.14704

misvm_orova 33

Examples

set.seed(8)
mil_data <- generate_mild_df(nbag = 20,
positive_prob = 0.15,
sd_of_mean = rep(0.1, 3))
df <- build_instance_feature(mil_data, seq(@.05, 0.95, length.out = 10))

Heuristic method
mdl1 <- misvm(x = df[, 4:123], y = df$bag_label,
bags = df$bag_name, method = "heuristic"”)
mdl2 <- misvm(mi(bag_label, bag_name) ~ X1_mean + X2_mean + X3_mean, data = df)

MIP method
if (require(gurobi)) {
mdl3 <- misvm(x = df[, 4:123], y = df$bag_label,
bags = df$bag_name, method = "mip")
3

predict(mdll, new_data = df, type = "raw", layer = "bag")

summarize predictions at the bag layer

library(dplyr)

df %>%
bind_cols(predict(mdl2, df, type = "class")) %>%
bind_cols(predict(mdl2, df, type = "raw")) %>%
distinct(bag_name, bag_label, .pred_class, .pred)

misvm_orova Fit MI-SVM model to ordinal outcome data using One-vs-All

Description

This function uses the one-vs-all multiclass classification strategy to fit a series of MI-SVM models
for predictions on ordinal outcome data. For an ordinal outcome with K levels, we fit K MI-SVM
models to predict an individual level vs not.

Usage

Default S3 method:
misvm_orova(
X7
Y,
bags,
cost = 1,
method = c("heuristic”, "mip"”, "gp-heuristic”),
weights = TRUE,
control = list(kernel = "linear"”, sigma = if (is.vector(x)) 1 else 1/ncol(x),

34 misvm_orova

nystrom_args = list(m = nrow(x), r = nrow(x), sampling = "random”), max_step = 500,
type = "C-classification”, scale = TRUE, verbose = FALSE, time_limit = 60, start =
FALSE),

)

S3 method for class 'formula’
misvm_orova(formula, data, ...)

S3 method for class 'mi_df'

misvm_orova(x, ...)
Arguments
X A data.frame, matrix, or similar object of covariates, where each row represents

an instance. If a mi_df object is passed, y, bags are automatically extracted,
and all other columns will be used as predictors.

y A numeric, character, or factor vector of bag labels for each instance. Must
satisfy length(y) == nrow(x). Suggest that one of the levelsis 1, ’1’, or TRUE,
which becomes the positive class; otherwise, a positive class is chosen and a
message will be supplied.

bags A vector specifying which instance belongs to each bag. Can be a string, nu-
meric, of factor.

cost The cost parameter in SVM. If method = "heuristic', this will be fed to kernlab: :ksvm(),
otherwise it is similarly in internal functions.

method The algorithm to use in fitting (default 'heuristic'). Whenmethod = '"heuristic’,
which employs an algorithm similar to Andrews et al. (2003). When method =
'mip', the novel MIP method will be used. When method = 'gp-heuristic,
the heuristic algorithm is computed using the dual SVM. See details.

weights named vector, or TRUE, to control the weight of the cost parameter for each
possible y value. Weights multiply against the cost vector. If TRUE, weights are
calculated based on inverse counts of instances with given label, where we only
count one positive instance per bag. Otherwise, names must match the levels of
y.

control list of additional parameters passed to the method that control computation with
the following components:

¢ kernel either a character the describes the kernel ("linear’ or ’radial’) or a
kernel matrix at the instance level.
* sigma argument needed for radial basis kernel.

* nystrom_args a list of parameters to pass to kfm_nystrom(). This is used
when method = 'mip' and kernel = 'radial’ to generate a Nystrom ap-
proximation of the kernel features.

* max_step argument used when method = 'heuristic'. Maximum steps
of iteration for the heuristic algorithm.

* type: argument used when method = 'heuristic'. The type argument is
passed to €1071: :svm().

misvm_orova 35

* scale argument used for all methods. A logical for whether to rescale the
input before fitting.

* verbose argument used when method = 'mip'. Whether to message output
to the console.

e time_limit argument used when method = 'mip'. FALSE, or a time limit
(in seconds) passed to gurobi() parameters. If FALSE, no time limit is
given.

* start argument used when method = 'mip'. If TRUE, the mip program
will be warm_started with the solution from method = 'gp-heuristic' to
potentially improve speed.

Arguments passed to or from other methods.

formula a formula with specification mi (y, bags) ~ x which uses the mi function to cre-
ate the bag-instance structure. This argument is an alternative to the x, y, bags
arguments, but requires the data argument. See examples.

data If formula is provided, a data.frame or similar from which formula elements
will be extracted

Value

An object of class misvm_orova The object contains at least the following components:

e fits: alist of misvm objects with length equal to the number of classes in y. See misvm() for
details on the misvm object.

* call_type: A character indicating which method misvm_orova() was called with.
* features: The names of features used in training.

* levels: The levels of y that are recorded for future prediction.

Methods (by class)

* default: Method for data.frame-like objects
* formula: Method for passing formula

e mi_df: Method for mi_df objects, automatically handling bag names, labels, and all covari-
ates.

Author(s)

Sean Kent

References
Andrews, S., Tsochantaridis, 1., & Hofmann, T. (2002). Support vector machines for multiple-
instance learning. Advances in neural information processing systems, 15.

See Also

predict.misvm_orova() for prediction on new data.

36 mi_df

Examples

data("ordmvnorm")

X <= ordmvnorm[, 3:7]

y <- ordmvnorm$bag_label
bags <- ordmvnorm$bag_name

mdl1 <- misvm_orova(x, y, bags)
predict(mdll, x, new_bags = bags)

mi_df Build a multiple instance (MI) data frame

Description

mi_df () constructs a data frame that corresponds to Multiple Instance (MI) data. A mi_df object
must have two special columns:
* bag_label, determines the label of each bag, typically from c(@, 1)

* bag_name, character or factor that specifies the bag that each sample belongs to.

Usage

mi_df (
bag_label = character(),
bag_name = character(),

L

instance_label = NULL

)

Arguments
bag_label A character, factor, or numeric vector.
bag_name A character or factor vector.

A set of name-value pairs. These construct the covariates for a mi_df.

instance_label A character, factor, or numeric vector, or NULL.

Details

We refer to the rows of ami_df as instances. Each instance is contained in a bag, with a correspond-
ing label. Bags will typically have several instances within them. Instance labels can be provided,
but they will be pulled in as an attribute.

Value

A ’mi_df’ object. This data.frame-like has columns bag_label, bag_name, and those specified in
.. .. It also inherits from the 'tbl_df' and 'tbl' classes.

omisvim 37

Author(s)

Sean Kent

See Also

e as_mi_df () to convert data.frames to mi_dfs.

Examples

mi_df ('bag_label' = factor(c(1, 1, 0)),
'bag_name' = c(rep('bag_1', 2), 'bag_2'),
'X1' = c(-0.4, 0.5, 2),
'instance_label' = c(@, 1, 0))

omisvm Fit MI-SVM-OR model to ordinal outcome data

Description

This function fits a modification of MI-SVM to ordinal outcome data based on the research method
proposed by Kent and Yu.

Usage

Default S3 method:
omisvm(
X)
Y,
bags,
cost = 1,
h=1,
s = Inf,
method = c("gp-heuristic”),
weights = TRUE,

control = list(kernel = "linear"”, sigma = if (is.vector(x)) 1 else 1/ncol(x),
max_step = 500, type = "C-classification”, scale = TRUE, verbose = FALSE, time_limit
= 60),

)

S3 method for class 'formula’
omisvm(formula, data, ...)

S3 method for class 'mi_df'
omisvm(x, ...)

38 omisvin

Arguments

X A data.frame, matrix, or similar object of covariates, where each row represents
an instance. If a mi_df object is passed, y, bags are automatically extracted,
and all other columns will be used as predictors.

y A numeric, character, or factor vector of bag labels for each instance. Must
satisfy length(y) == nrow(x). Suggest that one of the levelsis 1, ’1’, or TRUE,
which becomes the positive class; otherwise, a positive class is chosen and a
message will be supplied.

bags A vector specifying which instance belongs to each bag. Can be a string, nu-
meric, of factor.

cost The cost parameter in SVM. If method = "heuristic', this will be fed to kernlab: :ksvm(),
otherwise it is similarly in internal functions.

h A scalar that controls the trade-off between maximizing the margin and mini-
mizing distance between hyperplanes.

s An integer for how many replication points to add to the dataset. If k represents
the number of labels in y, must have 1 <= s <= k-1. The default, Inf, uses the
maximum number of replication points, k-1.

method The algorithm to use in fitting (default 'heuristic'). Whenmethod = 'heuristic’,
which employs an algorithm similar to Andrews et al. (2003). When method =
'mip"', the novel MIP method will be used. When method = 'qp-heuristic,
the heuristic algorithm is computed using the dual SVM. See details.

weights named vector, or TRUE, to control the weight of the cost parameter for each
possible y value. Weights multiply against the cost vector. If TRUE, weights are
calculated based on inverse counts of instances with given label, where we only
count one positive instance per bag. Otherwise, names must match the levels of
y.

control list of additional parameters passed to the method that control computation with
the following components:

e kernel ecither a character the describes the kernel (’linear’ or ’radial’) or a
kernel matrix at the instance level.

* sigma argument needed for radial basis kernel.

* nystrom_args a list of parameters to pass to kfm_nystrom(). This is used
when method = 'mip' and kernel = 'radial’ to generate a Nystrom ap-
proximation of the kernel features.

* max_step argument used when method = 'heuristic'. Maximum steps
of iteration for the heuristic algorithm.

* type: argument used when method = 'heuristic'. The type argument is
passed to €1071: :svm().

* scale argument used for all methods. A logical for whether to rescale the
input before fitting.

* verbose argument used when method = 'mip'. Whether to message output
to the console.

e time_limit argument used when method = 'mip'. FALSE, or a time limit
(in seconds) passed to gurobi() parameters. If FALSE, no time limit is
given.

omisvin 39

* start argument used when method = 'mip'. If TRUE, the mip program
will be warm_started with the solution from method = 'qp-heuristic' to
potentially improve speed.

Arguments passed to or from other methods.

formula a formula with specification mi (y, bags) ~ x which uses the mi function to cre-
ate the bag-instance structure. This argument is an alternative to the x, y, bags
arguments, but requires the data argument. See examples.

data If formula is provided, a data.frame or similar from which formula elements
will be extracted

Details

Currently, the only method available is a heuristic algorithm in linear SVM space. Additional
methods should be available shortly.

Value
An object of class omisvm. The object contains at least the following components:

o x_fit: A fit object depending on the method parameter. If method = 'gp-heuristic' this
will be gurobi_fit from a model optimization.

* call_type: A character indicating which method omisvm() was called with.
» features: The names of features used in training.

* levels: The levels of y that are recorded for future prediction.

* cost: The cost parameter from function inputs.

* weights: The calculated weights on the cost parameter.

* repr_inst: The instances from positive bags that are selected to be most representative of the
positive instances.

* n_step: If method == 'gp-heuristic’, the total steps used in the heuristic algorithm.

* x_scale: If scale = TRUE, the scaling parameters for new predictions.

Methods (by class)

* default: Method for data.frame-like objects
e formula: Method for passing formula

e mi_df: Method for mi_df objects, automatically handling bag names, labels, and all covari-
ates.

Author(s)

Sean Kent

See Also

predict.omisvm() for prediction on new data.

40 ordmvnorm

Examples

if (require(gurobi)) {
data(”ordmvnorm")
X <- ordmvnorm[, 3:7]
y <- ordmvnorm$bag_label
bags <- ordmvnorm$bag_name

mdl1 <- omisvm(x, y, bags, weights = NULL)
predict(mdll, x, new_bags = bags)

ordmvnorm Sample ordinal MIL data using mvnorm

Description

A data set that demonstrates the ordinal multiple-instance learning structure with feature columns
randomly sampled from a multivariate normal distribution.

Usage

ordmvnorm

Format

An MI data frame with 1000 rows 8 variables, and 5 bags. Instance labels can be accessed via
attr(ordmvnorm, "instance_label”).

bag_label outcome label at the bag level. This is the maximum of the inst_label for each bag
bag _name indicator of each bag

V1 Variable with mean equal to 2 * inst_label

V2 Variable with mean equal to -1 * inst_label

V3 Variable with mean equal to 1 * inst_label

V4 Variable with mean 0, essentially noise

VS5 Variable with mean 0, essentially noise

predict.cv_misvm

41

predict.cv_misvm

Predict method for cv_misvm object

Description

Predict method for cv_misvm object

Usage
S3 method for class 'cv_misvm'
predict(
object,
new_data,
type = c("class”, "raw"),
layer = c("bag", "instance"),
new_bags = "bag_name”,
)
Arguments
object An object of class cv_misvm.
new_data A data frame to predict from. This needs to have all of the features that the data
was originally fitted with.
type If 'class’, return predicted values with threshold of O as -1 or +1. If 'raw',
return the raw predicted scores.
layer If 'bag', return predictions at the bag level. If 'instance’, return predictions
at the instance level.
new_bags A character or character vector. Can specify a singular character that provides
the column name for the bag names in new_data (default 'bag_name'). Can
also specify a vector of length nrow(new_data) that has bag name for each row.
Arguments passed to or from other methods.
Value

A tibble with nrow(new_data) rows. If type = 'class', the tibble will have a column ’.pred_class’.
If type = 'raw’', the tibble will have a column ’.pred’.

Author(s)

Sean Kent

42

Examples

predict.mior

mil_data <- generate_mild_df(

nbag = 10,
nsample

positive_degree = 3

)

df1 <- build_instance_feature(mil_data, seq(@.05, 0.95, length.out = 10))
mdll <- cv_misvm(x = df1[, 4:123], y = df1$bag_label,

predict(mdll, new_data = df1, type = "raw

bags = df1$bag_name, cost_seq = 2*(-2:2),
n_fold = 3, method = "heuristic"”)

n n

, layer = "bag")

summarize predictions at the bag layer
suppressWarnings(library(dplyr))

df1 %>%

bind_cols(predict(mdll, df1, type = "class")) %>%
bind_cols(predict(mdll, df1, type = "raw")) %>%
distinct(bag_name, bag_label, .pred_class, .pred)

predict.mior

Predict method for mior object

Description

Predict method for mior object

Usage
S3 method for class 'mior'
predict(
object,
new_data,
type = c("class”, "raw"),
layer = c("bag"”, "instance"),
new_bags = "bag_name"”,
)
Arguments
object An object of class mior
new_data A data frame to predict from. This needs to have all of the features that the data
was originally fitted with.
type If 'class’, return predicted values with threshold of 0 as -1 or +1. If 'raw’,

return the raw predicted scores.

predict.mior 43

layer If 'bag', return predictions at the bag level. If 'instance’, return predictions
at the instance level.

new_bags A character or character vector. Can specify a singular character that provides
the column name for the bag names in new_data (default 'bag_name'). Can
also specify a vector of length nrow(new_data) that has bag name for each row.

Arguments passed to or from other methods.

Details

When the object was fitted using the formula method, then the parameters new_bags and new_instances
are not necessary, as long as the names match the original function call.

Value

A tibble with nrow(new_data) rows. If type = 'class', the tibble will have a column . pred_class.
If type = 'raw’, the tibble will have a column . pred.

Author(s)

Sean Kent

See Also

mior () for fitting the mior object.

Examples

if (require(gurobi)) {

set.seed(8)

make some data

n <- 15

X <= rbind(
mvtnorm: :rmvnorm(n/3, mean = c(4, -2, 0)),
mvtnorm: :rmvnorm(n/3, mean = c(@, @, 0)),
mvtnorm: :rmvnorm(n/3, mean = c(-2, 1, 0))

)

score <- X %*% c(2, -1, @)

y <- as.numeric(cut(score, c(-Inf, quantile(score, probs = 1:2 / 3), Inf)))

bags <- 1:length(y)

add in points outside boundaries
X <= rbind(
X,
mvtnorm: :rmvnorm(n, mean = c(6, -3, 0)),
mvtnorm: :rmvnorm(n, mean = c(-6, 3, 0))
)
y <= c(y, rep(-1, 2xn))
bags <- rep(bags, 3)
repr <- c(rep(1, n), rep(@, 2*n))

y_bag <- classify_bags(y, bags, condense = FALSE)

44

predict. mismm

mdl1 <- mior(X, y_bag, bags)
summarize predictions at the bag layer

library(dplyr)

df1 <- bind_cols(y = y_bag, bags = bags, as.data.frame(X))

df1 %>%

bind_cols(predict(mdll, df1, new_bags = bags, type = "class")) %>%
bind_cols(predict(mdll, df1, new_bags = bags, type = "raw")) %>%
distinct(y, bags, .pred_class, .pred)

predict.mismm

Predict method for mismm object

Description

Predict method for mismm object

Usage

S3 method for class 'mismm'

predict(
object,
new_data,
type = c("class”, "raw"),
layer = c("bag"”, "instance"),
new_bags = "bag_name"”,
new_instances = "instance_name",

kernel = NULL,

Arguments

object

new_data

type

layer

new_bags

An object of class mismm.

A data frame to predict from. This needs to have all of the features that the data
was originally fitted with.

If 'class’, return predicted values with threshold of O as -1 or +1. If 'raw’,
return the raw predicted scores.

If 'bag', return predictions at the bag level. If 'instance’, return predictions
at the instance level.

A character or character vector. Can specify a singular character that provides
the column name for the bag names in new_data (default 'bag_name'). Can
also specify a vector of length nrow(new_data) that has bag name for each row.

predict.mismm 45

new_instances A character or character vector. Can specify a singular character that provides
the column name for the instance names in new_data (default ' instance_name").
Can also specify a vector of length nrow(new_data) that has instance name for
each row.

kernel An optional pre-computed kernel matrix at the instance level or NULL (default
NULL). The rows should correspond to instances in the new data to predict, and
columns should correspond to instances in the original training data, such as a
call to kme ().

Arguments passed to or from other methods.

Details

When the object was fitted using the formula method, then the parameters new_bags and new_instances
are not necessary, as long as the names match the original function call.

Value

A tibble with nrow(new_data) rows. If type = 'class', the tibble will have a column . pred_class.
If type = 'raw’, the tibble will have a column . pred.

Author(s)

Sean Kent

See Also

mismm() for fitting the mismm object.

Examples

mil_data <- generate_mild_df(nbag = 15, nsample = 20, positive_prob = 0.15,
sd_of_mean = rep(0.1, 3))

mdl1 <- mismm(mil_data, control = list(sigma = 1/5))

bag level predictions

library(dplyr)

mil_data %>%
bind_cols(predict(mdll, mil_data, type = "class")) %>%
bind_cols(predict(mdll, mil_data, type = "raw")) %>%
distinct(bag_name, bag_label, .pred_class, .pred)

instance level prediction

mil_data %>%
bind_cols(predict(mdll, mil_data, type = "class"”, layer = "instance")) %>%
bind_cols(predict(mdll, mil_data, type = "raw", layer = "instance")) %>%

distinct(bag_name, instance_name, bag_label, .pred_class, .pred)

n

46 predict.misvm

predict.misvm Predict method for misvm object

Description

Predict method for misvm object

Usage
S3 method for class 'misvm'
predict(
object,
new_data,
type = c("class”, "raw"),
layer = c("bag"”, "instance"),
new_bags = "bag_name"”,
)
Arguments
object An object of class misvm.
new_data A data frame to predict from. This needs to have all of the features that the data
was originally fitted with.
type If 'class’, return predicted values with threshold of 0 as -1 or +1. If 'raw’,
return the raw predicted scores.
layer If 'bag', return predictions at the bag level. If 'instance’, return predictions
at the instance level.
new_bags A character or character vector. Can specify a singular character that provides
the column name for the bag names in new_data (default 'bag_name'). Can
also specify a vector of length nrow(new_data) that has bag name for each row.
Arguments passed to or from other methods.
Details

When the object was fitted using the formula method, then the parameters new_bags and new_instances
are not necessary, as long as the names match the original function call.
Value

A tibble with nrow(new_data) rows. If type = 'class', the tibble will have a column . pred_class.
If type = 'raw’, the tibble will have a column . pred.

Author(s)

Sean Kent

predict.misvm_orova 47

See Also

* misvm() for fitting the misvm object.

* cv_misvm() for fitting the misvm object with cross-validation.

Examples

mil_data <- generate_mild_df(nbag = 20,
positive_prob = 0.15,
sd_of_mean = rep(0.1, 3))
df1 <- build_instance_feature(mil_data, seq(@.05, .95, length.out = 10))
mdl1 <- misvm(x = df1[, 4:63], y = df1$bag_label,
bags = df1$bag_name, method = "heuristic")

predict(mdll, new_data = df1, type = "raw”, layer = "bag")

summarize predictions at the bag layer

library(dplyr)

df1 %>%
bind_cols(predict(mdll, df1, type = "class")) %>%
bind_cols(predict(mdll, df1, type = "raw")) %>%
distinct(bag_name, bag_label, .pred_class, .pred)

predict.misvm_orova Predict method for misvm_orova object

Description

Predict method for misvm_orova object. Predictions use the K fitted MI-SVM models. For class
predictions, we return the class whose MI-SVM model has the highest raw predicted score. For raw
predictions, a full matrix of predictions is returned, with one column for each model.

Usage
S3 method for class 'misvm_orova'
predict(
object,
new_data,
type = c("class”, "raw"),
layer = c("bag"”, "instance"),
new_bags = "bag_name"”,

48 predict.misvm_orova

Arguments
object An object of class misvm_orova
new_data A data frame to predict from. This needs to have all of the features that the data
was originally fitted with.
type If 'class’, return predicted values based on the highest output of an individual
model. If 'raw’, return the raw predicted scores for each model.
layer If 'bag', return predictions at the bag level. If 'instance’, return predictions
at the instance level.
new_bags A character or character vector. Can specify a singular character that provides
the column name for the bag names in new_data (default 'bag_name'). Can
also specify a vector of length nrow(new_data) that has bag name for each row.
Arguments passed to or from other methods.
Details

When the object was fitted using the formula method, then the parameters new_bags and new_instances
are not necessary, as long as the names match the original function call.

Value

A tibble with nrow(new_data) rows. If type = 'class', the tibble will have a column . pred_class.
If type = 'raw’, the tibble will have K columns .pred_{class_name} corresponding to the raw
predictions of the K models.

Author(s)

Sean Kent

See Also

misvm_orova() for fitting the misvm_orova object.

Examples

data("ordmvnorm")

X <= ordmvnorm[, 3:7]

y <- ordmvnorm$bag_label
bags <- ordmvnorm$bag_name

mdl1 <- misvm_orova(x, y, bags)

summarize predictions at the bag layer

library(dplyr)

df1 <- bind_cols(y =y, bags = bags, as.data.frame(x))

df1 %>%
bind_cols(predict(mdll, df1, new_bags = bags, type = "class")) %>%
bind_cols(predict(mdll, df1, new_bags = bags, type = "raw")) %>%
select(-starts_with("V")) %>%
distinct()

predict.omisvim 49

predict.omisvm Predict method for omisvm object

Description

Predict method for omisvm object

Usage
S3 method for class 'omisvm'
predict(
object,
new_data,
type = c("class”, "raw"),
layer = c("bag"”, "instance"),
new_bags = "bag_name"”,
)
Arguments
object An object of class omisvm
new_data A data frame to predict from. This needs to have all of the features that the data
was originally fitted with.
type If 'class’, return predicted values with threshold of 0 as -1 or +1. If 'raw’,
return the raw predicted scores.
layer If 'bag', return predictions at the bag level. If 'instance’, return predictions
at the instance level.
new_bags A character or character vector. Can specify a singular character that provides
the column name for the bag names in new_data (default 'bag_name'). Can
also specify a vector of length nrow(new_data) that has bag name for each row.
Arguments passed to or from other methods.
Details

When the object was fitted using the formula method, then the parameters new_bags and new_instances
are not necessary, as long as the names match the original function call.
Value

A tibble with nrow(new_data) rows. If type = 'class', the tibble will have a column . pred_class.
If type = 'raw’, the tibble will have a column . pred.

Author(s)

Sean Kent

50

See Also

omisvm() for fitting the omisvm object.

Examples

if (require(gurobi)) {
data("ordmvnorm")
X <- ordmvnorm[, 3:7]
y <- ordmvnorm$bag_label
bags <- ordmvnorm$bag_name

mdl1 <- omisvm(x, y, bags, weights = NULL)

summarize predictions at the bag layer
library(dplyr)
df1 <- bind_cols(y = y, bags = bags, as.data.frame(x))
df1 %>%
bind_cols(predict(mdll, df1, new_bags = bags, type =
bind_cols(predict(mdll, df1, new_bags = bags, type =
distinct(y, bags, .pred_class, .pred)

"class")) %>%
"raw")) %>%

predict.smm

predict.smm Predict method for smm object

Description

Predict method for smm object

Usage

S3 method for class 'smm'

predict(
object,
new_data,
type = c("class”, "raw"),
layer = "instance",
new_instances = "instance_name",
new_bags = "bag_name"”,

kernel = NULL,

Arguments

object an object of class smm

predict.smm 51

new_data A data frame to predict from. This needs to have all of the features that the data
was originally fitted with.

type If 'class’, return predicted values with threshold of 0 as -1 or +1. If 'raw’,
return the raw predicted scores.

layer If 'instance', return predictions at the instance level. Option 'bag' returns
predictions at the bag level, but only if the model was fit with smm.mild_df (),

new_instances A character or character vector. Can specify a singular character that provides
the column name for the instance names in new_data (default ' instance_name").
Can also specify a vector of length nrow(new_data) that has instance name for
each row.

new_bags A character or character vector. Only relevant when fit with smm.mild_df (),
which contains bag level information. Can specify a singular character that pro-
vides the column name for the bag names in new_data, default = "bag_name".
Can also specify a vector of length nrow(new_data) that has bag name for each
Instance.

kernel An optional pre-computed kernel matrix at the instance level or NULL (default
NULL). The rows should correspond to instances in the new data to predict, and
columns should correspond to instances in the original training data, such as a
call to kme ().

Arguments passed to or from other methods.

Details

When the object was fitted using the formula method, then the parameters new_bags and new_instances
are not necessary, as long as the names match the original function call.

Value

tibble with nrow(new_data) rows. If type = 'class', the tibble will have a column named . pred_class.
If type = 'raw', the tibble will have a column name . pred.

Author(s)

Sean Kent

See Also

smm() for fitting the smm object.

Examples

set.seed(8)
n_instances <- 10
n_samples <- 20
y <- rep(c(1, -1), each = n_samples * n_instances / 2)
instances <- as.character(rep(1:n_instances, each = n_samples))
x <- data.frame(x1 = rnorm(length(y), mean = 1x(y==1)),

x2 = rnorm(length(y), mean = 2x(y==1)),

52 predict.svor_exc

x3 = rnorm(length(y), mean = 3*(y==1)))
mdl <- smm(x, y, instances, control = list(sigma = 1/3))

instance level predictions (training data)

suppressWarnings(library(dplyr))

data.frame(instance_name = instances, y =y, x) %>%
bind_cols(predict(mdl, type = "raw"”, new_data = x, new_instances = instances)) %>%
bind_cols(predict(mdl, type = "class”, new_data = x, new_instances = instances)) %>%
distinct(instance_name, y, .pred, .pred_class)

test data

new_inst <- rep(c(”11", "12"), each = 30)

new_y <- rep(c(1, -1), each = 30)

new_x <- data.frame(x1 = rnorm(length(new_inst), mean = 1x(new_inst=="11")),
x2 = rnorm(length(new_inst), mean = 2x(new_inst=="11")),
x3 = rnorm(length(new_inst), mean = 3*x(new_inst=="11")))

instance level predictions (test data)

data.frame(instance_name = new_inst, y = new_y, new_x) %>%
bind_cols(predict(mdl, type = "raw”, new_data = new_x, new_instances = new_inst)) %>%
bind_cols(predict(mdl, type = "class"”, new_data = new_x, new_instances = new_inst)) %>%
distinct(instance_name, y, .pred, .pred_class)

predict.svor_exc Predict method for svor_exc object

Description

Predict method for svor_exc object

Usage
S3 method for class 'svor_exc'
predict(
object,
new_data,
type = c("class”, "raw"),
layer = c("instance”, "bag"),
new_bags = "bag_name”,
)
Arguments
object An object of class svor_exc.
new_data A data frame to predict from. This needs to have all of the features that the data

was originally fitted with.

smm 53

type If 'class’, return predicted values with threshold of 0 as -1 or +1. If 'raw',
return the raw predicted scores.

layer If 'bag', return predictions at the bag level. If 'instance', return predictions
at the instance level.

new_bags A character or character vector. Can specify a singular character that provides
the column name for the bag names in new_data (default 'bag_name'). Can
also specify a vector of length nrow(new_data) that has bag name for each row.

Arguments passed to or from other methods.

Details
When the object was fitted using the formula method, then the parameter new_bags is not neces-
sary, as long as the names match the original function call.

Value
A tibble with nrow(new_data) rows. If type = 'class', the tibble will have a column . pred_class.
If type = 'raw’, the tibble will have a column . pred.

Author(s)

Sean Kent

See Also

svor_exc() for fitting the svor_exc object.

Examples

data("ordmvnorm")
x <= ordmvnorm[, 3:7]
y <- attr(ordmvnorm, "instance_label")

mdll <- svor_exc(x, y)
predict(mdl1l, x)
predict(mdll, x, type = "raw")

smm Fit SMM model to the data

Description

Function to carry out support measure machines algorithm which is appropriate for multiple in-
stance learning. The algorithm calculates the kernel matrix of different empirical measures using
kernel mean embedding. The data set should be passed in with rows corresponding to samples from
a set of instances. SMM will compute a kernel on the instances and pass that to kernlab: :ksvm()
to train the appropriate SVM model.

54 smm

Usage

Default S3 method:
smm(
X7
Y,
instances,
cost =1,
weights = TRUE,
control = list(kernel = "radial”, sigma = if (is.vector(x)) 1 else 1/ncol(x), scale =
TRUE),

S3 method for class 'formula’
smm(formula, data, instances = "instance_name", ...)

S3 method for class 'mild_df"
smm(x, ...)

Arguments

X A data.frame, matrix, or similar object of covariates, where each row represents
a sample. If a mild_df object is passed, y, instances are automatically ex-
tracted, bags is ignored, and all other columns will be used as predictors.

y A numeric, character, or factor vector of bag labels for each instance. Must
satisfy length(y) == nrow(x). Suggest that one of the levelsis 1, ’1’, or TRUE,
which becomes the positive class; otherwise, a positive class is chosen and a
message will be supplied.

instances A vector specifying which samples belong to each instance. Can be a string,
numeric, of factor.

cost The cost parameter in SVM, fed to the C argument in kernlab: :ksvm().

weights named vector, or TRUE, to control the weight of the cost parameter for each
possible y value. Weights multiply against the cost vector. If TRUE, weights are
calculated based on inverse counts of instances with given label, where we only
count one positive instance per bag. Otherwise, names must match the levels of
y.

control A list of additional parameters passed to the method that control computation
with the following components:

* kernel either a character the describes the kernel (’linear’ or ’radial’) or a
kernel matrix at the instance level.
* sigma argument needed for radial basis kernel.
* scale argument used for all methods. A logical for whether to rescale the
input before fitting.
Arguments passed to or from other methods.

formula A formula with specification y ~ x. This argument is an alternative to the x, y
arguments, but requires the data and instances argument. See examples.

smm 55

data If formula is provided, a data.frame or similar from which formula elements
will be extracted.

Value

An object of class smm The object contains at least the following components:

* ksvm_fit: A fit of class ksvm from the kernlab package.

* call_type: A character indicating which method smm() was called with.
* x: The training data needed for computing the kernel matrix in prediction.
* features: The names of features used in training.

e levels: The levels of y that are recorded for future prediction.

* cost: The cost parameter from function inputs.

* sigma: The radial basis function kernel parameter.

* weights: The calculated weights on the cost parameter, if applicable.

» x_scale: If scale = TRUE, the scaling parameters for new predictions.

Methods (by class)

e default: Method for data.frame-like objects
» formula: Method for passing formula

* mild_df: Method for mild_df objects. Use the bag_label as y at the instance level, then
perform smm() ignoring the MIL structure.

Author(s)
Sean Kent, Yifei Liu

References

Muandet, K., Fukumizu, K., Dinuzzo, F., & Scholkopf, B. (2012). Learning from distributions via
support measure machines. Advances in neural information processing systems, 25.

See Also

predict.smm() for prediction on new data.

Examples

set.seed(8)
n_instances <- 10
n_samples <- 20
y <- rep(c(1, -1), each = n_samples * n_instances / 2)
instances <- as.character(rep(1:n_instances, each = n_samples))
x <- data.frame(x1 = rnorm(length(y), mean = 1x(y==1)),

x2 = rnorm(length(y), mean = 2x(y==1)),

x3 = rnorm(length(y), mean = 3*(y==1)))

56 summarize_samples

df <- data.frame(instance_name = instances, y =y, X)

mdl <- smm(x, y, instances)
mdl2 <- smm(y ~ ., data = df)

instance level predictions

suppressWarnings(library(dplyr))

df %>%
dplyr::bind_cols(predict(mdl, type = "raw”, new_data = x, new_instances = instances)) %>%
dplyr::bind_cols(predict(mdl, type = "class"”, new_data = x, new_instances = instances)) %>%
dplyr::distinct(instance_name, y, .pred, .pred_class)

summarize_samples Summarize data across functions

Description
Summarize a numeric data frame based on specified grouping columns and a list of functions. This
is useful in summarizing a mild_df object from the sample level to the instance level.

Usage

Default S3 method:
summarize_samples(data, group_cols, .fns = list(mean = mean), cor = FALSE, ...)

S3 method for class 'mild_df"

summarize_samples(data, ...)
Arguments
data A data.frame, 'mild_df’ object, or similar of data to summarize.
group_cols A character vector of column(s) that describe groups to summarize across.
.fns A list of functions (default 1ist(mean = mean)).
cor A logical (default FALSE) for whether to include correlations between all features

in the summarization.

Arguments passed to or from other methods.

Value

A tibble with summarized data. There will be one row for each set of distinct groups specified by
group_cols. There will be one column for each of the group_cols, plus length(.fns) columns
for each of the features in data, plus correlation columns if specified.

Methods (by class)

* default: Method for data.frame-like objects.
e mild_df: Method for mild_df objects.

svor_exc 57

Author(s)
Sean Kent
Examples
fns <- list(mean = mean, sd = sd)
summarize_samples(mtcars, group_cols = c("cyl”, "gear"), .fns = fns)
summarize_samples(mtcars, group_cols = c("cyl”, "gear"), .fns = fns, cor = TRUE)
svor_exc Fit SVOR-EXC model to ordinal outcome data
Description

This function fits the Support Vector Ordinal Regression with Explicit Constraints based on the
research of Chu and Keerthi (2007).

Usage

Default S3 method:
svor_exc(
X,
"
cost = 1,
method = c(”smo"),
weights = NULL,
control = list(kernel = "linear"”, sigma = if (is.vector(x)) 1 else 1/ncol(x),
max_step = 500, scale = TRUE, verbose = FALSE),

S3 method for class 'formula'
svor_exc(formula, data, ...)

S3 method for class 'mi_df'

svor_exc(x, ...)
Arguments
X A data.frame, matrix, or similar object of covariates, where each row represents

an instance. If a mi_df object is passed, y is automatically extracted, bags is
ignored, and all other columns will be used as predictors.

y A numeric, character, or factor vector of bag labels for each instance. Must
satisfy length(y) == nrow(x). Suggest that one of the levelsis 1, ’1’, or TRUE,
which becomes the positive class; otherwise, a positive class is chosen and a
message will be supplied.

58

cost

method

weights

control

formula

data

Value

SVOr_exc

The cost parameter in SVM.

The algorithm to use in fitting (default 'smo'). When method = 'smo"', the mod-
ified SMO algorithm from Chu and Keerthi (2007) is used.

NULL, since weights are not implemented for this function.

list of additional parameters passed to the method that control computation with
the following components:

¢ kernel either a character the describes the kernel ("linear’ or ’radial’) or a
kernel matrix at the instance level.
* sigma argument needed for radial basis kernel.

* max_step argument used when method = 'heuristic'. Maximum steps
of iteration for the heuristic algorithm.

* scale argument used for all methods. A logical for whether to rescale the
input before fitting.

* verbose argument used when method = 'mip'. Whether to message output
to the console.

Arguments passed to or from other methods.

A formula with specification y ~ x. This argument is an alternative to the x, y
arguments, but requires the data argument. See examples.

If formula is provided, a data.frame or similar from which formula elements
will be extracted.

An object of class svor_exc The object contains at least the following components:

* smo_fit: A fit object from running the modified ordinal smo algorithm.

e call_type: A character indicating which method svor_exc() was called with.

» features: The names of features used in training.

* levels: The levels of y that are recorded for future prediction.

* cost: The cost parameter from function inputs.

* n_step: The total steps used in the heuristic algorithm.

» x_scale: If scale = TRUE, the scaling parameters for new predictions.

Methods (by class)

* default: Method for data.frame-like objects

* formula: Method for passing formula

* mi_df: Method for mi_df objects, automatically handling bag names, labels, and all covari-
ates. Use the bag_label as y at the instance level, then perform svor_exc() ignoring the
MIL structure and bags.

Author(s)

Sean Kent

svor_exc 59

References

Chu, W., & Keerthi, S. S. (2007). Support vector ordinal regression. Neural computation, 19(3),
792-815. doi: 10.1162/neco0.2007.19.3.792

See Also

predict.svor_exc() for prediction on new data.

Examples

data("ordmvnorm”)
X <= ordmvnorm[, 3:7]
y <- attr(ordmvnorm, "instance_label"”)

mdl1 <- svor_exc(x, y)
predict(mdll, x)

https://doi.org/10.1162/neco.2007.19.3.792

Index

* datasets
ordmvnorm, 40

* kernel feature map functions
kfm_exact, 16
kfm_nystrom, 17

+ multiple instance formula helper functions
mi, 20
mild, 21

as_mi_df, 4
as_mi_df (), 37
as_mild_df, 3
as_mild_df(), 23

bag_instance_sampling, 5
build_fm, 6
build_instance_feature, 7

classify_bags, 8
cv_misvm, 9
cv_misvm(), 32,47

formatting, 12

generate_mild_df, 13
generate_mild_df (), 23

kfm_exact, 16, 19

kfm_exact(), 7

kfm_nystrom, 17,17
kfm_nystrom(), 6, 7, 10, 27, 31, 34, 38
kme, 19

kme(), 45, 51

mi, 20, 21
mi_df, 36
mi_df(),4, 5
mild, 27,21
mild_df, 22
mild_df (), 3
mior, 23

60

mior(), 43

mismm, 26
mismm(), 45
misvm, 30
misvm(), 9, 11, 35,47
misvm_orova, 33
misvm_orova(), 48

omisvm, 37
omisvm(), 50
option, I3
ordmvnorm, 40

predict.cv_misvm, 41
predict.mior, 42
predict.mior(), 25
predict.mismm, 44
predict.mismm(), 29
predict.misvm, 46
predict.misvm(), 25, 32
predict.misvm_orova, 47
predict.misvm_orova(), 35
predict.omisvm, 49
predict.omisvm(), 39
predict.smm, 50
predict.smm(), 55
predict.svor_exc, 52
predict.svor_exc(), 59
print.mi_df (formatting), 12
print.mild_df (formatting), 12
print.tbl(), 12

smm, 53

smm(), 27, 51
summarize_samples, 56
summarize_samples(), 8, 23
svor_exc, 57
svor_exc(), 53

	as_mild_df
	as_mi_df
	bag_instance_sampling
	build_fm
	build_instance_feature
	classify_bags
	cv_misvm
	formatting
	generate_mild_df
	kfm_exact
	kfm_nystrom
	kme
	mi
	mild
	mild_df
	mior
	mismm
	misvm
	misvm_orova
	mi_df
	omisvm
	ordmvnorm
	predict.cv_misvm
	predict.mior
	predict.mismm
	predict.misvm
	predict.misvm_orova
	predict.omisvm
	predict.smm
	predict.svor_exc
	smm
	summarize_samples
	svor_exc
	Index

