## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----eval = FALSE------------------------------------------------------------- # library(misha) # gdb.init_examples() ## ----eval = FALSE------------------------------------------------------------- # gtrack.ls() # list tracks in the examples DB # gtrack.info("dense_track") # inspect type/metadata # gtrack.info("sparse_track") ## ----eval = FALSE------------------------------------------------------------- # regions <- gintervals(1, c(0, 250000), c(100000, 260000)) ## ----eval = FALSE------------------------------------------------------------- # out <- gextract("dense_track", regions, iterator = 100) # log_out <- gextract("log(dense_track + 1)", regions, iterator = 100) ## ----eval = FALSE------------------------------------------------------------- # gintervals.save(regions, "my_intervals_set") # out2 <- gextract("dense_track", gintervals.all(), iterator = "my_intervals_set") ## ----eval = FALSE------------------------------------------------------------- # gvtrack.create("chip.sum", "dense_track", "sum") # out <- gextract("chip.sum", regions, iterator = 200) ## ----eval = FALSE------------------------------------------------------------- # gvtrack.create("chip.shifted", "dense_track", "sum") # gvtrack.iterator("chip.shifted", sshift = -100, eshift = 100) # out <- gextract("chip.shifted", regions, iterator = 200) ## ----eval = FALSE------------------------------------------------------------- # library(misha) # gdb.init_examples() # # # 1) pick scope # regions <- gintervals(1, 0, 50000) # # # 2) inspect available tracks # print(gtrack.ls()) # # # 3) extract signal with a chosen iterator # chip <- gextract("dense_track", regions, iterator = 100) # # # 4) screen high-signal bins (as a simple peak-like filter) # hi_chip <- gscreen("dense_track > 0.6", regions, iterator = 100) # # # 5) summarize distribution/coverage # stats <- gsummary("dense_track", regions, iterator = 100) ## ----eval = FALSE------------------------------------------------------------- # regions <- gintervals(1, c(1000, 2000), c(1020, 2020)) # seqs <- gseq.extract(regions) # # pssm <- matrix(c( # 0.80, 0.05, 0.10, 0.05, # 0.10, 0.10, 0.70, 0.10, # 0.05, 0.80, 0.05, 0.10, # 0.10, 0.10, 0.10, 0.70 # ), ncol = 4, byrow = TRUE) # colnames(pssm) <- c("A", "C", "G", "T") # # scores <- gseq.pwm(seqs, pssm, mode = "lse")