Package ‘mlr3hyperband’

July 10, 2025

Title Hyperband for 'mlr3'’
Version 1.0.0

Description Successive Halving (Jamieson and Talwalkar (2016)
<doi:10.48550/arXiv.1502.07943>) and Hyperband (Li et al. 2018
<doi:10.48550/arXiv.1603.06560>) optimization algorithm for the mlr3
ecosystem. The implementation in mlr3hyperband features improved
scheduling and parallelizes the evaluation of configurations. The
package includes tuners for hyperparameter optimization in mlr3tuning
and optimizers for black-box optimization in bbotk.

License LGPL-3

URL https://mlr3hyperband.mlr-org.com,
https://github.com/mlr-org/mlr3hyperband

BugReports https://github.com/mlr-org/mlr3hyperband/issues
Depends mlr3tuning (>= 1.4.0), R (>=3.1.0)

Imports bbotk (>= 1.6.0), checkmate (>= 1.9.4), data.table, lgr, mlr3
(>=0.13.1), mlr3misc (>= 0.10.0), paradox (>= 0.9.0), R6, uuid

Suggests emoa, mirai, mlr3learners (>= 0.5.2), mlr3pipelines, redux,
rpart, rush (>= 0.2.0), testthat (>= 3.0.0), xgboost

Config/testthat/edition 3
Config/testthat/parallel no
Encoding UTF-8
NeedsCompilation no
RoxygenNote 7.3.2

Collate 'OptimizerAsyncSuccessiveHalving.R' 'aaa.R’
'OptimizerBatchSuccessiveHalving. R' 'OptimizerBatchHyperband.R'
"TunerAsyncSuccessiveHalving.R' 'TunerBatchHyperband.R'
"TunerBatchSuccessiveHalving.R' 'bibentries.R' 'helper.R’

'zzz.R’

Author Marc Becker [aut, cre] (ORCID: <https://orcid.org/0000-0002-8115-0400>),
Sebastian Gruber [aut] (ORCID: <https://orcid.org/0000-0002-8544-3470>),

1

https://doi.org/10.48550/arXiv.1502.07943
https://doi.org/10.48550/arXiv.1603.06560
https://mlr3hyperband.mlr-org.com
https://github.com/mlr-org/mlr3hyperband
https://github.com/mlr-org/mlr3hyperband/issues
https://orcid.org/0000-0002-8115-0400
https://orcid.org/0000-0002-8544-3470

2 mlir3hyperband-package

Jakob Richter [aut] (ORCID: <https://orcid.org/0000-0003-4481-5554>),
Julia Moosbauer [aut] (ORCID: <https://orcid.org/0000-0002-0000-9297>),
Bernd Bischl [aut] (ORCID: <https://orcid.org/0000-0001-6002-6980>)

Maintainer Marc Becker <marcbecker@posteo.de>
Repository CRAN
Date/Publication 2025-07-10 09:00:02 UTC

Contents
mlr3hyperband-package oL 2
hyperband_budget L 3
hyperband_n_configs e 4
hyperband_schedule 4
mlr_optimizers_async_successive_halving 0oL 5
mlr_optimizers_hyperband oL 7
mlr_optimizers_successive_halving oL 0oL 10
mlr_tuners_async_successive_halving 13
mlr_tuners_hyperbando 15
mlr_tuners_successive_halving L L 19

Index 23

mlr3hyperband-package milr3hyperband: Hyperband for 'mlr3’

Description

Successive Halving (Jamieson and Talwalkar (2016) doi:10.48550/arXiv.1502.07943) and Hyper-
band (Li et al. 2018 doi:10.48550/arXiv.1603.06560) optimization algorithm for the mlr3 ecosys-
tem. The implementation in mlr3hyperband features improved scheduling and parallelizes the
evaluation of configurations. The package includes tuners for hyperparameter optimization in
mlr3tuning and optimizers for black-box optimization in bbotk.

Author(s)
Maintainer: Marc Becker <marcbecker@posteo.de> (ORCID)

Authors:

» Sebastian Gruber <gruber_sebastian@t-online.de> (ORCID)
Jakob Richter <jakobl1richter@gmail.com> (ORCID)

¢ Julia Moosbauer <ju.moosbauer@googlemail.com> (ORCID)
¢ Bernd Bischl <bernd_bischl@gmx.net> (ORCID)

https://orcid.org/0000-0003-4481-5554
https://orcid.org/0000-0002-0000-9297
https://orcid.org/0000-0001-6002-6980
https://doi.org/10.48550/arXiv.1502.07943
https://doi.org/10.48550/arXiv.1603.06560
https://orcid.org/0000-0002-8115-0400
https://orcid.org/0000-0002-8544-3470
https://orcid.org/0000-0003-4481-5554
https://orcid.org/0000-0002-0000-9297
https://orcid.org/0000-0001-6002-6980

hyperband_budget 3

See Also
Useful links:
e https://mlr3hyperband.mlr-org.com

* https://github.com/mlr-org/mlr3hyperband

* Report bugs at https://github.com/mlr-org/mlr3hyperband/issues

hyperband_budget Hyperband Budget

Description

Calculates the total budget used by hyperband.

Usage

hyperband_budget(r_min, r_max, eta, integer_budget = FALSE)

Arguments
r_min (numeric(1))
Lower bound of budget parameter.
r_max (numeric(1))
Upper bound of budget parameter.
eta (numeric(1))

Fraction parameter of the successive halving algorithm: With every stage the
configuration budget is increased by a factor of eta and only the best 1/eta
points are used for the next stage. Non-integer values are supported, but eta is
not allowed to be less or equal 1.

integer_budget (logical(1))
Determines if budget is an integer.

Value

integer(1)

https://mlr3hyperband.mlr-org.com
https://github.com/mlr-org/mlr3hyperband
https://github.com/mlr-org/mlr3hyperband/issues

4 hyperband_schedule

hyperband_n_configs Hyperband Configs

Description

Calculates how many different configurations are sampled.

Usage

hyperband_n_configs(r_min, r_max, eta)

Arguments
r_min (numeric(1))
Lower bound of budget parameter.
r_max (numeric(1))
Upper bound of budget parameter.
eta (numeric(1))
Fraction parameter of the successive halving algorithm: With every stage the
configuration budget is increased by a factor of eta and only the best 1/eta
points are used for the next stage. Non-integer values are supported, but eta is
not allowed to be less or equal 1.
Value
integer(1)

hyperband_schedule Hyperband Schedule

Description

Returns hyperband schedule.

Usage

hyperband_schedule(r_min, r_max, eta, integer_budget = FALSE)

mlr_optimizers_async_successive_halving 5

Arguments
r_min (numeric(1))
Lower bound of budget parameter.
r_max (numeric(1))
Upper bound of budget parameter.
eta (numeric(1))

Fraction parameter of the successive halving algorithm: With every stage the
configuration budget is increased by a factor of eta and only the best 1/eta
points are used for the next stage. Non-integer values are supported, but eta is
not allowed to be less or equal 1.

integer_budget (logical(1))
Determines if budget is an integer.

Value

data.table::data.table()

mlr_optimizers_async_successive_halving
Asynchronous Hyperparameter Optimization with Successive Halving

Description

OptimizerAsyncSuccessiveHalving class that implements the Asynchronous Successive Halv-
ing Algorithm (ASHA). This class implements the asynchronous version of OptimizerBatchSuc-
cessiveHalving.

Dictionary

This bbotk::Optimizer can be instantiated via the dictionary bbotk::mlr_optimizers or with the as-
sociated sugar function bbotk: :opt():

mlr_optimizers$get("async_successive_halving")
opt("async_successive_halving")

Parameters

eta numeric(1)
With every stage, the budget is increased by a factor of eta and only the best 1 / eta con-
figurations are promoted to the next stage. Non-integer values are supported, but eta is not
allowed to be less or equal to 1.

sampler paradox::Sampler
Object defining how the samples of the parameter space should be drawn. The default is
uniform sampling.

6 mlr_optimizers_async_successive_halving

Archive
The bbotk::Archive holds the following additional columns that are specific to SHA:
e stage (integer (1))
Stage index. Starts counting at 0.

* asha_id (character(1))
Unique identifier for each configuration across stages.

Custom Sampler

Hyperband supports custom paradox::Sampler object for initial configurations in each bracket. A
custom sampler may look like this (the full example is given in the examples section):

- beta distribution with alpha = 2 and beta = 5

- categorical distribution with custom probabilities

sampler = SamplerJointIndep$new(list(
Sampler1DRfun$new(params[[2]], function(n) rbeta(n, 2, 5)),
Sampleri1DCateg$new(params[[3]], prob = c(0.2, 0.3, 0.5))

)

Super classes

bbotk: :Optimizer -> bbotk: :OptimizerAsync -> OptimizerAsyncSuccessiveHalving

Methods

Public methods:
e OptimizerAsyncSuccessiveHalving$new()
e OptimizerAsyncSuccessiveHalving$optimize()
* OptimizerAsyncSuccessiveHalving$clone()

Method new(): Creates a new instance of this R6 class.
Usage:
OptimizerAsyncSuccessiveHalving$new()
Method optimize(): Performs the optimization on a bbotk::OptimInstance AsyncSingleCrit or

bbotk::OptimInstance AsyncMultiCrit until termination. The single evaluations will be written
into the bbotk::ArchiveAsync. The result will be written into the instance object.

Usage:
OptimizerAsyncSuccessiveHalving$optimize(inst)

Arguments:
inst (bbotk::OptimInstanceAsyncSingleCrit | bbotk::OptimInstance AsyncMultiCrit).

Returns: data.table::data.table()

Method clone(): The objects of this class are cloneable with this method.
Usage:
OptimizerAsyncSuccessiveHalving$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

mlr_optimizers_hyperband 7

Source

Li L, Jamieson K, Rostamizadeh A, Gonina E, Ben-tzur J, Hardt M, Recht B, Talwalkar A (2020).

“A System for Massively Parallel Hyperparameter Tuning.” In Dhillon I, Papailiopoulos D, Sze V

(eds.), Proceedings of Machine Learning and Systems, volume 2, 230-246. https://proceedings.
mlsys.org/paper_files/paper/2020/hash/a06f20b349c6cf09a6b171c71b88bbfc-Abstract.
html.

mlr_optimizers_hyperband
Optimizer Using the Hyperband Algorithm

Description

Optimizer using the Hyperband (HB) algorithm. HB runs the Successive Halving Algorithm (SHA)
with different numbers of stating configurations. The algorithm is initialized with the same param-
eters as Successive Halving but without n. Each run of Successive Halving is called a bracket and
starts with a different budget r_0. A smaller starting budget means that more configurations can
be tried out. The most explorative bracket allocated the minimum budget r_min. The next bracket
increases the starting budget by a factor of eta. In each bracket, the starting budget increases further
until the last bracket s = @ essentially performs a random search with the full budget r_max. The
number of brackets s_max + 1 is calculated with s_max = log(r_min / r_max) (eta). Under the
condition that r_0 increases by eta with each bracket, r_min sometimes has to be adjusted slightly
in order not to use more than r_max resources in the last bracket. The number of configurations in
the base stages is calculated so that each bracket uses approximately the same amount of budget.
The following table shows a full run of HB with eta = 2, r_min = 1 and r_max = 8.

1
i r_i
4 4
2 8

W= OO’

s is the bracket number, i is the stage number, n_i is the number of configurations and r_i is the
budget allocated to a single configuration.

The budget hyperparameter must be tagged with "budget” in the search space. The minimum
budget (r_min) which is allocated in the base stage of the most explorative bracket, is set by the
lower bound of the budget parameter. The upper bound defines the maximum budget (r_max) which
is allocated to the candidates in the last stages.

Resources

The gallery features a collection of case studies and demos about optimization.

* Tune the hyperparameters of XGBoost with Hyperband.

 Use data subsampling and Hyperband to optimize a support vector machine.

https://proceedings.mlsys.org/paper_files/paper/2020/hash/a06f20b349c6cf09a6b171c71b88bbfc-Abstract.html
https://proceedings.mlsys.org/paper_files/paper/2020/hash/a06f20b349c6cf09a6b171c71b88bbfc-Abstract.html
https://proceedings.mlsys.org/paper_files/paper/2020/hash/a06f20b349c6cf09a6b171c71b88bbfc-Abstract.html
https://mlr-org.com/gallery-all-optimization.html
https://mlr-org.com/gallery/series/2023-01-15-hyperband-xgboost/
https://mlr-org.com/gallery/series/2023-01-16-hyperband-subsampling/

8 mlr_optimizers_hyperband

Dictionary

This bbotk::Optimizer can be instantiated via the dictionary bbotk::mlr_optimizers or with the as-
sociated sugar function bbotk: :opt():

mlr_optimizers$get("hyperband”)
opt("hyperband”)

Parameters

eta numeric(1)
With every stage, the budget is increased by a factor of eta and only the best 1 / eta points
are promoted to the next stage. Non-integer values are supported, but eta is not allowed to be
less or equal to 1.

sampler paradox::Sampler
Object defining how the samples of the parameter space should be drawn in the base stage of
each bracket. The default is uniform sampling.

repetitions integer(1)
If 1 (default), optimization is stopped once all brackets are evaluated. Otherwise, optimization
is stopped after repetitions runs of HB. The bbotk::Terminator might stop the optimization
before all repetitions are executed.

Archive

The bbotk::Archive holds the following additional columns that are specific to HB:

e bracket (integer(1))

The bracket index. Counts down to 0.
e stage (integer(1))

The stages of each bracket. Starts counting at 0.
e repetition (integer(1))

Repetition index. Start counting at 1.

Custom Sampler

Hyperband supports custom paradox::Sampler object for initial configurations in each bracket. A
custom sampler may look like this (the full example is given in the examples section):

- beta distribution with alpha = 2 and beta = 5

- categorical distribution with custom probabilities

sampler = SamplerJointIndep$new(list(
Sampler1DRfun$new(params[[2]], function(n) rbeta(n, 2, 5)),
Sampleri1DCateg$new(params[[3]], prob = ¢(0.2, 0.3, 0.5))

))

Progress Bars
$optimize () supports progress bars via the package progressr combined with a bbotk:: Terminator.
Simply wrap the function in progressr: :with_progress() to enable them. We recommend to use
package progress as backend; enable with progressr: :handlers("progress”).

https://CRAN.R-project.org/package=progressr
https://CRAN.R-project.org/package=progress

mlr_optimizers_hyperband 9

Logging

Hyperband uses a logger (as implemented in Igr) from package bbotk. Use 1gr: :get_logger ("bbotk")
to access and control the logger.

Super classes

bbotk: :Optimizer -> bbotk: :OptimizerBatch -> OptimizerBatchHyperband

Methods

Public methods:

e OptimizerBatchHyperband$new()
* OptimizerBatchHyperband$clone()

Method new(): Creates a new instance of this R6 class.
Usage:
OptimizerBatchHyperband$new()

Method clone(): The objects of this class are cloneable with this method.

Usage:
OptimizerBatchHyperband$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Source

Li L, Jamieson K, DeSalvo G, Rostamizadeh A, Talwalkar A (2018). “Hyperband: A Novel
Bandit-Based Approach to Hyperparameter Optimization.” Journal of Machine Learning Research,
18(185), 1-52. https://jmlr.org/papers/v18/16-558.html.

Examples

library(bbotk)
library(data. table)

set search space
search_space = domain = ps(

x1 = p_dbl(-5, 10),

x2 = p_dbl(@, 15),

fidelity = p_dbl(le-2, 1, tags = "budget")
)

Branin function with fidelity, see ~bbotk::branin()"
fun = function(xs) branin_wu(xs[["x1"]], xs[["x2"]1], xs[["fidelity"”]]1)

create objective

objective = ObjectiveRFun$new(
fun = fun,
domain = domain,

https://CRAN.R-project.org/package=lgr
https://CRAN.R-project.org/package=bbotk
https://jmlr.org/papers/v18/16-558.html

10

mlir_optimizers_successive_halving

codomain = ps(y = p_dbl(tags = "minimize"))

)

initialize instance and optimizer

instance = OptimInstanceSingleCrit$new(

objective = objective,
search_space = search_space,

terminator = trm("evals"”, n_evals = 50)

)
optimizer = opt("hyperband”)

optimize branin function
optimizer$optimize(instance)

best scoring evaluation
instance$result

all evaluations
as.data.table(instance$archive)

mlr_optimizers_successive_halving

Hyperparameter Optimization with Successive Halving

Description

Optimizer using the Successive Halving Algorithm (SHA). SHA is initialized with the number of
starting configurations n, the proportion of configurations discarded in each stage eta, and the min-
imum r_min and maximum _max budget of a single evaluation. The algorithm starts by sampling n
random configurations and allocating the minimum budget r_min to them. The configurations are
evaluated and 1 / eta of the worst-performing configurations are discarded. The remaining config-
urations are promoted to the next stage and evaluated on a larger budget. The following table is the
stage layout for eta =2, r_min = 1 and r_max = 8.

W = O

—_ N Ao -
ool SN S I

i is the stage number, n_i is the number of configurations and r_i is the budget allocated to a single

configuration.

The number of stages is calculated so that each stage consumes approximately the same budget.
This sometimes results in the minimum budget having to be slightly adjusted by the algorithm.

mlr_optimizers_successive_halving 11

Resources

The gallery features a collection of case studies and demos about optimization.

* Tune the hyperparameters of XGBoost with Hyperband (Hyperband can be easily swapped
with SHA).

* Use data subsampling and Hyperband to optimize a support vector machine.

Dictionary

This bbotk::Optimizer can be instantiated via the dictionary bbotk::mlr_optimizers or with the as-
sociated sugar function bbotk: :opt():

mlr_optimizers$get(”successive_halving"”)
opt("”successive_halving”)

Parameters

n integer(1)
Number of configurations in the base stage.

eta numeric(1)
With every stage, the budget is increased by a factor of eta and only the best 1 / eta con-
figurations are promoted to the next stage. Non-integer values are supported, but eta is not
allowed to be less or equal to 1.

sampler paradox::Sampler

Object defining how the samples of the parameter space should be drawn. The default is
uniform sampling.

repetitions integer(1)
If 1 (default), optimization is stopped once all stages are evaluated. Otherwise, optimization is
stopped after repetitions runs of SHA. The bbotk::Terminator might stop the optimization
before all repetitions are executed.

adjust_minimum_budget logical(1)
If TRUE, the minimum budget is increased so that the last stage uses the maximum budget
defined in the search space.

Archive

The bbotk::Archive holds the following additional columns that are specific to SHA:
* stage (integer (1))
Stage index. Starts counting at 0.

e repetition (integer(1))
Repetition index. Start counting at 1.

https://mlr-org.com/gallery-all-optimization.html
https://mlr-org.com/gallery/series/2023-01-15-hyperband-xgboost/
https://mlr-org.com/gallery/series/2023-01-16-hyperband-subsampling/

12 mlir_optimizers_successive_halving

Custom Sampler

Hyperband supports custom paradox::Sampler object for initial configurations in each bracket. A
custom sampler may look like this (the full example is given in the examples section):

- beta distribution with alpha = 2 and beta = 5

- categorical distribution with custom probabilities

sampler = SamplerJointIndep$new(list(
Sampler1DRfun$new(params[[2]], function(n) rbeta(n, 2, 5)),
Sampleri1DCateg$new(params[[3]], prob = c(0.2, 0.3, 0.5))

))

Progress Bars

$optimize () supports progress bars via the package progressr combined with a bbotk:: Terminator.
Simply wrap the function in progressr: :with_progress() to enable them. We recommend to use
package progress as backend; enable with progressr: :handlers("progress”).

Logging

Hyperband uses a logger (as implemented in Igr) from package bbotk. Use 1gr: :get_logger("bbotk™)
to access and control the logger.

Super classes

bbotk: :Optimizer -> bbotk: :0OptimizerBatch -> OptimizerBatchSuccessiveHalving

Methods
Public methods:

* OptimizerBatchSuccessiveHalving$new()
e OptimizerBatchSuccessiveHalving$clone()

Method new(): Creates a new instance of this R6 class.
Usage:
OptimizerBatchSuccessiveHalving$new()

Method clone(): The objects of this class are cloneable with this method.
Usage:
OptimizerBatchSuccessiveHalving$clone(deep = FALSE)
Arguments:

deep Whether to make a deep clone.

Source

Jamieson K, Talwalkar A (2016). “Non-stochastic Best Arm Identification and Hyperparameter
Optimization.” In Gretton A, Robert CC (eds.), Proceedings of the 19th International Conference on
Artificial Intelligence and Statistics, volume 51 series Proceedings of Machine Learning Research,
240-248. http://proceedings.mlr.press/v51/jamieson16.html.

https://CRAN.R-project.org/package=progressr
https://CRAN.R-project.org/package=progress
https://CRAN.R-project.org/package=lgr
https://CRAN.R-project.org/package=bbotk
http://proceedings.mlr.press/v51/jamieson16.html

mlr_tuners_async_successive_halving 13

Examples

library(bbotk)
library(data.table)

set search space
search_space = domain = ps(

x1 = p_dbl(-5, 10),

x2 = p_dbl(0, 15),

fidelity = p_dbl(le-2, 1, tags = "budget")
)

Branin function with fidelity, see ~bbotk::branin()"
fun = function(xs) branin_wu(xs[["x1"]11, xs[["x2"]1], xs[["fidelity”]11)

create objective
objective = ObjectiveRFun$new(
fun = fun,
domain = domain,
codomain = ps(y = p_dbl(tags = "minimize"))

initialize instance and optimizer
instance = OptimInstanceSingleCrit$new(
objective = objective,
search_space = search_space,
terminator = trm("evals"”, n_evals = 50)

optimizer = opt("”successive_halving")

optimize branin function
optimizer$optimize(instance)

best scoring evaluation
instance$result

all evaluations
as.data.table(instance$archive)

mlr_tuners_async_successive_halving
Asynchronous Hyperparameter Tuning with Successive Halving

Description

OptimizerAsyncSuccessiveHalving class that implements the Asynchronous Successive Halv-
ing Algorithm (ASHA). This class implements the asynchronous version of OptimizerBatchSuc-
cessiveHalving.

14 mlr_tuners_async_successive_halving

Dictionary

This mlr3tuning::Tuner can be instantiated via the dictionary mlr3tuning::mlr_tuners or with the
associated sugar function mlr3tuning: :tnr():

TunerAsyncSuccessiveHalving$new()
mlr_tuners$get ("async_successive_halving")
tnr("async_successive_halving")

Subsample Budget

If the learner lacks a natural budget parameter, mlr3pipelines::PipeOpSubsample can be applied to
use the subsampling rate as budget parameter. The resulting mlr3pipelines::GraphLearner is fitted
on small proportions of the mlr3::Task in the first stage, and on the complete task in last stage.

Custom Sampler

Hyperband supports custom paradox::Sampler object for initial configurations in each bracket. A
custom sampler may look like this (the full example is given in the examples section):

- beta distribution with alpha = 2 and beta = 5

- categorical distribution with custom probabilities

sampler = SamplerJointIndep$new(list(
Sampler1DRfun$new(params[[2]], function(n) rbeta(n, 2, 5)),
Sampler1DCateg$new(params[[3]], prob = c(0.2, 0.3, 0.5))

)

Parameters

eta numeric(1)
With every stage, the budget is increased by a factor of eta and only the best 1 / eta con-
figurations are promoted to the next stage. Non-integer values are supported, but eta is not
allowed to be less or equal to 1.

sampler paradox::Sampler
Object defining how the samples of the parameter space should be drawn. The default is
uniform sampling.

Archive

The bbotk::Archive holds the following additional columns that are specific to SHA:

e stage (integer (1))
Stage index. Starts counting at 0.

e asha_id (character (1))
Unique identifier for each configuration across stages.
Super classes

mlr3tuning: :Tuner ->mlr3tuning: : TunerAsync->mlr3tuning: :TunerAsyncFromOptimizerAsync
-> TunerAsyncSuccessiveHalving

mlr_tuners_hyperband 15

Methods
Public methods:

* TunerAsyncSuccessiveHalving$new()
* TunerAsyncSuccessiveHalving$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
TunerAsyncSuccessiveHalving$new()

Method clone(): The objects of this class are cloneable with this method.
Usage:
TunerAsyncSuccessiveHalving$clone(deep = FALSE)
Arguments:

deep Whether to make a deep clone.

Source

Li L, Jamieson K, Rostamizadeh A, Gonina E, Ben-tzur J, Hardt M, Recht B, Talwalkar A (2020).

“A System for Massively Parallel Hyperparameter Tuning.” In Dhillon I, Papailiopoulos D, Sze V

(eds.), Proceedings of Machine Learning and Systems, volume 2, 230-246. https://proceedings.
mlsys.org/paper_files/paper/2020/hash/a06f20b349c6cf@9a6b171c71b88bbfc-Abstract.
html.

mlr_tuners_hyperband Tuner Using the Hyperband Algorithm

Description

Optimizer using the Hyperband (HB) algorithm. HB runs the Successive Halving Algorithm (SHA)
with different numbers of stating configurations. The algorithm is initialized with the same param-
eters as Successive Halving but without n. Each run of Successive Halving is called a bracket and
starts with a different budget r_0. A smaller starting budget means that more configurations can
be tried out. The most explorative bracket allocated the minimum budget r_min. The next bracket
increases the starting budget by a factor of eta. In each bracket, the starting budget increases further
until the last bracket s = @ essentially performs a random search with the full budget r_max. The
number of brackets s_max + 1 is calculated with s_max = log(r_min / r_max) (eta). Under the
condition that r_0 increases by eta with each bracket, r_min sometimes has to be adjusted slightly
in order not to use more than r_max resources in the last bracket. The number of configurations in
the base stages is calculated so that each bracket uses approximately the same amount of budget.
The following table shows a full run of HB with eta = 2, r_min = 1 and r_max = 8.

s 3 2 1 0
i n_i r_i n_i r_i n_i r_i n_i r_i
8 1 6 2 4 4 8 4

https://proceedings.mlsys.org/paper_files/paper/2020/hash/a06f20b349c6cf09a6b171c71b88bbfc-Abstract.html
https://proceedings.mlsys.org/paper_files/paper/2020/hash/a06f20b349c6cf09a6b171c71b88bbfc-Abstract.html
https://proceedings.mlsys.org/paper_files/paper/2020/hash/a06f20b349c6cf09a6b171c71b88bbfc-Abstract.html

16 mlr_tuners_hyperband

1 4 2 3 4 28
2 2 4 1 8
3 1 8

s is the bracket number, i is the stage number, n_i is the number of configurations and r_i is the
budget allocated to a single configuration.

The budget hyperparameter must be tagged with "budget” in the search space. The minimum
budget (r_min) which is allocated in the base stage of the most explorative bracket, is set by the
lower bound of the budget parameter. The upper bound defines the maximum budget (r_max) which
is allocated to the candidates in the last stages.

Dictionary

This mlr3tuning::Tuner can be instantiated via the dictionary mlr3tuning::mlr_tuners or with the
associated sugar function mlr3tuning: :tnr():

TunerBatchHyperband$new()
mlr_tuners$get ("hyperband")
tnr ("hyperband”)

Subsample Budget

If the learner lacks a natural budget parameter, mlr3pipelines::PipeOpSubsample can be applied to
use the subsampling rate as budget parameter. The resulting mlr3pipelines::GraphLearner is fitted
on small proportions of the mlr3::Task in the first stage, and on the complete task in last stage.

Custom Sampler

Hyperband supports custom paradox::Sampler object for initial configurations in each bracket. A
custom sampler may look like this (the full example is given in the examples section):

- beta distribution with alpha = 2 and beta = 5

- categorical distribution with custom probabilities

sampler = SamplerJointIndep$new(list(
Sampler1DRfun$new(params[[2]], function(n) rbeta(n, 2, 5)),
Sampleri1DCateg$new(params[[3]], prob = c(0.2, 0.3, 0.5))

)

Progress Bars
$optimize () supports progress bars via the package progressr combined with a bbotk::Terminator.
Simply wrap the function in progressr: :with_progress() to enable them. We recommend to use
package progress as backend; enable with progressr: :handlers("progress”).

Parallelization

This hyperband implementation evaluates hyperparameter configurations of equal budget across
brackets in one batch. For example, all configurations in stage 1 of bracket 3 and stage 0 of bracket
2 in one batch. To select a parallel backend, use the plan() function of the future package.

https://CRAN.R-project.org/package=progressr
https://CRAN.R-project.org/package=progress
https://CRAN.R-project.org/package=future

mlr_tuners_hyperband 17

Logging

Hyperband uses a logger (as implemented in Igr) from package bbotk. Use 1gr: :get_logger ("bbotk")
to access and control the logger.

Resources

The gallery features a collection of case studies and demos about optimization.

* Tune the hyperparameters of XGBoost with Hyperband.

» Use data subsampling and Hyperband to optimize a support vector machine.

Parameters

eta numeric(1)
With every stage, the budget is increased by a factor of eta and only the best 1 / eta points
are promoted to the next stage. Non-integer values are supported, but eta is not allowed to be
less or equal to 1.

sampler paradox::Sampler
Object defining how the samples of the parameter space should be drawn in the base stage of
each bracket. The default is uniform sampling.

repetitions integer(1)
If 1 (default), optimization is stopped once all brackets are evaluated. Otherwise, optimization
is stopped after repetitions runs of HB. The bbotk::Terminator might stop the optimization
before all repetitions are executed.

Archive

The bbotk::Archive holds the following additional columns that are specific to HB:
* bracket (integer(1))
The bracket index. Counts down to 0.

* stage (integer (1))
The stages of each bracket. Starts counting at 0.

* repetition (integer (1))
Repetition index. Start counting at 1.

Super classes

mlr3tuning: :Tuner ->mlr3tuning: :TunerBatch->mlr3tuning: :TunerBatchFromOptimizerBatch
-> TunerBatchHyperband

Methods

Public methods:

e TunerBatchHyperband$new()
e TunerBatchHyperband$clone()

Method new(): Creates a new instance of this R6 class.

https://CRAN.R-project.org/package=lgr
https://CRAN.R-project.org/package=bbotk
https://mlr-org.com/gallery-all-optimization.html
https://mlr-org.com/gallery/series/2023-01-15-hyperband-xgboost/
https://mlr-org.com/gallery/series/2023-01-16-hyperband-subsampling/

18 mlr_tuners_hyperband
Usage:
TunerBatchHyperband$new()
Method clone(): The objects of this class are cloneable with this method.
Usage:
TunerBatchHyperband$clone(deep = FALSE)
Arguments:
deep Whether to make a deep clone.
Source
Li L, Jamieson K, DeSalvo G, Rostamizadeh A, Talwalkar A (2018). “Hyperband: A Novel
Bandit-Based Approach to Hyperparameter Optimization.” Journal of Machine Learning Research,
18(185), 1-52. https://jmlr.org/papers/v18/16-558.html.
Examples

if(requireNamespace("xgboost”)) {

library(mlr3learners)

define hyperparameter and budget parameter

search_space = ps(
nrounds = p_int(lower = 1, upper = 16, tags = "budget"),
eta = p_dbl(lower = @, upper = 1),
booster = p_fct(levels = c("gbtree”, "gblinear", "dart"))

hyperparameter tuning on the pima indians diabetes data set
instance = tune(

tnr("hyperband”),

task = tsk("pima"),

learner = 1lrn("classif.xgboost”, eval_metric = "logloss"),

resampling = rsmp(”cv", folds = 3),

measures = msr("classif.ce"),

search_space = search_space,

term_evals = 100

)

best performing hyperparameter configuration
instance$result

https://jmlr.org/papers/v18/16-558.html

mlr_tuners_successive_halving 19

mlr_tuners_successive_halving
Hyperparameter Tuning with Successive Halving

Description

Optimizer using the Successive Halving Algorithm (SHA). SHA is initialized with the number of
starting configurations n, the proportion of configurations discarded in each stage eta, and the min-
imum r_min and maximum _max budget of a single evaluation. The algorithm starts by sampling n
random configurations and allocating the minimum budget r_min to them. The configurations are
evaluated and 1 / eta of the worst-performing configurations are discarded. The remaining config-
urations are promoted to the next stage and evaluated on a larger budget. The following table is the
stage layout for eta =2, r_min =1 and r_max = 8.

LN = O

i is the stage number, n_1i is the number of configurations and r_i is the budget allocated to a single
configuration.

The number of stages is calculated so that each stage consumes approximately the same budget.
This sometimes results in the minimum budget having to be slightly adjusted by the algorithm.

Dictionary
This mlr3tuning::Tuner can be instantiated via the dictionary mlr3tuning::mlr_tuners or with the

associated sugar function mlr3tuning: :tnr():

TunerBatchSuccessiveHalving$new()
mlr_tuners$get(”"successive_halving")
tnr(”successive_halving")

Subsample Budget

If the learner lacks a natural budget parameter, mlr3pipelines::PipeOpSubsample can be applied to
use the subsampling rate as budget parameter. The resulting mlr3pipelines::GraphLearner is fitted
on small proportions of the mlr3::Task in the first stage, and on the complete task in last stage.

Custom Sampler

Hyperband supports custom paradox::Sampler object for initial configurations in each bracket. A
custom sampler may look like this (the full example is given in the examples section):

20 mlr_tuners_successive_halving

- beta distribution with alpha = 2 and beta = 5

- categorical distribution with custom probabilities

sampler = SamplerJointIndep$new(list(
Sampler1DRfun$new(params[[2]], function(n) rbeta(n, 2, 5)),
Sampleri1DCateg$new(params[[3]], prob = c(0.2, 0.3, 0.5))

))

Progress Bars

$optimize () supports progress bars via the package progressr combined with a bbotk::Terminator.
Simply wrap the function in progressr: :with_progress() to enable them. We recommend to use
package progress as backend; enable with progressr: :handlers("progress”).

Parallelization

The hyperparameter configurations of one stage are evaluated in parallel with the future package.
To select a parallel backend, use the plan() function of the future package.

Logging

Hyperband uses a logger (as implemented in 1gr) from package bbotk. Use 1gr: :get_logger ("bbotk")
to access and control the logger.

Resources
The gallery features a collection of case studies and demos about optimization.

* Tune the hyperparameters of XGBoost with Hyperband (Hyperband can be easily swapped
with SHA).

* Use data subsampling and Hyperband to optimize a support vector machine.

Parameters

n integer(1)
Number of configurations in the base stage.

eta numeric(1)
With every stage, the budget is increased by a factor of eta and only the best 1 / eta con-
figurations are promoted to the next stage. Non-integer values are supported, but eta is not
allowed to be less or equal to 1.

sampler paradox::Sampler
Object defining how the samples of the parameter space should be drawn. The default is
uniform sampling.

repetitions integer(1)
If 1 (default), optimization is stopped once all stages are evaluated. Otherwise, optimization is
stopped after repetitions runs of SHA. The bbotk::Terminator might stop the optimization
before all repetitions are executed.

adjust_minimum_budget logical(1)

If TRUE, the minimum budget is increased so that the last stage uses the maximum budget
defined in the search space.

https://CRAN.R-project.org/package=progressr
https://CRAN.R-project.org/package=progress
https://CRAN.R-project.org/package=future
https://CRAN.R-project.org/package=future
https://CRAN.R-project.org/package=lgr
https://CRAN.R-project.org/package=bbotk
https://mlr-org.com/gallery-all-optimization.html
https://mlr-org.com/gallery/series/2023-01-15-hyperband-xgboost/
https://mlr-org.com/gallery/series/2023-01-16-hyperband-subsampling/

mlr_tuners_successive_halving 21

Archive
The bbotk::Archive holds the following additional columns that are specific to SHA:
e stage (integer (1))
Stage index. Starts counting at 0.

* repetition (integer (1))
Repetition index. Start counting at 1.

Super classes

mlr3tuning::Tuner ->mlr3tuning: :TunerBatch->mlr3tuning: :TunerBatchFromOptimizerBatch
-> TunerBatchSuccessiveHalving

Methods
Public methods:

* TunerBatchSuccessiveHalving$new()
e TunerBatchSuccessiveHalving$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
TunerBatchSuccessiveHalving$new()

Method clone(): The objects of this class are cloneable with this method.

Usage:
TunerBatchSuccessiveHalving$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

Source

Jamieson K, Talwalkar A (2016). “Non-stochastic Best Arm Identification and Hyperparameter
Optimization.” In Gretton A, Robert CC (eds.), Proceedings of the 19th International Conference on
Artificial Intelligence and Statistics, volume 51 series Proceedings of Machine Learning Research,
240-248. http://proceedings.mlr.press/v51/jamieson16.html.

Examples

if(requireNamespace("”xgboost”)) {
library(mlr3learners)

define hyperparameter and budget parameter

search_space = ps(
nrounds = p_int(lower = 1, upper = 16, tags = "budget"),
eta = p_dbl(lower = @, upper = 1),
booster = p_fct(levels = c("gbtree”, "gblinear”, "dart"))

)

http://proceedings.mlr.press/v51/jamieson16.html

22

mlr_tuners_successive_halving

hyperparameter tuning on the pima indians diabetes data set
instance = tune(

tnr("successive_halving"),

task = tsk("pima"),

learner = 1rn("classif.xgboost”, eval_metric = "logloss"),

resampling = rsmp("cv", folds = 3),

measures = msr("classif.ce"),

search_space = search_space,

term_evals = 100

best performing hyperparameter configuration
instance$result

Index

bbotk: :Archive, 6,8, 11, 14, 17,21

bbotk: :ArchiveAsync, 6

bbotk: :mlr_optimizers, 5,8, 11

bbotk: :opt(), 5,8, 11

bbotk: :OptimInstanceAsyncMultiCrit, 6
bbotk: :OptimInstanceAsyncSingleCrit, 6
bbotk: :Optimizer, 5, 6,8, 9, 11, 12

bbotk: :OptimizerAsync, 6

bbotk: :OptimizerBatch, 9, 12
bbotk::Terminator, 8, 11, 12, 16, 17, 20

data.table::data.table(), 5, 6
dictionary, 5,8, 11, 14, 16, 19

hyperband_budget, 3
hyperband_n_configs, 4
hyperband_schedule, 4

mlr3::Task, 14, 16, 19

mlr3hyperband (mlr3hyperband-package), 2

mlr3hyperband-package, 2

mlr3pipelines::GraphlLearner, 14, 16, 19

mlr3pipelines: :PipeOpSubsample, /4, 16,
19

mlr3tuning: :mlr_tuners, 14, 16, 19

mlr3tuning::tnr(), 14, 16, 19

mlr3tuning: :Tuner, 14, 16, 17, 19, 21

mlr3tuning: :TunerAsync, 14

mlr3tuning: :TunerAsyncFromOptimizerAsync
14

mlr3tuning: :TunerBatch, 17, 21

mlr3tuning: :TunerBatchFromOptimizerBatch
17,21

mlr_optimizers_async_successive_halving,
5

mlr_optimizers_hyperband, 7

mlr_optimizers_successive_halving, 10

mlr_tuners_async_successive_halving,
13

mlr_tuners_hyperband, 15

23

mlr_tuners_successive_halving, 19

OptimizerAsyncSuccessiveHalving
(mlr_optimizers_async_successive_halving),
5
OptimizerBatchHyperband
(mlr_optimizers_hyperband), 7
OptimizerBatchSuccessiveHalving, 5, 13
OptimizerBatchSuccessiveHalving
(mlr_optimizers_successive_halving),
10

paradox: :Sampler, 5, 6,8, 11, 12, 14, 16, 17,
19, 20

R6,6,9,12,15,17,21
Successive Halving Algorithm, 7, 15

TunerAsyncSuccessiveHalving
(mlr_tuners_async_successive_halving),
13
TunerBatchHyperband
(mlr_tuners_hyperband), 15
TunerBatchSuccessiveHalving
(mlr_tuners_successive_halving),
19

	mlr3hyperband-package
	hyperband_budget
	hyperband_n_configs
	hyperband_schedule
	mlr_optimizers_async_successive_halving
	mlr_optimizers_hyperband
	mlr_optimizers_successive_halving
	mlr_tuners_async_successive_halving
	mlr_tuners_hyperband
	mlr_tuners_successive_halving
	Index

