Package ‘mmap’

December 8, 2023

Type Package

Title Map Pages of Memory

Version 0.6-22

Date 2023-12-08

Author Jeffrey A. Ryan

LazyLoad yes

Maintainer Jeffrey A. Ryan <jeff.a.ryan@gmail.com>
Description R interface to POSIX mmap and Window's MapViewOfFile.
VignetteBuilder utils

License GPL-3

NeedsCompilation yes

Repository CRAN

Date/Publication 2023-12-08 21:00:02 UTC

R topics documented:

C_tyPeS .« o o v e e e 2
make.fixedwidth 5
MMAD .+ ot v e 6
MMAP.CSV + o v v v v e 9
mmapFlags 11
001 0) (0] 1S 12
MSYNIC . v v v v e v v e 13
SIZEOf . . . 13
SITUCE . . v o e e e e e e e e e 14
Index 19

2 C_types

C_types Virtual R Types On Disk.

Description

These functions describe the types of raw binary data stored on disk.

Usage

char(length = @, nul = TRUE)
uchar(length = 0)
logi8(length = @)
logi32(length = @)
int8(length = 0)
uint8(length = 0)
int16(length = @)
uint16(length = 0)
int24(length = @)
uint24(length = @)
int32(length = @)
int64(length = @)
real32(length = 0)
real64(length = @)
cplx(length = @)
cstring(length = @, na.strings = "NA")

as.Ctype(x)
is.Ctype(x)

cstring.MaxWidth()

sizeofCtypes()
Arguments

length desired length. Not used when passed to mode= in mmap call.

X R object to coerce or test

nul are characters delimited by a nul byte?

na.strings string to convert to R’s NA. See Details for current implementation.
Details

R has very limited storage types. There is one type of integer and one type of float (double). Storage
to disk often can be made more efficient by reducing the precision of the data. These functions
provide for a sort of virtual mapping from disk to native R type, for use with mmap-ed files.

C_types 3

When a memory mapping is created, a conversion method if declared for both extracting values
from disk, as well as replacing elements on disk. The preceeding functions are used in the internal
compiled code to handle the conversion.

It is the user’s responsibility to ensure that data fits within the prescribed types. All fixed-width
types support extraction, replacement, and boolean Ops (e.g. ==). See below for note on cstring
layout.

cstring reads nul-terminated strings from binary C-style arrays. To minimize memory allocation,
two additional steps are carried out. First, when a memory map is initiated, the length (N) of the
character array is calculated. The calculation of word offsets to facilitate access are deferred until
the first request [or a Ops request. This offset calculation requires the creation of an internal index
made up of short integers, representing the length of each character element. On most platforms,
this is at least 65534 (sizeof(short) - 1 for nul byte), but can be found via cstring.MaxWidth. This
index will consume sizeof(short) * N memory, allocated outside of R.

Atpresent na.strings="NA" is ignored and all occurances of the (binary) string ‘NA’ are converted
to NA_character_ types in R. This is also used by the mmap is.na function.

Value
An R typed vector of length ‘length’ with a virtual type and class ‘Ctype’. Additional information
related to number of bytes and whether the vitrual type is signed is also contained.

Warning
The is no attempt to store or read metadata with respect to the extracted or replaced data. This is
simply a low level interface to facilitate data reading and writing.

Note
R vectors may be used to create files on disk matching the specified type using the functions
writeBin with the appropriate size argument. See also.

Author(s)
Jeffrey A. Ryan

References

https://en.wikipedia.org/wiki/C_variable_types_and_declarations https://cran.r-project.
org/doc/manuals/R-exts.html

See Also

writeBin

Examples

tmp <- tempfile()

write a 1 byte signed integer -128:127

https://en.wikipedia.org/wiki/C_variable_types_and_declarations
https://cran.r-project.org/doc/manuals/R-exts.html
https://cran.r-project.org/doc/manuals/R-exts.html

C_types

writeBin(-127:127L, tmp, size=1L)
file.info(tmp)$size

one_byte <- mmap(tmp, int8())
one_byte[]

munmap (one_byte)

write a 1 byte unsigned integer 0:255
writeBin(@:255L, tmp, size=1L)
file.info(tmp)$size

one_byte <- mmap(tmp, uint8())
one_byte[]

munmap (one_byte)

write a 2 byte integer -32768:32767
writeBin(c(-32768L,32767L), tmp, size=2L)
file.info(tmp)$size

two_byte <- mmap(tmp, int16())

two_byte[]

munmap (two_byte)

write a 2 byte unsigned integer 0:65535
writeBin(c(@L,65535L), tmp, size=2L)
two_byte <- mmap(tmp, uint16())
two_byte[]

replacement methods automatically (watch precision!!)
two_byte[1] <- 50000
two_byte[]

values outside of range (above 65535 for uint16 will be wrong)
two_byte[1] <- 65535 + 1
two_byte[]

munmap (two_byte)

write a 4 byte integer standard R type
writeBin(1:10L, tmp, size=4L)

four_byte <- mmap(tmp, int32())
four_byte[]

munmap (four_byte)

write 32 bit integers as 64 bit longs (where supported)

int64() # note it is a double in R, but described as int64

writeBin(1:10L, tmp, size=8L)

eight_byte <- mmap(tmp, int64())

storage.mode(eight_byte[]) # using R doubles to preserve most long values

eight_byte[5] <- 2*40 # write as a long, a value in R that is double ~2%53 is representable
eight_byte[5]

munmap(eight_byte)

cstring()
cstring.MaxWidth()

nonsn o nmn on

writeBin(c("this","is","a", "sentence"), tmp)

make.fixedwidth 5

strings <- mmap(tmp, cstring())
strings[1:2]

strings[]

munmap(strings)

unlink(tmp)

make.fixedwidth Convert Character Vectors From Variable To Constant Width

Description
Utility function to convert a vector of character strings to one where each element has exactly
‘width’-bytes.

Usage

make. fixedwidth(x, width = NA, justify = c("left”, "right”))

Arguments
X A character vector.
width Maximum width of each element. width=NA (default) will expand each ele-
ment to the width required to contain the largest element of x without loss of
information.
justify How should the results be padded? ‘left’ will add spacing to the right of shorter
elements in the vector (left-justified), ‘right’ will do the opposite.
Details

The current implementation of mmap only handles fixed-width strings (nul-terminated). To simplify
conversion of (potentially) variable-width strings in a character vector, all elements will be padded
to the length of the longest string in the vector or set to length width if specified.

All new elements will be left or right justified based on the justify argument.

Value

A character vector where each element is of fixed-width.

Note

Future implementions will possibly support variable-width character vectors.

Author(s)
Jeffrey A. Ryan

6 mmap

Examples

month.name
make. fixedwidth(month.name)

mmap Map And Unmap Pages of Memory

Description

Wrapper to POSIX ‘mmap’ and Windows Map ViewOfFile system calls.

Usage

mmap(file, mode = int32(),
extractFUN=NULL, replaceFUN=NULL,
prot=mmapFlags("PROT_READ", "PROT_WRITE"),
flags=mmapFlags("MAP_SHARED"),
len, off=0L, endian=.Platform$endian,

L)
munmap (x)

as.mmap(x, mode, file, ...)
is.mmap(x)

extractFUN(x)
replaceFUN(x)

extractFUN(x) <- value
replaceFUN(x) <- value

Arguments

file name of file holding data to be mapped into memory

mode mode of data on disk. Use one of ‘char()’ (char <-> R raw), ‘int8()’ (char <->
R integer), ‘uint8()’ (unsigned char <-> R integer), ‘int16()’ (short <-> R in-
teger), ‘uint16()’ (unsigned short <-> R integer), ‘int24()’ (3 byte integer <->
R integer), ‘uint24()’ (unsigned 3 byte integer <-> R integer), ‘int32()’ (R inte-
ger), ‘real32()’ (float <-> R double), ‘real64()’ (R double), ‘cplx()’ (R complex),
‘cstring()” (R variable length character array), ‘struct()” (Collection of Ctypes as
defined by mmap). See the related functions for details.

extractFUN A function to convert the raw/integer/double values returned by subsetting into
a complex R class. If no change is needed, set to NULL (default).

replaceFUN A function to convert the R classes to underlying C types for storage.

mmap 7

prot access permission to data being mapped. Set via bitwise OR with mmapFlags to
one or more of ‘PROT_READ’: Data can be read, ‘PROT_WRITE’: Data can
be written, ‘PROT_EXEC’: Data can be executed, ‘PROT_NONE’: Data cannot
be accessed. Not all will apply within the context of R objects. The default is
PROT_READ | PROT_WRITE.

flags additional flags to mmap. Set via bitwise OR with mmapFlags to one or more of
‘MAP_SHARED’: Changes are shared (default), ‘M AP_PRIVATE’: Changes
are private, ‘MAP_FIXED’: Interpret addr exactly (Not Applicable). Not all
will apply within the context of R objects.

len length in bytes of mapping from offset. (EXPERT USE ONLY)

of f offset in bytes to start mapping. This must be a multiple of the system pagesize.
No checking is currently done, nor is there any mmap provision to find pagesize
automatically. (EXPERT USE ONLY)

endian endianess of data. At present this is only applied to int8,int16, int32,float,real32,double,
and real64 types for both atomic and struct types. It is applied universally,
and not at struct member elements.

unused
X an object of class ‘mmap’
value a function to apply upon extraction or replacement.

Details

The general semantics of the R function map to the underlying operating system C function call.
On unix-alikes this is ‘mmap’, on Windows similar functionality is provided by the system call
‘MapViewOfFile’. The notable exception is the use of the R argument file in place of void *addr
and int fildes. Additionally len and of f arguments are made available to the R level call, though
require special care based on the system’s mmap and are advised for expert use only.

as.mmap allows for in-memory objects to be converted to mmapped version on-disk. The files are
stored in the location specified by file. Passing an object that has an appropriate as.mmap method
will allow R objects to be automatically created as memory-mapped object. This works for most
atomic types in R, including numeric, complex, and character vectors. A special note on character
vectors: the implementation supports both variable width character vectors (native R) as well as
fixed width arrays requiring a constant number of bytes per element. The current default is to use
fixed width, with variable width enabled by setting mode=cstring(). See as.mmap.character for
more details.

Complex data types, such as 2 dimesioned vectors (matrix) and data.frames can be supported using
appropriate extractFUN and replaceFUN functions to convert the raw data. Basic object conversion
is made available in included as.mmap methods for boths types as of version 0.6-3.

All mode types are defined for single-column atomic data, with the exception of structs. Multiple
column objects are supported by the use of setting dim. All data is column major. Row major
orientation, as well as supporting multiple types in one object - imitating a data.frame, is supported
via the struct mode.

Using struct as the mode will organize the binary data on-disk (or more correctly read data orga-
nized on disk) in a row-major orientation. This is similar to how a row database would be oriented,
and will provide faster access to data that is typically viewed by row. See help(struct) for exam-
ples of semantics as well as performance comparisons.

8 mmap

Value
The mmap and as.mmap call returns an object of class mmap containing the fields:

data: pointer to the ‘mmap’ped file.

bytes: size of file in bytes. This is not in resident memory.

filedesc: A names integer file descriptor, where the name is path to the file mapped.
storage.mode: R type of raw data on disk. See types for details.

pagesize: operating system pagesize.

extractFUN: conversion function on extraction (optional).

replaceFUN: conversion function for replacement (optional).

Author(s)
Jeffrey A. Ryan

References

mmap: http://www.opengroup.org/onlinepubs/000095399/functions/mmap.html

See Also

See Also as mmapFlags,

Examples

create a binary file and map into 'ints' object

Note that we are creating a file of 1 byte integers,
and that the conversion is handled transparently
tmp <- tempfile()

ints <- as.mmap(1:100L, mode=int8(), file=tmp)

ints[1]

ints[]

ints[22]

ints[21:23] <- c(0,0,0)

ints[] # changes are now on disk

add dimension

dim(ints) <- c(10,10)

ints[]

ints[6,2] # 6th row of 2nd column
ints[,2] # entire 2nd column
munmap(ints)

store Dates as natural-size 'int' on disk
writeBin(as.integer(Sys.Date()+1:10), tmp)

DATE <- mmap(tmp,extractFUN=function(x) structure(x,class="Date"))
DATE[]

http://www.opengroup.org/onlinepubs/000095399/functions/mmap.html

mimap.csv

munmap (DATE)

store 2 decimal numeric as 'int' on disk, and convert on extraction
num <- mmap(tmp,extractFUN=function(x) x/100)

num[]

munmap (num)

unlink(tmp)
convert via as.mmap munmap

int <- as.mmap(1:10L)
num <- as.mmap(rnorm(10))

mmap.csv Memory Map Text File

Description

Reads a file column by column and creates a memory mapped object.

Usage

mmap.csv(file,
header = TRUE,

sep = -+, ,

quote = H\Hlly

dec = ".",

fill = TRUE,

comment.char = "",

row.names,

>
Arguments

file the name of the file containing the comma-separated values to be mapped.
header does the file contain a header line?
sep field separator character
quote the set of quoting characters
dec the character used for decimal points in the file
fill unimplemented

comment.char unimplemented
row.names what it says

additional arguments

10 mmap.csv

Details
mmap . csv is meant to be the analogue of read.csv in R, with the primary difference being that data
is read, by column, into memory-mapped structs on disk. The intention is to allow for comma-
separated files to be easily mapped into memory without having to load the entire object at once.
Value
An mmap object containing the data from the file. All types will be set to the equivelant type from
mmap as would be in R from a call to read. csv.
Warning

At present the memory required to memory-map a csv file will be the memory required to load
a single column from the file into R using the traditional read.table function. This may not be
adequately efficient for extremely large data.

Note

This is currently a very simple implementation to facilitate exploration of the mmap package. While
the interface will remain consistent with read.csv from utils, more additions to handle various out-
of-core types available in mmap as well as performance optimization will be added.

Author(s)

Jeffrey A. Ryan

See Also

mmap, read.csv

Examples
data(cars)
tmp <- tempfile()
write.csv(cars, file=tmp, row.names=FALSE)
m <- mmap.csv(tmp)
colnames(m) <- colnames(cars)
m[]
extractFUN(m) <- as.data.frame # coerce list to data frame upon subset

m[1:3,]

munmap (m)

mmapFlags 11

mmapFlags Create Bitwise Flags for mmap.

Description

Allows for unquoted C constant names to be bitwise OR’d together for passing to mmap related calls.

Usage

mmapFlags(...)

Arguments
A comma or vertical bar ‘I” seperated list of zero or more valid mmap constants.
May be quoted or unquoted from the following: PROT_READ, PROT_WRITE,
PROT_EXEC, PROT_NONE, MAP_SHARED, MAP_PRIVATE, MAP_FIXED,
MS_ASYNC, MS_SYNC, MS_INVALIDATE. See details for more informa-
tion.

Details

Argument list may contain quoted or unquoted constants as defined in <sys/mman.h>. See invidid-
ual functions for details on valid flags.

Multiple values passed in will be bitwise OR’d together at the C level, allowing for semantics close
to that of native C calls.
Value

An integer vector of length 1.

Note

Read your system’s ‘mmap’ man pages for use details.

Author(s)

Jeffrey A. Ryan

See Also

See Also as mmap, ~~~ See Also as mprotect, ~~~

Examples

mmapF lags (PROT_READ)

mmapFlags (PROT_READ | PROT_WRITE)
mmapFlags("PROT_READ" | "PROT_WRITE")
mmapFlags (PROT_READ , PROT_WRITE)
mmapFlags ("PROT_READ" , "PROT_WRITE")

12

mprotect
mprotect Control Protection of Pages
Description
Wrapper to mprotect system call. Not all implementations will guarantee protection.
Usage
mprotect(x, i, prot)
Arguments
X mmap object.
i location and length of pages to protect.
prot protection flag set by mmapFlags. Must be one or more of: ‘PROT_NONE’,
‘PROT_READ’, ‘PROT_WRITE’, ‘PROT_EXEC’.
Details

This functionality is very experimental, and likely to be of limited use with R, as the result of a page
access that is protected is a SIG that isn’t likely to be caught by R. This may be of use for other
programs sharing resource with R.

Value

0 upon success, otherwise -1.

Author(s)

Jeffrey A. Ryan

References

‘mprotect’ man page.

msync 13

msync Synchronize Memory With Physical Storage

Description

msync calls the underlying system call of the same name. This writes modified whole pages back
to the filesystem and updates the file modification time.

Usage
msync(x, flags=mmapFlags("MS_ASYNC"))

Arguments
X An mmap object.
flags One of the following flags: ‘MS_ASYNC’: return immediately (default). ‘MS_SYNC’:
perform synchronous writes. ‘MS_INVALIDATE’: invalidate all cached data.
Per the man page, ‘MS_ASYNC"’ is not permitted to be combined with the other
flags.
Details

See the appropriate OS man page.

Value

0 on success, otherwise -1.

Author(s)

Jeffrey A. Ryan

sizeof Calculate the Size of Datatypes

Description

Calculate the number of bytes in an R data type used by mmap.

Usage

sizeof (type)

Arguments

type A type constructor (function), R atomic, or mmap Ctype.

14 struct

Details

A constructor for the purposes of sizeof is a function object used to create an atomic type for
R or mmap. These include the base atomic type functions such as integer, character, double,
numeric, single, complex and similar. In addition, the Ctype constructors in mmap such as int8,
uint8, real32, etc may be passed in.

More typically a representative object of the above types can be passed in to determine the appro-
priate data size.

The purpose of this function is for use to help construct a proper of fset argument value for mmap
and mprotect, though neither use is common or encouraged since alignment to pagesize is required
from the system call.

Value

Numeric bytes used.

Author(s)
Jeffrey A. Ryan

See Also

pagesize as.Ctype

Examples

all are equal

sizeof (int32)
sizeof (int32())
sizeof (integer)
sizeof (integer())
sizeof (1L)

struct Construct a Ctype struct

Description

Construct arbitarily complex ‘struct’ures in R for use with on-disk C struct’s.

Usage

struct(..., bytes, offset)

is.struct(x)

struct 15

Arguments
Field types contained in struct.
bytes The total number of bytes in the struct. See details.
offset The byte offset of members of the struct. See details.
X object to test
Details

struct provides a high level R based description of a C based struct data type on disk.

The types of data that can be contained within a structure (byte array) on disk can be any permutation
of the following: int8, uint8, int16 uint16, int32, real32, and real64. ‘struct’s are not recursive, that
is all struct’s contained within a struct must be logically flattened (core elements extracted).

All C types are converted to the appropriate R type internally.

It is best to consider a struct a simple byte array, where at specified offsets, a valid C variable type
exists. Describing the struct using the R function struct allows mmap extraction to proceed as if
the entire structure was one block, (a single ‘i’ value), and each block of bytes can thus be read into
R with one operation.

One important distinction between the R struct (and the examples that follow) and a C struct is
related to byte-alignment. Note that the R version is effectively serializing the data, without padding
to word boundaries. See the following section on ANSI C for more details for reading data generated
by an external process such as C/C++.

Value

A list of values, one element for each type of R data.

ANSI_C

ANSI C struct’s will typically have padding in cases where required by the language details and/or
C programs. In general, if the struct on disk has padding, the use of bytes and of fset are required
to maintain alignment with the extraction and replacement code in mmap for R.

A simple example of this is where you have an 8-byte double (real64) and a 4-byte integer (int32).
Created by a C/C++ program, the result will be a 16-byte struct - where the final 4-bytes will be
padding.

To accomodate this from mmap, it is required to specify the corrected bytes (e.g. bytes=16 in
this example). For cases where padding is not at the end of the struct (e.g. if an additional 8-byte
double was added as the final member of the previous struct), it would also be necessary to correct
the offset to reflect the internal padding. Here, the correct setting would be offset=c(90,8,16) -
since the 4-byte integer will be padded to 8-bytes to allow for the final double to begin on a word
boundary (on a 64 bit platform).

This is a general mechanism to adjust for offset - but requires knowledge of both the struct on disk
as well as the generating process. At some point in the near future struct will attempt to properly
adjust for offset if mmap is used on data created from outside of R.

It is important to note that this alignment is also dependent on the underlying hardware word size
(size_t) and is more complicated than the above example.

16 struct

Note

‘struct”s can be thought of as ‘rows’ in a database. If many different types need always be returned
together, it will be more efficient to store them together in a struct on disk. This reduces the number
of page hits required to fetch all required data. Conversley, if individual columns are desired it will
likely make sense to simply store vectors in seperate files on disk and read in with mmap individually
as needed.

Note that not all behavior of struct extraction and replacement is defined for all virtual and real
types yet. This is an ongoing development and will be completed in the near future.

Author(s)
Jeffrey A. Ryan

References

https://en.wikipedia.org/wiki/Struct_(C_programming_language) https://en.wikipedia.
org/wiki/Data_structure_alignment

See Also

types

Examples

tmp <- tempfile()

f <- file(tmp, open="ab")

u_int_8 <- c(1L, 255L, 22L) # 1 byte, valid range 0:255

int_8 <- c(1L, -127L, -22L) # 1 byte, valid range -128:127
u_int_16 <- c(1L, 65000L, 1000L) # 2 byte, valid range 0:65+k
int_16 <- c(1L, 25000L, -1000L) # 2 byte, valid range -32k:32k
int_32 <- c(98743L, -9083299L, OL) # 4 byte, standard R integer
float_32 <- ¢(9832.22, 3.14159, 0.00001)

cplx_64 <- c(1+0i, 0+8i, 2+2i)

not yet supported in struct
char_ <- writeBin(as.raw(1:3), raw())
fixed_width_string <- c("ab","cd"”,"ef")

for(i in 1:3) {

writeBin(u_int_8[i], f, size=1L)

writeBin(int_8[i], f, size=1L)

writeBin(u_int_16[i], f, size=2L)

writeBin(int_16[i], f, size=2L)

writeBin(int_32[i], f, size=4L)

writeBin(float_32[i], f, size=4L) # store as 32bit - prec issues

writeBin(float_32[i], f,
writeBin(cplx_64[i], f)
writeBin(char_[i], f)
writeBin(fixed_width_string[i], f)

size=8L) # store as 64bit

https://en.wikipedia.org/wiki/Struct_(C_programming_language)
https://en.wikipedia.org/wiki/Data_structure_alignment
https://en.wikipedia.org/wiki/Data_structure_alignment

struct

close(f)

m <- mmap(tmp, struct(uint8(),
int8(),
uint16(),
int16(),
int32Q),
real32(),
real64(),
cplx(),
char(), # also raw()
char(2) # character array of n characters each

D)
length(m) # only 3 'struct' elements
str(m[]1)
m[1:2]

add a post-processing function to convert some elements (rows) to a data.frame
extractFUN(m) <- function(x,i,...) {
x <= x[i]
data.frame(u_int_8=x[[1]1],
int_8=x[[21],
int_16=x[[31],
int_32=x[[4]1],
float_32=x[[5]],
real_64=x[[6]]

m[1:2]
munmap (m)

grouping commonly fetched data by row reduces
disk IO, as values reside together on a page

in memory (which is paged in by mmap). Here

we try 3 columns, or one row of 3 values.

note that with structs we replicate a row-based
structure.

#

#

X

13 byte struct
<- c(writeBin(1L, raw(), size=1),
writeBin(3.14, raw(), size=4),
writeBin(100.1, raw(), size=8))
writeBin(rep(x,1e6), tmp)
length(x)
m <- mmap(tmp, struct(int8(),real32(),real64()))
length(m)
m[1]

create the columns in seperate files (like a column
store)

t1 <- tempfile()

t2 <- tempfile()

17

18

t3 <~ tempfile()

writeBin(rep(x[1],1e6), t1)
writeBin(rep(x[2:5],1e6), t2)
writeBin(rep(x[6:13],1e6), t3)

ml <- mmap(t1, int8())

m2 <- mmap(t2, real32())
m3 <- mmap(t3, real64())

list(mi[11,m2[11,m3[11)

i <- 5e5:6e5

note that times are ~3x faster for the struct
due to decreased disk IO and CPU cost to process

system. time(for (i
system. time(for (i
system.time(for (i
system. time(for (i
system. time(for (i

in
in
in
in
in

1

1
1
1
1

:100)
:100)
:100)
:100)
:100)

mLil)

m[i])

list(m1[i],m2[i1,m3[i1))
list(m1[i],m2[i],m3[i]))
{m1[i];m2[i];m3[i]}) # no cost to list()

you can skip struct members by specifying offset and bytes
m <- mmap(tmp, struct(int8(),

#real32(), here we are skipping the 4 byte float
realé4(),
offset=c(0,5), bytes=13))

alternatively you can add padding directly
n <- mmap(tmp, struct(int8(), pad(4), real64()))

pad(4)
pad(int32())

m[1]
n[1]

munmap (m)

munmap(n)

munmap(m1)
munmap (m2)
munmap(m3)
unlink(t1)
unlink(t2)
unlink(t3)
unlink(tmp)

struct

Index

* 10
C_types, 2
struct, 14

+ data
mmap.csv, 9

x iteration
struct, 14

* manip
mmap.csv, 9

* programming
struct, 14

* utilities
make. fixedwidth, 5
mmap, 6
mmapFlags, 11
mprotect, 12
msync, 13
sizeof, 13

as.char (C_types), 2
as.cplx (C_types), 2
as.cstring (C_types), 2
as.Ctype, 14

as.Ctype (C_types), 2
as.int16 (C_types), 2
as.int24 (C_types), 2
as.int32 (C_types), 2
as.int8 (C_types), 2
as.list.Ctype (struct), 14
as.mmap (mmap), 6
as.real32 (C_types), 2
as.real64 (C_types), 2
as.struct (struct), 14
as.uchar (C_types), 2
as.uint16 (C_types), 2
as.uint24 (C_types), 2
as.uint8 (C_types), 2

bits (C_types), 2

19

C_types, 2

char (C_types), 2
cplx (C_types), 2
cstring (C_types), 2

dim.mmap (mmap), 6
dim<-.mmap (mmap), 6
dimnames.mmap (mmap), 6
dimnames<-.mmap (mmap), 6

extractFUN (mmap), 6
extractFUN<- (mmap), 6

int16 (C_types), 2
int24 (C_types), 2
int32 (C_types), 2
int64 (C_types), 2

int8 (C_types), 2
is.array.mmap (mmap), 6
is.cstring (C_types), 2
is.Ctype (C_types), 2
is.mmap (mmap), 6
is.na.mmap (mmap), 6
is.struct (struct), 14

logi32 (C_types), 2
logi8 (C_types), 2

make. fixedwidth, 5
mmap, 6, 10, 11
mmap.csv, 9
mmapFlags, 8, 11
mprotect, 11, 12
msync, 13

munmap (mmap), 6

nbytes (C_types), 2

pad (struct), 14
pagesize, 14
pagesize (mmap), 6

20

read.csv, 10

real32 (C_types), 2
real64 (C_types), 2
replaceFUN (mmap), 6
replaceFUN<- (mmap), 6

sizeof, 13
sizeofCtypes (C_types), 2
struct, 14

tempmmap (mmap), 6
types, 16
types (C_types), 2

uchar (C_types), 2
uint16 (C_types), 2
uint24 (C_types), 2
uint8 (C_types), 2

writeBin, 3

INDEX

	C_types
	make.fixedwidth
	mmap
	mmap.csv
	mmapFlags
	mprotect
	msync
	sizeof
	struct
	Index

