Package ‘motifcluster’

November 18, 2022

Title Motif-Based Spectral Clustering of Weighted Directed Networks
Version 0.2.3

Description Tools for spectral clustering of weighted directed networks using motif
adjacency matrices. Methods perform well on large and sparse networks, and
random sampling methods for generating weighted directed networks are also
provided. Based on methodology detailed in Underwood, Elliott and Cucuringu
(2020) <arXiv:2004.01293>.

URL https://github.com/wgunderwood/motifcluster

Language en-US

BugReports https://github.com/wgunderwood/motifcluster/issues
License GPL-3

Encoding UTF-8

RoxygenNote 7.2.1

Depends R (>=3.6.0)

Imports igraph (>=1.2.5), Matrix (>= 1.2), RSpectra (>=0.16.0)

Suggests covr (>= 3.5.0), knitr (>= 1.28), mclust (>= 5.4.6),
rmarkdown (>= 2.1), testthat (>= 2.3.2)

VignetteBuilder knitr

NeedsCompilation no

Author William George Underwood [aut, cre]

Maintainer William George Underwood <wgu2@princeton.edu>
Repository CRAN

Date/Publication 2022-11-18 08:10:02 UTC

R topics documented:

build_laplacian e
build_motif_adjacency_matrix
get_largest_component e

https://arxiv.org/abs/2004.01293
https://github.com/wgunderwood/motifcluster
https://github.com/wgunderwood/motifcluster/issues

2 build_laplacian
get_motif_names e e e 4
kmeanspp 5
random_sSparse_MatriX v v v vt e e e e e e e e e e e e e e e 6
run_laplace_embedding 6
run_motif_clustering e 7
run_motif_embedding 8
sample_bsbm 10
sample_dsbm L 11

Index 12

build_laplacian Build a Laplacian matrix

Description

Build a Laplacian matrix (combinatorial Laplacian or random-walk Laplacian) from a symmetric
(weighted) graph adjacency matrix.
Usage
build_laplacian(adj_mat, type_lap = c("comb”, "rw"))
Arguments
adj_mat Symmetric adjacency matrix from which to build the Laplacian.
type_lap Type of Laplacian to build. One of "comb” (combinatorial) or "rw" (random-
walk).
Value
The specified Laplacian matrix.
Examples

adj_mat <- matrix(c(1:9), nrow = 3)
build_laplacian(adj_mat, "rw")

build_motif_adjacency_matrix 3

build_motif_adjacency_matrix
Build a motif adjacency matrix

Description

Build a motif adjacency matrix from an adjacency matrix.

Usage
build_motif_adjacency_matrix(
adj_mat,
motif_name,
motif_type = c("struc”, "func"),
mam_weight_type = c("unweighted”, "mean”, "poisson"),
mam_method = c("sparse”, "dense")
)
Arguments
adj_mat Adjacency matrix from which to build the motif adjacency matrix.
motif_name Motif used for the motif adjacency matrix.
motif_type Type of motif adjacency matrix to build. One of "func” or "struc”.

mam_weight_type
The weighting scheme to use. One of "unweighted"”, "mean” or "product”.

mam_method Which formulation to use. One of "dense” or "sparse”. The sparse formula-
tion avoids generating large dense matrices so tends to be faster for large sparse
graphs.
Details

Entry (i, j) of a motif adjacency matrix is the sum of the weights of all motifs containing both nodes
i and j. The motif is specified by name and the type of motif instance can be one of:

* Functional: motifs should appear as subgraphs.

* Structural: motifs should appear as induced subgraphs.
The weighting scheme can be one of:

* Unweighted: the weight of any motif instance is one.
* Mean: the weight of any motif instance is the mean of its edge weights.

* Product: the weight of any motif instance is the product of its edge weights.

Value

A motif adjacency matrix.

4 get_motif_names

Examples

adj_mat <- matrix(c(1:9), nrow = 3)
build_motif_adjacency_matrix(adj_mat, "M1", "func”, "mean")

get_largest_component Get largest connected component

Description
Get the indices of the vertices in the largest connected component of a graph from its adjacency
matrix.

Usage

get_largest_component(adj_mat)

Arguments

adj_mat An adjacency matrix of a graph.

Value

A vector of indices corresponding to the vertices in the largest connected component.

Examples

adj_mat <- matrix(c(e, 1, @, 0, @0, 0, @, @, @), nrow = 3)
get_largest_component(adj_mat)

get_motif_names Get common motif names

Description

Get the names of some common motifs as strings.

Usage

get_motif_names()

Value

A vector of names (strings) of common motifs.

kmeanspp 5

kmeanspp kmeans++ clustering

Description

Use the kmeans++ algorithm to cluster points into k clusters, as implemented in the deprecated
LICORS package, using the built-in function kmeans.

Usage

kmeanspp(data, k = 2, iter.max = 100, nstart = 10, ...)
Arguments

data An N X d matrix, where there are N samples in dimension d.

k The number of clusters.

iter.max The maximum number of iterations.

nstart The number of restarts.

Additional arguments passed to kmeans.

Value

A list with 9 entries:

cluster: A vector of integers from 1:k indicating the cluster to which each point is allocated.
centers: A matrix of cluster centers.

totss: The total sum of squares.

withinss: Vector of within-cluster sum of squares, one component per cluster.
tot.withinss: Total within-cluster sum of squares, i.e.sum(withinss).

betweenss: The between-cluster sum of squares, i.e.totss-tot.withinss.

size: The number of points in each cluster.

iter: The number of (outer) iterations.

ifault: An integer indicator of a possible algorithm problem.

initial.centers: The initial centers used.

References

Arthur, D. and S. Vassilvitskii (2007). “k-means++: The advantages of careful seeding.” In H.
Gabow (Ed.), Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms
[SODAO07], Philadelphia, pp. 1027-1035. Society for Industrial and Applied Mathematics.

See Also

kmeans

6 run_laplace_embedding

Examples

set.seed(1984)

n <- 100

X = matrix(rnorm(n), ncol = 2)

Y = matrix(runif(length(X)*2, -1, 1), ncol = ncol(X))
Z = rbind(X, Y)

cluster_Z = kmeanspp(Z, k = 5)

random_sparse_matrix Build a random sparse matrix

Description

Build a sparse matrix of size m * n with non-zero probability p. Edge weights can be unweighted,
constant-weighted or Poisson-weighted.

Usage

random_sparse_matrix(m, n, p, sample_weight_type = "constant”, w = 1)
Arguments

m, n Dimension of matrix to build is (m, n).

p Probability that each entry is non-zero (before weighting).

sample_weight_type
Type of weighting scheme.

w Weight parameter.

Value

A random sparse matrix.

run_laplace_embedding Run Laplace embedding

Description
Run Laplace embedding on a symmetric (weighted) adjacency matrix with a specified number of
eigenvalues and eigenvectors.

Usage

run_laplace_embedding(adj_mat, num_eigs, type_lap = c("comb”, "rw"))

run_motif_clustering 7

Arguments
adj_mat Symmetric adjacency matrix to be embedded.
num_eigs Number of eigenvalues and eigenvectors for the embedding.
type_lap Type of Laplacian for the embedding. One of "comb” (combinatorial) or "rw"
(random-walk).
Value

A list with two entries: vals contains the length-num_eigs vector of the first few eigenvalues
of the Laplacian, and vects contains an nrow(adj_mat) by num_eigs matrix of the associated
eigenvectors.

Examples

adj_mat <- matrix(c(1:9), nrow = 3)

run_laplace_embedding(adj_mat, 2, "rw")

run_motif_clustering Run motif-based clustering

Description

Run motif-based clustering on the adjacency matrix of a (weighted directed) network, using a spec-
ified motif, motif type, weighting scheme, embedding dimension, number of clusters and Laplacian

type.

Usage

run_motif_clustering(
adj_mat,
motif_name,
motif_type = c("struc”, "func"),
mam_weight_type = c("unweighted”, "mean", "product”),
mam_method = c("sparse”, "dense"),
num_eigs = 2,
type_lap = c("comb”, "rw"),
restrict = TRUE,
num_clusts = 2

)

Arguments
adj_mat Adjacency matrix to be embedded.
motif_name Motif used for the motif adjacency matrix.

motif_type Type of motif adjacency matrix to use. One of "func” or "struc".

mam_weight_type

mam_method

num_eigs
type_lap

restrict

num_clusts

Value

run_motif_embedding

Weighting scheme for the motif adjacency matrix. One of "unweighted”, "mean”
or "product”.

The method to use for building the motif adjacency matrix. One of "sparse"” or
"dense”.

Number of eigenvalues and eigenvectors for the embedding.
Type of Laplacian for the embedding. One of "comb” or "rw".

Whether or not to restrict the motif adjacency matrix to its largest connected
component before embedding.

The number of clusters to find.

A list with 8 entries:

* adj_mat: the original adjacency matrix.

* motif_adj_mat: the motif adjacency matrix.

comps: the indices of the largest connected component of the motif adjacency matrix (if restrict
= TRUE).

adj_mat_comps: the original adjacency matrix restricted to the largest connected component
of the motif adjacency matrix (if restrict = TRUE).

motif_adj_mat_comps: the motif adjacency matrix restricted to its largest connected compo-
nent (if restrict = TRUE).

vals: a length-num_eigs vector containing the eigenvalues associated with the Laplace em-
bedding of the (restricted) motif adjacency matrix.

vects: a matrix containing the eigenvectors associated with the Laplace embedding of the
(restricted) motif adjacency matrix.

clusts: a vector containing integers representing the cluster assignment of each vertex in the
(restricted) graph.

Examples

adj_mat <- matrix(c(1:16), nrow = 4)
run_motif_clustering(adj_mat, "M1", "func")

run_motif_embedding Run motif embedding

Description

Calculate a motif adjacency matrix for a given motif and motif type, restrict it to its largest con-
nected component, and then run Laplace embedding with specified Laplacian type and number of
eigenvalues and eigenvectors.

run_motif_embedding 9

Usage
run_motif_embedding(
adj_mat,
motif_name,
motif_type = c("struc”, "func"),
mam_weight_type = c("unweighted”, "mean"”, "product”),
mam_method = c("sparse”, "dense"),

num_eigs = 2,
type_lap = c("comb”, "rw"),
restrict = TRUE

)
Arguments
adj_mat Adjacency matrix to be embedded.
motif_name Motif used for the motif adjacency matrix.
motif_type Type of motif adjacency matrix to use. One of "func” or "struc”.

mam_weight_type
Weighting scheme for the motif adjacency matrix. One of "unweighted", "mean”

or "product”.

mam_method The method to use for building the motif adjacency matrix. One of "sparse"” or
"dense”.

num_eigs Number of eigenvalues and eigenvectors for the embedding.

type_lap Type of Laplacian for the embedding. One of "comb” or "rw".

restrict Whether or not to restrict the motif adjacency matrix to its largest connected

component before embedding.

Value

A list with 7 entries:

* adj_mat: the original adjacency matrix.
* motif_adj_mat: the motif adjacency matrix.

* comps: the indices of the largest connected component of the motif adjacency matrix (if restrict
=TRUE).

* adj_mat_comps: the original adjacency matrix restricted to the largest connected component
of the motif adjacency matrix (if restrict = TRUE).

* motif_adj_mat_comps: the motif adjacency matrix restricted to its largest connected compo-
nent (if restrict = TRUE).

* vals: a length-num_eigs vector containing the eigenvalues associated with the Laplace em-
bedding of the (restricted) motif adjacency matrix.

e vects: a matrix containing the eigenvectors associated with the Laplace embedding of the
(restricted) motif adjacency matrix.

10 sample_bsbm

Examples

adj_mat <- matrix(c(1:9), nrow = 3)
run_motif_embedding(adj_mat, "M1", "func")

sample_bsbm Sample a bipartite stochastic block model (BSBM)

Description

Sample the (weighted) adjacency matrix of a (weighted) bipartite stochastic block model (BSBM)
with specified parameters.

Usage

sample_bsbm(
source_block_sizes,
dest_block_sizes,
bipartite_connection_matrix,
bipartite_weight_matrix = NULL,
sample_weight_type = c("unweighted”, "constant”, "poisson")

Arguments

source_block_sizes
A vector containing the size of each block of source vertices.

dest_block_sizes
A vector containing the size of each block of destination vertices.

bipartite_connection_matrix

A matrix containing the source block to destination block connection probabili-
ties.

bipartite_weight_matrix

A matrix containing the source block to destination block weight parameters.
Unused for sample_weight_type = "constant”. Defaults to NULL.

sample_weight_type
The type of weighting scheme. One of "unweighted”, "constant” or "poisson”.

Value

A randomly sampled (weighted) adjacency matrix of a BSBM.

sample_dsbm 11

Examples

source_block_sizes <- c(10, 10)

dest_block_sizes <- c(10, 10, 10)

bipartite_connection_matrix <- matrix(c(e.8, .5, 0.1, 0.1, 0.5, 0.8),
nrow = 2, byrow = TRUE)

bipartite_weight_matrix = matrix(c(20, 10, 2, 2, 10, 20),
nrow = 2, byrow = TRUE)

sample_bsbm(source_block_sizes, dest_block_sizes,
bipartite_connection_matrix, bipartite_weight_matrix, "poisson”)

sample_dsbm Sample a directed stochastic block model (DSBM)

Description

Sample the (weighted) adjacency matrix of a (weighted) directed stochastic block model (DSBM)
with specified parameters.

Usage

sample_dsbm(
block_sizes,
connection_matrix,
weight_matrix = NULL,

sample_weight_type = c("unweighted”, "constant”, "poisson”)
)
Arguments
block_sizes A vector containing the size of each block of vertices.

connection_matrix
A matrix containing the block-to-block connection probabilities.

weight_matrix A matrix containing the block-to-block weight parameters. Unused for sample_weight_type
= "constant". Defaults to NULL.

sample_weight_type
The type of weighting scheme. One of "unweighted”, "constant"” or "poisson”.

Value

A randomly sampled (weighted) adjacency matrix of a DSBM.

Examples

block_sizes <- c(10, 10)

connection_matrix <- matrix(c(@.8, 0.1, 0.1, 0.8), nrow = 2, byrow = TRUE)
weight_matrix <- matrix(c(10, 3, 3, 10), nrow = 2, byrow = TRUE)
sample_dsbm(block_sizes, connection_matrix, weight_matrix, "poisson”)

Index

build_laplacian, 2
build_motif_adjacency_matrix, 3

get_largest_component, 4
get_motif_names, 4

kmeans, 5
kmeanspp, 5

random_sparse_matrix, 6
run_laplace_embedding, 6
run_motif_clustering, 7
run_motif_embedding, 8

sample_bsbm, 10
sample_dsbm, 11

12

	build_laplacian
	build_motif_adjacency_matrix
	get_largest_component
	get_motif_names
	kmeanspp
	random_sparse_matrix
	run_laplace_embedding
	run_motif_clustering
	run_motif_embedding
	sample_bsbm
	sample_dsbm
	Index

