
Package ‘plyr’
October 2, 2023

Title Tools for Splitting, Applying and Combining Data

Version 1.8.9

Description A set of tools that solves a common set of problems: you need
to break a big problem down into manageable pieces, operate on each
piece and then put all the pieces back together. For example, you
might want to fit a model to each spatial location or time point in
your study, summarise data by panels or collapse high-dimensional
arrays to simpler summary statistics. The development of 'plyr' has
been generously supported by 'Becton Dickinson'.

License MIT + file LICENSE

URL http://had.co.nz/plyr, https://github.com/hadley/plyr

BugReports https://github.com/hadley/plyr/issues

Depends R (>= 3.1.0)

Imports Rcpp (>= 0.11.0)

Suggests abind, covr, doParallel, foreach, iterators, itertools,
tcltk, testthat

LinkingTo Rcpp

Encoding UTF-8

LazyData true

RoxygenNote 7.2.3

NeedsCompilation yes

Author Hadley Wickham [aut, cre]

Maintainer Hadley Wickham <hadley@rstudio.com>

Repository CRAN

Date/Publication 2023-10-02 06:50:08 UTC

1

http://had.co.nz/plyr
https://github.com/hadley/plyr
https://github.com/hadley/plyr/issues

2 R topics documented:

R topics documented:
. 3
aaply . 4
adply . 6
alply . 8
arrange . 9
as.data.frame.function . 10
as.quoted . 11
a_ply . 12
baseball . 13
colwise . 15
count . 16
create_progress_bar . 17
daply . 18
ddply . 20
defaults . 22
desc . 22
dlply . 23
d_ply . 24
each . 26
failwith . 26
here . 27
idata.frame . 28
join . 29
join_all . 30
laply . 30
ldply . 32
liply . 33
llply . 34
l_ply . 36
maply . 37
mapvalues . 39
match_df . 40
mdply . 41
mlply . 42
mutate . 44
m_ply . 45
name_rows . 46
ozone . 47
plyr . 48
plyr-deprecated . 49
progress_text . 49
progress_time . 50
progress_tk . 51
progress_win . 51
raply . 52
rbind.fill . 53

. 3

rbind.fill.matrix . 54
rdply . 55
rename . 56
revalue . 57
rlply . 58
round_any . 59
r_ply . 59
splat . 60
strip_splits . 61
summarise . 61
take . 62
vaggregate . 63

Index 64

. Quote variables to create a list of unevaluated expressions for later
evaluation.

Description

This function is similar to ~ in that it is used to capture the name of variables, not their current value.
This is used throughout plyr to specify the names of variables (or more complicated expressions).

Usage

.(..., .env = parent.frame())

Arguments

... unevaluated expressions to be recorded. Specify names if you want the set the
names of the resultant variables

.env environment in which unbound symbols in ... should be evaluated. Defaults to
the environment in which . was executed.

Details

Similar tricks can be performed with substitute, but when functions can be called in multiple
ways it becomes increasingly tricky to ensure that the values are extracted from the correct frame.
Substitute tricks also make it difficult to program against the functions that use them, while the
quoted class provides as.quoted.character to convert strings to the appropriate data structure.

Value

list of symbol and language primitives

4 aaply

Examples

.(a, b, c)

.(first = a, second = b, third = c)

.(a ^ 2, b - d, log(c))
as.quoted(~ a + b + c)
as.quoted(a ~ b + c)
as.quoted(c("a", "b", "c"))

Some examples using ddply - look at the column names
ddply(mtcars, "cyl", each(nrow, ncol))
ddply(mtcars, ~ cyl, each(nrow, ncol))
ddply(mtcars, .(cyl), each(nrow, ncol))
ddply(mtcars, .(log(cyl)), each(nrow, ncol))
ddply(mtcars, .(logcyl = log(cyl)), each(nrow, ncol))
ddply(mtcars, .(vs + am), each(nrow, ncol))
ddply(mtcars, .(vsam = vs + am), each(nrow, ncol))

aaply Split array, apply function, and return results in an array.

Description

For each slice of an array, apply function, keeping results as an array.

Usage

aaply(
.data,
.margins,
.fun = NULL,
...,
.expand = TRUE,
.progress = "none",
.inform = FALSE,
.drop = TRUE,
.parallel = FALSE,
.paropts = NULL

)

Arguments

.data matrix, array or data frame to be processed

.margins a vector giving the subscripts to split up data by. 1 splits up by rows, 2 by
columns and c(1,2) by rows and columns, and so on for higher dimensions

.fun function to apply to each piece

... other arguments passed on to .fun

aaply 5

.expand if .data is a data frame, should output be 1d (expand = FALSE), with an element
for each row; or nd (expand = TRUE), with a dimension for each variable.

.progress name of the progress bar to use, see create_progress_bar

.inform produce informative error messages? This is turned off by default because it
substantially slows processing speed, but is very useful for debugging

.drop should extra dimensions of length 1 in the output be dropped, simplifying the
output. Defaults to TRUE

.parallel if TRUE, apply function in parallel, using parallel backend provided by foreach

.paropts a list of additional options passed into the foreach function when parallel com-
putation is enabled. This is important if (for example) your code relies on ex-
ternal data or packages: use the .export and .packages arguments to supply
them so that all cluster nodes have the correct environment set up for computing.

Details

This function is very similar to apply, except that it will always return an array, and when the func-
tion returns >1 d data structures, those dimensions are added on to the highest dimensions, rather
than the lowest dimensions. This makes aaply idempotent, so that aaply(input, X, identity)
is equivalent to aperm(input, X).

Value

if results are atomic with same type and dimensionality, a vector, matrix or array; otherwise, a
list-array (a list with dimensions)

Warning

Contrary to alply and adply, passing a data frame as first argument to aaply may lead to unex-
pected results such as huge memory allocations.

Input

This function splits matrices, arrays and data frames by dimensions

Output

If there are no results, then this function will return a vector of length 0 (vector()).

References

Hadley Wickham (2011). The Split-Apply-Combine Strategy for Data Analysis. Journal of Statis-
tical Software, 40(1), 1-29. https://www.jstatsoft.org/v40/i01/.

See Also

Other array input: a_ply(), adply(), alply()

Other array output: daply(), laply(), maply()

https://www.jstatsoft.org/v40/i01/

6 adply

Examples

dim(ozone)
aaply(ozone, 1, mean)
aaply(ozone, 1, mean, .drop = FALSE)
aaply(ozone, 3, mean)
aaply(ozone, c(1,2), mean)

dim(aaply(ozone, c(1,2), mean))
dim(aaply(ozone, c(1,2), mean, .drop = FALSE))

aaply(ozone, 1, each(min, max))
aaply(ozone, 3, each(min, max))

standardise <- function(x) (x - min(x)) / (max(x) - min(x))
aaply(ozone, 3, standardise)
aaply(ozone, 1:2, standardise)

aaply(ozone, 1:2, diff)

adply Split array, apply function, and return results in a data frame.

Description

For each slice of an array, apply function then combine results into a data frame.

Usage

adply(
.data,
.margins,
.fun = NULL,
...,
.expand = TRUE,
.progress = "none",
.inform = FALSE,
.parallel = FALSE,
.paropts = NULL,
.id = NA

)

Arguments

.data matrix, array or data frame to be processed

.margins a vector giving the subscripts to split up data by. 1 splits up by rows, 2 by
columns and c(1,2) by rows and columns, and so on for higher dimensions

.fun function to apply to each piece

adply 7

... other arguments passed on to .fun

.expand if .data is a data frame, should output be 1d (expand = FALSE), with an element
for each row; or nd (expand = TRUE), with a dimension for each variable.

.progress name of the progress bar to use, see create_progress_bar

.inform produce informative error messages? This is turned off by default because it
substantially slows processing speed, but is very useful for debugging

.parallel if TRUE, apply function in parallel, using parallel backend provided by foreach

.paropts a list of additional options passed into the foreach function when parallel com-
putation is enabled. This is important if (for example) your code relies on ex-
ternal data or packages: use the .export and .packages arguments to supply
them so that all cluster nodes have the correct environment set up for computing.

.id name(s) of the index column(s). Pass NULL to avoid creation of the index col-
umn(s). Omit or pass NA to use the default names "X1", "X2", Otherwise,
this argument must have the same length as .margins.

Value

A data frame, as described in the output section.

Input

This function splits matrices, arrays and data frames by dimensions

Output

The most unambiguous behaviour is achieved when .fun returns a data frame - in that case pieces
will be combined with rbind.fill. If .fun returns an atomic vector of fixed length, it will be
rbinded together and converted to a data frame. Any other values will result in an error.

If there are no results, then this function will return a data frame with zero rows and columns
(data.frame()).

References

Hadley Wickham (2011). The Split-Apply-Combine Strategy for Data Analysis. Journal of Statis-
tical Software, 40(1), 1-29. https://www.jstatsoft.org/v40/i01/.

See Also

Other array input: a_ply(), aaply(), alply()

Other data frame output: ddply(), ldply(), mdply()

https://www.jstatsoft.org/v40/i01/

8 alply

alply Split array, apply function, and return results in a list.

Description

For each slice of an array, apply function then combine results into a list.

Usage

alply(
.data,
.margins,
.fun = NULL,
...,
.expand = TRUE,
.progress = "none",
.inform = FALSE,
.parallel = FALSE,
.paropts = NULL,
.dims = FALSE

)

Arguments

.data matrix, array or data frame to be processed

.margins a vector giving the subscripts to split up data by. 1 splits up by rows, 2 by
columns and c(1,2) by rows and columns, and so on for higher dimensions

.fun function to apply to each piece

... other arguments passed on to .fun

.expand if .data is a data frame, should output be 1d (expand = FALSE), with an element
for each row; or nd (expand = TRUE), with a dimension for each variable.

.progress name of the progress bar to use, see create_progress_bar

.inform produce informative error messages? This is turned off by default because it
substantially slows processing speed, but is very useful for debugging

.parallel if TRUE, apply function in parallel, using parallel backend provided by foreach

.paropts a list of additional options passed into the foreach function when parallel com-
putation is enabled. This is important if (for example) your code relies on ex-
ternal data or packages: use the .export and .packages arguments to supply
them so that all cluster nodes have the correct environment set up for computing.

.dims if TRUE, copy over dimensions and names from input.

Details

The list will have "dims" and "dimnames" corresponding to the margins given. For instance alply(x,
c(3,2), ...) where x has dims c(4,3,2) will give a result with dims c(2,3).

alply is somewhat similar to apply for cases where the results are not atomic.

arrange 9

Value

list of results

Input

This function splits matrices, arrays and data frames by dimensions

Output

If there are no results, then this function will return a list of length 0 (list()).

References

Hadley Wickham (2011). The Split-Apply-Combine Strategy for Data Analysis. Journal of Statis-
tical Software, 40(1), 1-29. https://www.jstatsoft.org/v40/i01/.

See Also

Other array input: a_ply(), aaply(), adply()

Other list output: dlply(), llply(), mlply()

Examples

alply(ozone, 3, quantile)
alply(ozone, 3, function(x) table(round(x)))

arrange Order a data frame by its colums.

Description

This function completes the subsetting, transforming and ordering triad with a function that works
in a similar way to subset and transform but for reordering a data frame by its columns. This
saves a lot of typing!

Usage

arrange(df, ...)

Arguments

df data frame to reorder

... expressions evaluated in the context of df and then fed to order

See Also

order for sorting function in the base package

https://www.jstatsoft.org/v40/i01/

10 as.data.frame.function

Examples

sort mtcars data by cylinder and displacement
mtcars[with(mtcars, order(cyl, disp)),]
Same result using arrange: no need to use with(), as the context is implicit
NOTE: plyr functions do NOT preserve row.names
arrange(mtcars, cyl, disp)
Let's keep the row.names in this example
myCars = cbind(vehicle=row.names(mtcars), mtcars)
arrange(myCars, cyl, disp)
Sort with displacement in descending order
arrange(myCars, cyl, desc(disp))

as.data.frame.function

Make a function return a data frame.

Description

Create a new function that returns the existing function wrapped in a data.frame with a single
column, value.

Usage

S3 method for class '`function`'
as.data.frame(x, row.names, optional, ...)

Arguments

x function to make return a data frame

row.names necessary to match the generic, but not used

optional necessary to match the generic, but not used

... necessary to match the generic, but not used

Details

This is useful when calling *dply functions with a function that returns a vector, and you want the
output in rows, rather than columns. The value column is always created, even for empty inputs.

as.quoted 11

as.quoted Convert input to quoted variables.

Description

Convert characters, formulas and calls to quoted .variables

Usage

as.quoted(x, env = parent.frame())

Arguments

x input to quote

env environment in which unbound symbols in expression should be evaluated. De-
faults to the environment in which as.quoted was executed.

Details

This method is called by default on all plyr functions that take a .variables argument, so that
equivalent forms can be used anywhere.

Currently conversions exist for character vectors, formulas and call objects.

Value

a list of quoted variables

See Also

.

Examples

as.quoted(c("a", "b", "log(d)"))
as.quoted(a ~ b + log(d))

12 a_ply

a_ply Split array, apply function, and discard results.

Description

For each slice of an array, apply function and discard results

Usage

a_ply(
.data,
.margins,
.fun = NULL,
...,
.expand = TRUE,
.progress = "none",
.inform = FALSE,
.print = FALSE,
.parallel = FALSE,
.paropts = NULL

)

Arguments

.data matrix, array or data frame to be processed

.margins a vector giving the subscripts to split up data by. 1 splits up by rows, 2 by
columns and c(1,2) by rows and columns, and so on for higher dimensions

.fun function to apply to each piece

... other arguments passed on to .fun

.expand if .data is a data frame, should output be 1d (expand = FALSE), with an element
for each row; or nd (expand = TRUE), with a dimension for each variable.

.progress name of the progress bar to use, see create_progress_bar

.inform produce informative error messages? This is turned off by default because it
substantially slows processing speed, but is very useful for debugging

.print automatically print each result? (default: FALSE)

.parallel if TRUE, apply function in parallel, using parallel backend provided by foreach

.paropts a list of additional options passed into the foreach function when parallel com-
putation is enabled. This is important if (for example) your code relies on ex-
ternal data or packages: use the .export and .packages arguments to supply
them so that all cluster nodes have the correct environment set up for computing.

Value

Nothing

baseball 13

Input

This function splits matrices, arrays and data frames by dimensions

Output

All output is discarded. This is useful for functions that you are calling purely for their side effects
like displaying plots or saving output.

References

Hadley Wickham (2011). The Split-Apply-Combine Strategy for Data Analysis. Journal of Statis-
tical Software, 40(1), 1-29. https://www.jstatsoft.org/v40/i01/.

See Also

Other array input: aaply(), adply(), alply()

Other no output: d_ply(), l_ply(), m_ply()

baseball Yearly batting records for all major league baseball players

Description

This data frame contains batting statistics for a subset of players collected from http://www.
baseball-databank.org/. There are a total of 21,699 records, covering 1,228 players from 1871
to 2007. Only players with more 15 seasons of play are included.

Usage

baseball

Format

A 21699 x 22 data frame

Variables

Variables:

• id, unique player id

• year, year of data

• stint

• team, team played for

• lg, league

• g, number of games

• ab, number of times at bat

https://www.jstatsoft.org/v40/i01/
http://www.baseball-databank.org/
http://www.baseball-databank.org/

14 baseball

• r, number of runs

• h, hits, times reached base because of a batted, fair ball without error by the defense

• X2b, hits on which the batter reached second base safely

• X3b, hits on which the batter reached third base safely

• hr, number of home runs

• rbi, runs batted in

• sb, stolen bases

• cs, caught stealing

• bb, base on balls (walk)

• so, strike outs

• ibb, intentional base on balls

• hbp, hits by pitch

• sh, sacrifice hits

• sf, sacrifice flies

• gidp, ground into double play

References

http://www.baseball-databank.org/

Examples

baberuth <- subset(baseball, id == "ruthba01")
baberuth$cyear <- baberuth$year - min(baberuth$year) + 1

calculate_cyear <- function(df) {
mutate(df,
cyear = year - min(year),
cpercent = cyear / (max(year) - min(year))

)
}

baseball <- ddply(baseball, .(id), calculate_cyear)
baseball <- subset(baseball, ab >= 25)

model <- function(df) {
lm(rbi / ab ~ cyear, data=df)

}
model(baberuth)
models <- dlply(baseball, .(id), model)

http://www.baseball-databank.org/

colwise 15

colwise Column-wise function.

Description

Turn a function that operates on a vector into a function that operates column-wise on a data.frame.

Usage

colwise(.fun, .cols = true, ...)

catcolwise(.fun, ...)

numcolwise(.fun, ...)

Arguments

.fun function

.cols either a function that tests columns for inclusion, or a quoted object giving which
columns to process

... other arguments passed on to .fun

Details

catcolwise and numcolwise provide version that only operate on discrete and numeric variables
respectively.

Examples

Count number of missing values
nmissing <- function(x) sum(is.na(x))

Apply to every column in a data frame
colwise(nmissing)(baseball)
This syntax looks a little different. It is shorthand for the
the following:
f <- colwise(nmissing)
f(baseball)

This is particularly useful in conjunction with d*ply
ddply(baseball, .(year), colwise(nmissing))

To operate only on specified columns, supply them as the second
argument. Many different forms are accepted.
ddply(baseball, .(year), colwise(nmissing, .(sb, cs, so)))
ddply(baseball, .(year), colwise(nmissing, c("sb", "cs", "so")))
ddply(baseball, .(year), colwise(nmissing, ~ sb + cs + so))

16 count

Alternatively, you can specify a boolean function that determines
whether or not a column should be included
ddply(baseball, .(year), colwise(nmissing, is.character))
ddply(baseball, .(year), colwise(nmissing, is.numeric))
ddply(baseball, .(year), colwise(nmissing, is.discrete))

These last two cases are particularly common, so some shortcuts are
provided:
ddply(baseball, .(year), numcolwise(nmissing))
ddply(baseball, .(year), catcolwise(nmissing))

You can supply additional arguments to either colwise, or the function
it generates:
numcolwise(mean)(baseball, na.rm = TRUE)
numcolwise(mean, na.rm = TRUE)(baseball)

count Count the number of occurences.

Description

Equivalent to as.data.frame(table(x)), but does not include combinations with zero counts.

Usage

count(df, vars = NULL, wt_var = NULL)

Arguments

df data frame to be processed

vars variables to count unique values of

wt_var optional variable to weight by - if this is non-NULL, count will sum up the value
of this variable for each combination of id variables.

Details

Speed-wise count is competitive with table for single variables, but it really comes into its own
when summarising multiple dimensions because it only counts combinations that actually occur in
the data.

Compared to table + as.data.frame, count also preserves the type of the identifier variables,
instead of converting them to characters/factors.

Value

a data frame with label and freq columns

See Also

table for related functionality in the base package

create_progress_bar 17

Examples

Count of each value of "id" in the first 100 cases
count(baseball[1:100,], vars = "id")
Count of ids, weighted by their "g" loading
count(baseball[1:100,], vars = "id", wt_var = "g")
count(baseball, "id", "ab")
count(baseball, "lg")
How many stints do players do?
count(baseball, "stint")
Count of times each player appeared in each of the years they played
count(baseball[1:100,], c("id", "year"))
Count of counts
count(count(baseball[1:100,], c("id", "year")), "id", "freq")
count(count(baseball, c("id", "year")), "freq")

create_progress_bar Create progress bar.

Description

Create progress bar object from text string.

Usage

create_progress_bar(name = "none", ...)

Arguments

name type of progress bar to create

... other arguments passed onto progress bar function

Details

Progress bars give feedback on how apply step is proceeding. This is mainly useful for long running
functions, as for short functions, the time taken up by splitting and combining may be on the same
order (or longer) as the apply step. Additionally, for short functions, the time needed to update the
progress bar can significantly slow down the process. For the trivial examples below, using the tk
progress bar slows things down by a factor of a thousand.

Note the that progress bar is approximate, and if the time taken by individual function applications
is highly non-uniform it may not be very informative of the time left.

There are currently four types of progress bar: "none", "text", "tk", and "win". See the individual
documentation for more details. In plyr functions, these can either be specified by name, or you
can create the progress bar object yourself if you want more control over its apperance. See the
examples.

See Also

progress_none, progress_text, progress_tk, progress_win

18 daply

Examples

No progress bar
l_ply(1:100, identity, .progress = "none")
Not run:
Use the Tcl/Tk interface
l_ply(1:100, identity, .progress = "tk")

End(Not run)
Text-based progress (|======|)
l_ply(1:100, identity, .progress = "text")
Choose a progress character, run a length of time you can see
l_ply(1:10000, identity, .progress = progress_text(char = "."))

daply Split data frame, apply function, and return results in an array.

Description

For each subset of data frame, apply function then combine results into an array. daply with a
function that operates column-wise is similar to aggregate. To apply a function for each row, use
aaply with .margins set to 1.

Usage

daply(
.data,
.variables,
.fun = NULL,
...,
.progress = "none",
.inform = FALSE,
.drop_i = TRUE,
.drop_o = TRUE,
.parallel = FALSE,
.paropts = NULL

)

Arguments

.data data frame to be processed

.variables variables to split data frame by, as quoted variables, a formula or character vector

.fun function to apply to each piece

... other arguments passed on to .fun

.progress name of the progress bar to use, see create_progress_bar

.inform produce informative error messages? This is turned off by default because it
substantially slows processing speed, but is very useful for debugging

daply 19

.drop_i should combinations of variables that do not appear in the input data be pre-
served (FALSE) or dropped (TRUE, default)

.drop_o should extra dimensions of length 1 in the output be dropped, simplifying the
output. Defaults to TRUE

.parallel if TRUE, apply function in parallel, using parallel backend provided by foreach

.paropts a list of additional options passed into the foreach function when parallel com-
putation is enabled. This is important if (for example) your code relies on ex-
ternal data or packages: use the .export and .packages arguments to supply
them so that all cluster nodes have the correct environment set up for computing.

Value

if results are atomic with same type and dimensionality, a vector, matrix or array; otherwise, a
list-array (a list with dimensions)

Input

This function splits data frames by variables.

Output

If there are no results, then this function will return a vector of length 0 (vector()).

References

Hadley Wickham (2011). The Split-Apply-Combine Strategy for Data Analysis. Journal of Statis-
tical Software, 40(1), 1-29. https://www.jstatsoft.org/v40/i01/.

See Also

Other array output: aaply(), laply(), maply()

Other data frame input: d_ply(), ddply(), dlply()

Examples

daply(baseball, .(year), nrow)

Several different ways of summarising by variables that should not be
included in the summary

daply(baseball[, c(2, 6:9)], .(year), colwise(mean))
daply(baseball[, 6:9], .(baseball$year), colwise(mean))
daply(baseball, .(year), function(df) colwise(mean)(df[, 6:9]))

https://www.jstatsoft.org/v40/i01/

20 ddply

ddply Split data frame, apply function, and return results in a data frame.

Description

For each subset of a data frame, apply function then combine results into a data frame. To apply a
function for each row, use adply with .margins set to 1.

Usage

ddply(
.data,
.variables,
.fun = NULL,
...,
.progress = "none",
.inform = FALSE,
.drop = TRUE,
.parallel = FALSE,
.paropts = NULL

)

Arguments

.data data frame to be processed

.variables variables to split data frame by, as as.quoted variables, a formula or character
vector

.fun function to apply to each piece

... other arguments passed on to .fun

.progress name of the progress bar to use, see create_progress_bar

.inform produce informative error messages? This is turned off by default because it
substantially slows processing speed, but is very useful for debugging

.drop should combinations of variables that do not appear in the input data be pre-
served (FALSE) or dropped (TRUE, default)

.parallel if TRUE, apply function in parallel, using parallel backend provided by foreach

.paropts a list of additional options passed into the foreach function when parallel com-
putation is enabled. This is important if (for example) your code relies on ex-
ternal data or packages: use the .export and .packages arguments to supply
them so that all cluster nodes have the correct environment set up for computing.

Value

A data frame, as described in the output section.

ddply 21

Input

This function splits data frames by variables.

Output

The most unambiguous behaviour is achieved when .fun returns a data frame - in that case pieces
will be combined with rbind.fill. If .fun returns an atomic vector of fixed length, it will be
rbinded together and converted to a data frame. Any other values will result in an error.

If there are no results, then this function will return a data frame with zero rows and columns
(data.frame()).

References

Hadley Wickham (2011). The Split-Apply-Combine Strategy for Data Analysis. Journal of Statis-
tical Software, 40(1), 1-29. https://www.jstatsoft.org/v40/i01/.

See Also

tapply for similar functionality in the base package

Other data frame input: d_ply(), daply(), dlply()

Other data frame output: adply(), ldply(), mdply()

Examples

Summarize a dataset by two variables
dfx <- data.frame(

group = c(rep('A', 8), rep('B', 15), rep('C', 6)),
sex = sample(c("M", "F"), size = 29, replace = TRUE),
age = runif(n = 29, min = 18, max = 54)

)

Note the use of the '.' function to allow
group and sex to be used without quoting
ddply(dfx, .(group, sex), summarize,
mean = round(mean(age), 2),
sd = round(sd(age), 2))

An example using a formula for .variables
ddply(baseball[1:100,], ~ year, nrow)
Applying two functions; nrow and ncol
ddply(baseball, .(lg), c("nrow", "ncol"))

Calculate mean runs batted in for each year
rbi <- ddply(baseball, .(year), summarise,

mean_rbi = mean(rbi, na.rm = TRUE))
Plot a line chart of the result
plot(mean_rbi ~ year, type = "l", data = rbi)

make new variable career_year based on the
start year for each player (id)

https://www.jstatsoft.org/v40/i01/

22 desc

base2 <- ddply(baseball, .(id), mutate,
career_year = year - min(year) + 1

)

defaults Set defaults.

Description

Convient method for combining a list of values with their defaults.

Usage

defaults(x, y)

Arguments

x list of values

y defaults

desc Descending order.

Description

Transform a vector into a format that will be sorted in descending order.

Usage

desc(x)

Arguments

x vector to transform

Examples

desc(1:10)
desc(factor(letters))
first_day <- seq(as.Date("1910/1/1"), as.Date("1920/1/1"), "years")
desc(first_day)

dlply 23

dlply Split data frame, apply function, and return results in a list.

Description

For each subset of a data frame, apply function then combine results into a list. dlply is similar to
by except that the results are returned in a different format. To apply a function for each row, use
alply with .margins set to 1.

Usage

dlply(
.data,
.variables,
.fun = NULL,
...,
.progress = "none",
.inform = FALSE,
.drop = TRUE,
.parallel = FALSE,
.paropts = NULL

)

Arguments

.data data frame to be processed

.variables variables to split data frame by, as as.quoted variables, a formula or character
vector

.fun function to apply to each piece

... other arguments passed on to .fun

.progress name of the progress bar to use, see create_progress_bar

.inform produce informative error messages? This is turned off by default because it
substantially slows processing speed, but is very useful for debugging

.drop should combinations of variables that do not appear in the input data be pre-
served (FALSE) or dropped (TRUE, default)

.parallel if TRUE, apply function in parallel, using parallel backend provided by foreach

.paropts a list of additional options passed into the foreach function when parallel com-
putation is enabled. This is important if (for example) your code relies on ex-
ternal data or packages: use the .export and .packages arguments to supply
them so that all cluster nodes have the correct environment set up for computing.

Value

list of results

24 d_ply

Input

This function splits data frames by variables.

Output

If there are no results, then this function will return a list of length 0 (list()).

References

Hadley Wickham (2011). The Split-Apply-Combine Strategy for Data Analysis. Journal of Statis-
tical Software, 40(1), 1-29. https://www.jstatsoft.org/v40/i01/.

See Also

Other data frame input: d_ply(), daply(), ddply()

Other list output: alply(), llply(), mlply()

Examples

linmod <- function(df) {
lm(rbi ~ year, data = mutate(df, year = year - min(year)))

}
models <- dlply(baseball, .(id), linmod)
models[[1]]

coef <- ldply(models, coef)
with(coef, plot(`(Intercept)`, year))
qual <- laply(models, function(mod) summary(mod)$r.squared)
hist(qual)

d_ply Split data frame, apply function, and discard results.

Description

For each subset of a data frame, apply function and discard results. To apply a function for each
row, use a_ply with .margins set to 1.

Usage

d_ply(
.data,
.variables,
.fun = NULL,
...,
.progress = "none",
.inform = FALSE,
.drop = TRUE,

https://www.jstatsoft.org/v40/i01/

d_ply 25

.print = FALSE,

.parallel = FALSE,

.paropts = NULL
)

Arguments

.data data frame to be processed

.variables variables to split data frame by, as as.quoted variables, a formula or character
vector

.fun function to apply to each piece

... other arguments passed on to .fun

.progress name of the progress bar to use, see create_progress_bar

.inform produce informative error messages? This is turned off by default because it
substantially slows processing speed, but is very useful for debugging

.drop should combinations of variables that do not appear in the input data be pre-
served (FALSE) or dropped (TRUE, default)

.print automatically print each result? (default: FALSE)

.parallel if TRUE, apply function in parallel, using parallel backend provided by foreach

.paropts a list of additional options passed into the foreach function when parallel com-
putation is enabled. This is important if (for example) your code relies on ex-
ternal data or packages: use the .export and .packages arguments to supply
them so that all cluster nodes have the correct environment set up for computing.

Value

Nothing

Input

This function splits data frames by variables.

Output

All output is discarded. This is useful for functions that you are calling purely for their side effects
like displaying plots or saving output.

References

Hadley Wickham (2011). The Split-Apply-Combine Strategy for Data Analysis. Journal of Statis-
tical Software, 40(1), 1-29. https://www.jstatsoft.org/v40/i01/.

See Also

Other data frame input: daply(), ddply(), dlply()

Other no output: a_ply(), l_ply(), m_ply()

https://www.jstatsoft.org/v40/i01/

26 failwith

each Aggregate multiple functions into a single function.

Description

Combine multiple functions into a single function returning a named vector of outputs. Note: you
cannot supply additional parameters for the summary functions

Usage

each(...)

Arguments

... functions to combine. each function should produce a single number as output

See Also

summarise for applying summary functions to data

Examples

Call min() and max() on the vector 1:10
each(min, max)(1:10)
This syntax looks a little different. It is shorthand for the
the following:
f<- each(min, max)
f(1:10)
Three equivalent ways to call min() and max() on the vector 1:10
each("min", "max")(1:10)
each(c("min", "max"))(1:10)
each(c(min, max))(1:10)
Call length(), min() and max() on a random normal vector
each(length, mean, var)(rnorm(100))

failwith Fail with specified value.

Description

Modify a function so that it returns a default value when there is an error.

Usage

failwith(default = NULL, f, quiet = FALSE)

here 27

Arguments

default default value

f function

quiet all error messages be suppressed?

Value

a function

See Also

try_default

Examples

f <- function(x) if (x == 1) stop("Error!") else 1
Not run:
f(1)
f(2)

End(Not run)

safef <- failwith(NULL, f)
safef(1)
safef(2)

here Capture current evaluation context.

Description

This function captures the current context, making it easier to use **ply with functions that do
special evaluation and need access to the environment where ddply was called from.

Usage

here(f)

Arguments

f a function that does non-standard evaluation

Author(s)

Peter Meilstrup, https://github.com/crowding

https://github.com/crowding

28 idata.frame

Examples

df <- data.frame(a = rep(c("a","b"), each = 10), b = 1:20)
f1 <- function(label) {

ddply(df, "a", mutate, label = paste(label, b))
}
Not run: f1("name:")
Doesn't work because mutate can't find label in the current scope

f2 <- function(label) {
ddply(df, "a", here(mutate), label = paste(label, b))

}
f2("name:")
Works :)

idata.frame Construct an immutable data frame.

Description

An immutable data frame works like an ordinary data frame, except that when you subset it, it
returns a reference to the original data frame, not a a copy. This makes subsetting substantially
faster and has a big impact when you are working with large datasets with many groups.

Usage

idata.frame(df)

Arguments

df a data frame

Details

This method is still a little experimental, so please let me know if you run into any problems.

Value

an immutable data frame

Examples

system.time(dlply(baseball, "id", nrow))
system.time(dlply(idata.frame(baseball), "id", nrow))

join 29

join Join two data frames together.

Description

Join, like merge, is designed for the types of problems where you would use a sql join.

Usage

join(x, y, by = NULL, type = "left", match = "all")

Arguments

x data frame

y data frame

by character vector of variable names to join by. If omitted, will match on all
common variables.

type type of join: left (default), right, inner or full. See details for more information.

match how should duplicate ids be matched? Either match just the "first" matching
row, or match "all" matching rows. Defaults to "all" for compatibility with
merge, but "first" is significantly faster.

Details

The four join types return:

• inner: only rows with matching keys in both x and y

• left: all rows in x, adding matching columns from y

• right: all rows in y, adding matching columns from x

• full: all rows in x with matching columns in y, then the rows of y that don’t match x.

Note that from plyr 1.5, join will (by default) return all matches, not just the first match, as it did
previously.

Unlike merge, preserves the order of x no matter what join type is used. If needed, rows from y will
be added to the bottom. Join is often faster than merge, although it is somewhat less featureful - it
currently offers no way to rename output or merge on different variables in the x and y data frames.

Examples

first <- ddply(baseball, "id", summarise, first = min(year))
system.time(b2 <- merge(baseball, first, by = "id", all.x = TRUE))
system.time(b3 <- join(baseball, first, by = "id"))

b2 <- arrange(b2, id, year, stint)
b3 <- arrange(b3, id, year, stint)
stopifnot(all.equal(b2, b3))

30 laply

join_all Recursively join a list of data frames.

Description

Recursively join a list of data frames.

Usage

join_all(dfs, by = NULL, type = "left", match = "all")

Arguments

dfs A list of data frames.

by character vector of variable names to join by. If omitted, will match on all
common variables.

type type of join: left (default), right, inner or full. See details for more information.

match how should duplicate ids be matched? Either match just the "first" matching
row, or match "all" matching rows. Defaults to "all" for compatibility with
merge, but "first" is significantly faster.

Examples

dfs <- list(
a = data.frame(x = 1:10, a = runif(10)),
b = data.frame(x = 1:10, b = runif(10)),
c = data.frame(x = 1:10, c = runif(10))

)
join_all(dfs)
join_all(dfs, "x")

laply Split list, apply function, and return results in an array.

Description

For each element of a list, apply function then combine results into an array.

laply 31

Usage

laply(
.data,
.fun = NULL,
...,
.progress = "none",
.inform = FALSE,
.drop = TRUE,
.parallel = FALSE,
.paropts = NULL

)

Arguments

.data list to be processed

.fun function to apply to each piece

... other arguments passed on to .fun

.progress name of the progress bar to use, see create_progress_bar

.inform produce informative error messages? This is turned off by default because it
substantially slows processing speed, but is very useful for debugging

.drop should extra dimensions of length 1 in the output be dropped, simplifying the
output. Defaults to TRUE

.parallel if TRUE, apply function in parallel, using parallel backend provided by foreach

.paropts a list of additional options passed into the foreach function when parallel com-
putation is enabled. This is important if (for example) your code relies on ex-
ternal data or packages: use the .export and .packages arguments to supply
them so that all cluster nodes have the correct environment set up for computing.

Details

laply is similar in spirit to sapply except that it will always return an array, and the output is
transposed with respect sapply - each element of the list corresponds to a row, not a column.

Value

if results are atomic with same type and dimensionality, a vector, matrix or array; otherwise, a
list-array (a list with dimensions)

Input

This function splits lists by elements.

Output

If there are no results, then this function will return a vector of length 0 (vector()).

32 ldply

References

Hadley Wickham (2011). The Split-Apply-Combine Strategy for Data Analysis. Journal of Statis-
tical Software, 40(1), 1-29. https://www.jstatsoft.org/v40/i01/.

See Also

Other list input: l_ply(), ldply(), llply()

Other array output: aaply(), daply(), maply()

Examples

laply(baseball, is.factor)
cf
ldply(baseball, is.factor)
colwise(is.factor)(baseball)

laply(seq_len(10), identity)
laply(seq_len(10), rep, times = 4)
laply(seq_len(10), matrix, nrow = 2, ncol = 2)

ldply Split list, apply function, and return results in a data frame.

Description

For each element of a list, apply function then combine results into a data frame.

Usage

ldply(
.data,
.fun = NULL,
...,
.progress = "none",
.inform = FALSE,
.parallel = FALSE,
.paropts = NULL,
.id = NA

)

Arguments

.data list to be processed

.fun function to apply to each piece

... other arguments passed on to .fun

.progress name of the progress bar to use, see create_progress_bar

https://www.jstatsoft.org/v40/i01/

liply 33

.inform produce informative error messages? This is turned off by default because it
substantially slows processing speed, but is very useful for debugging

.parallel if TRUE, apply function in parallel, using parallel backend provided by foreach

.paropts a list of additional options passed into the foreach function when parallel com-
putation is enabled. This is important if (for example) your code relies on ex-
ternal data or packages: use the .export and .packages arguments to supply
them so that all cluster nodes have the correct environment set up for computing.

.id name of the index column (used if .data is a named list). Pass NULL to avoid
creation of the index column. For compatibility, omit this argument or pass NA
to avoid converting the index column to a factor; in this case, ".id" is used as
colum name.

Value

A data frame, as described in the output section.

Input

This function splits lists by elements.

Output

The most unambiguous behaviour is achieved when .fun returns a data frame - in that case pieces
will be combined with rbind.fill. If .fun returns an atomic vector of fixed length, it will be
rbinded together and converted to a data frame. Any other values will result in an error.

If there are no results, then this function will return a data frame with zero rows and columns
(data.frame()).

References

Hadley Wickham (2011). The Split-Apply-Combine Strategy for Data Analysis. Journal of Statis-
tical Software, 40(1), 1-29. https://www.jstatsoft.org/v40/i01/.

See Also

Other list input: l_ply(), laply(), llply()

Other data frame output: adply(), ddply(), mdply()

liply Experimental iterator based version of llply.

Description

Because iterators do not have known length, liply starts by allocating an output list of length 50,
and then doubles that length whenever it runs out of space. This gives O(n ln n) performance rather
than the O(n ^ 2) performance from the naive strategy of growing the list each time.

https://www.jstatsoft.org/v40/i01/

34 llply

Usage

liply(.iterator, .fun = NULL, ...)

Arguments

.iterator iterator object

.fun function to apply to each piece

... other arguments passed on to .fun

Warning

Deprecated, do not use in new code.

See Also

plyr-deprecated

llply Split list, apply function, and return results in a list.

Description

For each element of a list, apply function, keeping results as a list.

Usage

llply(
.data,
.fun = NULL,
...,
.progress = "none",
.inform = FALSE,
.parallel = FALSE,
.paropts = NULL

)

Arguments

.data list to be processed

.fun function to apply to each piece

... other arguments passed on to .fun

.progress name of the progress bar to use, see create_progress_bar

.inform produce informative error messages? This is turned off by default because it
substantially slows processing speed, but is very useful for debugging

.parallel if TRUE, apply function in parallel, using parallel backend provided by foreach

llply 35

.paropts a list of additional options passed into the foreach function when parallel com-
putation is enabled. This is important if (for example) your code relies on ex-
ternal data or packages: use the .export and .packages arguments to supply
them so that all cluster nodes have the correct environment set up for computing.

Details

llply is equivalent to lapply except that it will preserve labels and can display a progress bar.

Value

list of results

Input

This function splits lists by elements.

Output

If there are no results, then this function will return a list of length 0 (list()).

References

Hadley Wickham (2011). The Split-Apply-Combine Strategy for Data Analysis. Journal of Statis-
tical Software, 40(1), 1-29. https://www.jstatsoft.org/v40/i01/.

See Also

Other list input: l_ply(), laply(), ldply()

Other list output: alply(), dlply(), mlply()

Examples

llply(llply(mtcars, round), table)
llply(baseball, summary)
Examples from ?lapply
x <- list(a = 1:10, beta = exp(-3:3), logic = c(TRUE,FALSE,FALSE,TRUE))

llply(x, mean)
llply(x, quantile, probs = 1:3/4)

https://www.jstatsoft.org/v40/i01/

36 l_ply

l_ply Split list, apply function, and discard results.

Description

For each element of a list, apply function and discard results

Usage

l_ply(
.data,
.fun = NULL,
...,
.progress = "none",
.inform = FALSE,
.print = FALSE,
.parallel = FALSE,
.paropts = NULL

)

Arguments

.data list to be processed

.fun function to apply to each piece

... other arguments passed on to .fun

.progress name of the progress bar to use, see create_progress_bar

.inform produce informative error messages? This is turned off by default because it
substantially slows processing speed, but is very useful for debugging

.print automatically print each result? (default: FALSE)

.parallel if TRUE, apply function in parallel, using parallel backend provided by foreach

.paropts a list of additional options passed into the foreach function when parallel com-
putation is enabled. This is important if (for example) your code relies on ex-
ternal data or packages: use the .export and .packages arguments to supply
them so that all cluster nodes have the correct environment set up for computing.

Value

Nothing

Input

This function splits lists by elements.

Output

All output is discarded. This is useful for functions that you are calling purely for their side effects
like displaying plots or saving output.

maply 37

References

Hadley Wickham (2011). The Split-Apply-Combine Strategy for Data Analysis. Journal of Statis-
tical Software, 40(1), 1-29. https://www.jstatsoft.org/v40/i01/.

See Also

Other list input: laply(), ldply(), llply()

Other no output: a_ply(), d_ply(), m_ply()

Examples

l_ply(llply(mtcars, round), table, .print = TRUE)
l_ply(baseball, function(x) print(summary(x)))

maply Call function with arguments in array or data frame, returning an ar-
ray.

Description

Call a multi-argument function with values taken from columns of an data frame or array, and
combine results into an array

Usage

maply(
.data,
.fun = NULL,
...,
.expand = TRUE,
.progress = "none",
.inform = FALSE,
.drop = TRUE,
.parallel = FALSE,
.paropts = NULL

)

Arguments

.data matrix or data frame to use as source of arguments

.fun function to apply to each piece

... other arguments passed on to .fun

.expand should output be 1d (expand = FALSE), with an element for each row; or nd
(expand = TRUE), with a dimension for each variable.

.progress name of the progress bar to use, see create_progress_bar

https://www.jstatsoft.org/v40/i01/

38 maply

.inform produce informative error messages? This is turned off by default because it
substantially slows processing speed, but is very useful for debugging

.drop should extra dimensions of length 1 in the output be dropped, simplifying the
output. Defaults to TRUE

.parallel if TRUE, apply function in parallel, using parallel backend provided by foreach

.paropts a list of additional options passed into the foreach function when parallel com-
putation is enabled. This is important if (for example) your code relies on ex-
ternal data or packages: use the .export and .packages arguments to supply
them so that all cluster nodes have the correct environment set up for computing.

Details

The m*ply functions are the plyr version of mapply, specialised according to the type of output
they produce. These functions are just a convenient wrapper around a*ply with margins = 1 and
.fun wrapped in splat.

Value

if results are atomic with same type and dimensionality, a vector, matrix or array; otherwise, a
list-array (a list with dimensions)

Input

Call a multi-argument function with values taken from columns of an data frame or array

Output

If there are no results, then this function will return a vector of length 0 (vector()).

References

Hadley Wickham (2011). The Split-Apply-Combine Strategy for Data Analysis. Journal of Statis-
tical Software, 40(1), 1-29. https://www.jstatsoft.org/v40/i01/.

See Also

Other multiple arguments input: m_ply(), mdply(), mlply()

Other array output: aaply(), daply(), laply()

Examples

maply(cbind(mean = 1:5, sd = 1:5), rnorm, n = 5)
maply(expand.grid(mean = 1:5, sd = 1:5), rnorm, n = 5)
maply(cbind(1:5, 1:5), rnorm, n = 5)

https://www.jstatsoft.org/v40/i01/

mapvalues 39

mapvalues Replace specified values with new values, in a vector or factor.

Description

Item in x that match items from will be replaced by items in to, matched by position. For example,
items in x that match the first element in from will be replaced by the first element of to.

Usage

mapvalues(x, from, to, warn_missing = TRUE)

Arguments

x the factor or vector to modify

from a vector of the items to replace

to a vector of replacement values

warn_missing print a message if any of the old values are not actually present in x

Details

If x is a factor, the matching levels of the factor will be replaced with the new values.

The related revalue function works only on character vectors and factors, but this function works
on vectors of any type and factors.

See Also

revalue to do the same thing but with a single named vector instead of two separate vectors.

Examples

x <- c("a", "b", "c")
mapvalues(x, c("a", "c"), c("A", "C"))

Works on factors
y <- factor(c("a", "b", "c", "a"))
mapvalues(y, c("a", "c"), c("A", "C"))

Works on numeric vectors
z <- c(1, 4, 5, 9)
mapvalues(z, from = c(1, 5, 9), to = c(10, 50, 90))

40 match_df

match_df Extract matching rows of a data frame.

Description

Match works in the same way as join, but instead of return the combined dataset, it only returns the
matching rows from the first dataset. This is particularly useful when you’ve summarised the data
in some way and want to subset the original data by a characteristic of the subset.

Usage

match_df(x, y, on = NULL)

Arguments

x data frame to subset.

y data frame defining matching rows.

on variables to match on - by default will use all variables common to both data
frames.

Details

match_df shares the same semantics as join, not match:

• the match criterion is ==, not identical).

• it doesn’t work for columns that are not atomic vectors

• if there are no matches, the row will be omitted’

Value

a data frame

See Also

join to combine the columns from both x and y and match for the base function selecting matching
items

Examples

count the occurrences of each id in the baseball dataframe, then get the subset with a freq >25
longterm <- subset(count(baseball, "id"), freq > 25)
longterm
id freq
30 ansonca01 27
48 baineha01 27
...
Select only rows from these longterm players from the baseball dataframe

mdply 41

(match would default to match on shared column names, but here was explicitly set "id")
bb_longterm <- match_df(baseball, longterm, on="id")
bb_longterm[1:5,]

mdply Call function with arguments in array or data frame, returning a data
frame.

Description

Call a multi-argument function with values taken from columns of an data frame or array, and
combine results into a data frame

Usage

mdply(
.data,
.fun = NULL,
...,
.expand = TRUE,
.progress = "none",
.inform = FALSE,
.parallel = FALSE,
.paropts = NULL

)

Arguments

.data matrix or data frame to use as source of arguments

.fun function to apply to each piece

... other arguments passed on to .fun

.expand should output be 1d (expand = FALSE), with an element for each row; or nd
(expand = TRUE), with a dimension for each variable.

.progress name of the progress bar to use, see create_progress_bar

.inform produce informative error messages? This is turned off by default because it
substantially slows processing speed, but is very useful for debugging

.parallel if TRUE, apply function in parallel, using parallel backend provided by foreach

.paropts a list of additional options passed into the foreach function when parallel com-
putation is enabled. This is important if (for example) your code relies on ex-
ternal data or packages: use the .export and .packages arguments to supply
them so that all cluster nodes have the correct environment set up for computing.

Details

The m*ply functions are the plyr version of mapply, specialised according to the type of output
they produce. These functions are just a convenient wrapper around a*ply with margins = 1 and
.fun wrapped in splat.

42 mlply

Value

A data frame, as described in the output section.

Input

Call a multi-argument function with values taken from columns of an data frame or array

Output

The most unambiguous behaviour is achieved when .fun returns a data frame - in that case pieces
will be combined with rbind.fill. If .fun returns an atomic vector of fixed length, it will be
rbinded together and converted to a data frame. Any other values will result in an error.

If there are no results, then this function will return a data frame with zero rows and columns
(data.frame()).

References

Hadley Wickham (2011). The Split-Apply-Combine Strategy for Data Analysis. Journal of Statis-
tical Software, 40(1), 1-29. https://www.jstatsoft.org/v40/i01/.

See Also

Other multiple arguments input: m_ply(), maply(), mlply()

Other data frame output: adply(), ddply(), ldply()

Examples

mdply(data.frame(mean = 1:5, sd = 1:5), rnorm, n = 2)
mdply(expand.grid(mean = 1:5, sd = 1:5), rnorm, n = 2)
mdply(cbind(mean = 1:5, sd = 1:5), rnorm, n = 5)
mdply(cbind(mean = 1:5, sd = 1:5), as.data.frame(rnorm), n = 5)

mlply Call function with arguments in array or data frame, returning a list.

Description

Call a multi-argument function with values taken from columns of an data frame or array, and
combine results into a list.

https://www.jstatsoft.org/v40/i01/

mlply 43

Usage

mlply(
.data,
.fun = NULL,
...,
.expand = TRUE,
.progress = "none",
.inform = FALSE,
.parallel = FALSE,
.paropts = NULL

)

Arguments

.data matrix or data frame to use as source of arguments

.fun function to apply to each piece

... other arguments passed on to .fun

.expand should output be 1d (expand = FALSE), with an element for each row; or nd
(expand = TRUE), with a dimension for each variable.

.progress name of the progress bar to use, see create_progress_bar

.inform produce informative error messages? This is turned off by default because it
substantially slows processing speed, but is very useful for debugging

.parallel if TRUE, apply function in parallel, using parallel backend provided by foreach

.paropts a list of additional options passed into the foreach function when parallel com-
putation is enabled. This is important if (for example) your code relies on ex-
ternal data or packages: use the .export and .packages arguments to supply
them so that all cluster nodes have the correct environment set up for computing.

Details

The m*ply functions are the plyr version of mapply, specialised according to the type of output
they produce. These functions are just a convenient wrapper around a*ply with margins = 1 and
.fun wrapped in splat.

Value

list of results

Input

Call a multi-argument function with values taken from columns of an data frame or array

Output

If there are no results, then this function will return a list of length 0 (list()).

44 mutate

References

Hadley Wickham (2011). The Split-Apply-Combine Strategy for Data Analysis. Journal of Statis-
tical Software, 40(1), 1-29. https://www.jstatsoft.org/v40/i01/.

See Also

Other multiple arguments input: m_ply(), maply(), mdply()

Other list output: alply(), dlply(), llply()

Examples

mlply(cbind(1:4, 4:1), rep)
mlply(cbind(1:4, times = 4:1), rep)

mlply(cbind(1:4, 4:1), seq)
mlply(cbind(1:4, length = 4:1), seq)
mlply(cbind(1:4, by = 4:1), seq, to = 20)

mutate Mutate a data frame by adding new or replacing existing columns.

Description

This function is very similar to transform but it executes the transformations iteratively so that later
transformations can use the columns created by earlier transformations. Like transform, unnamed
components are silently dropped.

Usage

mutate(.data, ...)

Arguments

.data the data frame to transform

... named parameters giving definitions of new columns.

Details

Mutate seems to be considerably faster than transform for large data frames.

See Also

subset, summarise, arrange. For another somewhat different approach to solving the same prob-
lem, see within.

https://www.jstatsoft.org/v40/i01/

m_ply 45

Examples

Examples from transform
mutate(airquality, Ozone = -Ozone)
mutate(airquality, new = -Ozone, Temp = (Temp - 32) / 1.8)

Things transform can't do
mutate(airquality, Temp = (Temp - 32) / 1.8, OzT = Ozone / Temp)

mutate is rather faster than transform
system.time(transform(baseball, avg_ab = ab / g))
system.time(mutate(baseball, avg_ab = ab / g))

m_ply Call function with arguments in array or data frame, discarding re-
sults.

Description

Call a multi-argument function with values taken from columns of an data frame or array, and
discard results into a list.

Usage

m_ply(
.data,
.fun = NULL,
...,
.expand = TRUE,
.progress = "none",
.inform = FALSE,
.print = FALSE,
.parallel = FALSE,
.paropts = NULL

)

Arguments

.data matrix or data frame to use as source of arguments

.fun function to apply to each piece

... other arguments passed on to .fun

.expand should output be 1d (expand = FALSE), with an element for each row; or nd
(expand = TRUE), with a dimension for each variable.

.progress name of the progress bar to use, see create_progress_bar

.inform produce informative error messages? This is turned off by default because it
substantially slows processing speed, but is very useful for debugging

.print automatically print each result? (default: FALSE)

46 name_rows

.parallel if TRUE, apply function in parallel, using parallel backend provided by foreach

.paropts a list of additional options passed into the foreach function when parallel com-
putation is enabled. This is important if (for example) your code relies on ex-
ternal data or packages: use the .export and .packages arguments to supply
them so that all cluster nodes have the correct environment set up for computing.

Details

The m*ply functions are the plyr version of mapply, specialised according to the type of output
they produce. These functions are just a convenient wrapper around a*ply with margins = 1 and
.fun wrapped in splat.

Value

Nothing

Input

Call a multi-argument function with values taken from columns of an data frame or array

Output

All output is discarded. This is useful for functions that you are calling purely for their side effects
like displaying plots or saving output.

References

Hadley Wickham (2011). The Split-Apply-Combine Strategy for Data Analysis. Journal of Statis-
tical Software, 40(1), 1-29. https://www.jstatsoft.org/v40/i01/.

See Also

Other multiple arguments input: maply(), mdply(), mlply()

Other no output: a_ply(), d_ply(), l_ply()

name_rows Toggle row names between explicit and implicit.

Description

Plyr functions ignore row names, so this function provides a way to preserve them by convert-
ing them to an explicit column in the data frame. After the plyr operation, you can then apply
name_rows again to convert back from the explicit column to the implicit rownames.

Usage

name_rows(df)

https://www.jstatsoft.org/v40/i01/

ozone 47

Arguments

df a data.frame, with either rownames, or a column called .rownames.

Examples

name_rows(mtcars)
name_rows(name_rows(mtcars))

df <- data.frame(a = sample(10))
arrange(df, a)
arrange(name_rows(df), a)
name_rows(arrange(name_rows(df), a))

ozone Monthly ozone measurements over Central America.

Description

This data set is a subset of the data from the 2006 ASA Data expo challenge, https://community.
amstat.org/jointscsg-section/dataexpo/dataexpo2006. The data are monthly ozone aver-
ages on a very coarse 24 by 24 grid covering Central America, from Jan 1995 to Dec 2000. The
data is stored in a 3d area with the first two dimensions representing latitude and longitude, and the
third representing time.

Usage

ozone

Format

A 24 x 24 x 72 numeric array

References

https://community.amstat.org/jointscsg-section/dataexpo/dataexpo2006

Examples

value <- ozone[1, 1,]
time <- 1:72
month.abbr <- c("Jan", "Feb", "Mar", "Apr", "May",
"Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec")

month <- factor(rep(month.abbr, length = 72), levels = month.abbr)
year <- rep(1:6, each = 12)
deseasf <- function(value) lm(value ~ month - 1)

models <- alply(ozone, 1:2, deseasf)
coefs <- laply(models, coef)
dimnames(coefs)[[3]] <- month.abbr

https://community.amstat.org/jointscsg-section/dataexpo/dataexpo2006
https://community.amstat.org/jointscsg-section/dataexpo/dataexpo2006
https://community.amstat.org/jointscsg-section/dataexpo/dataexpo2006

48 plyr

names(dimnames(coefs))[3] <- "month"

deseas <- laply(models, resid)
dimnames(deseas)[[3]] <- 1:72
names(dimnames(deseas))[3] <- "time"

dim(coefs)
dim(deseas)

plyr plyr: the split-apply-combine paradigm for R.

Description

The plyr package is a set of clean and consistent tools that implement the split-apply-combine
pattern in R. This is an extremely common pattern in data analysis: you solve a complex problem
by breaking it down into small pieces, doing something to each piece and then combining the results
back together again.

Details

The plyr functions are named according to what sort of data structure they split up and what sort of
data structure they return:

a array

l list

d data.frame

m multiple inputs

r repeat multiple times

_ nothing

So ddply takes a data frame as input and returns a data frame as output, and l_ply takes a list as
input and returns nothing as output.

Row names

By design, no plyr function will preserve row names - in general it is too hard to know what should
be done with them for many of the operations supported by plyr. If you want to preserve row
names, use name_rows to convert them into an explicit column in your data frame, perform the plyr
operations, and then use name_rows again to convert the column back into row names.

plyr-deprecated 49

Helpers

Plyr also provides a set of helper functions for common data analysis problems:

• arrange: re-order the rows of a data frame by specifying the columns to order by

• mutate: add new columns or modifying existing columns, like transform, but new columns
can refer to other columns that you just created.

• summarise: like mutate but create a new data frame, not preserving any columns in the old
data frame.

• join: an adapation of merge which is more similar to SQL, and has a much faster implemen-
tation if you only want to find the first match.

• match_df: a version of join that instead of returning the two tables combined together, only
returns the rows in the first table that match the second.

• colwise: make any function work colwise on a dataframe

• rename: easily rename columns in a data frame

• round_any: round a number to any degree of precision

• count: quickly count unique combinations and return return as a data frame.

plyr-deprecated Deprecated Functions in Package plyr

Description

These functions are provided for compatibility with older versions of plyr only, and may be defunct
as soon as the next release.

Details

• liply

• isplit2

progress_text Text progress bar.

Description

A textual progress bar

Usage

progress_text(style = 3, ...)

50 progress_time

Arguments

style style of text bar, see Details section of txtProgressBar

... other arugments passed on to txtProgressBar

Details

This progress bar displays a textual progress bar that works on all platforms. It is a thin wrapper
around the built-in setTxtProgressBar and can be customised in the same way.

See Also

Other progress bars: progress_none(), progress_time(), progress_tk(), progress_win()

Examples

l_ply(1:100, identity, .progress = "text")
l_ply(1:100, identity, .progress = progress_text(char = "-"))

progress_time Text progress bar with time.

Description

A textual progress bar that estimates time remaining. It displays the estimated time remaining and,
when finished, total duration.

Usage

progress_time()

See Also

Other progress bars: progress_none(), progress_text(), progress_tk(), progress_win()

Examples

l_ply(1:100, function(x) Sys.sleep(.01), .progress = "time")

progress_tk 51

progress_tk Graphical progress bar, powered by Tk.

Description

A graphical progress bar displayed in a Tk window

Usage

progress_tk(title = "plyr progress", label = "Working...", ...)

Arguments

title window title

label progress bar label (inside window)

... other arguments passed on to tkProgressBar

Details

This graphical progress will appear in a separate window.

See Also

tkProgressBar for the function that powers this progress bar

Other progress bars: progress_none(), progress_text(), progress_time(), progress_win()

Examples

Not run:
l_ply(1:100, identity, .progress = "tk")
l_ply(1:100, identity, .progress = progress_tk(width=400))
l_ply(1:100, identity, .progress = progress_tk(label=""))

End(Not run)

progress_win Graphical progress bar, powered by Windows.

Description

A graphical progress bar displayed in a separate window

Usage

progress_win(title = "plyr progress", ...)

52 raply

Arguments

title window title

... other arguments passed on to winProgressBar

Details

This graphical progress only works on Windows.

See Also

winProgressBar for the function that powers this progress bar

Other progress bars: progress_none(), progress_text(), progress_time(), progress_tk()

Examples

Not run:
l_ply(1:100, identity, .progress = "win")
l_ply(1:100, identity, .progress = progress_win(title="Working..."))

End(Not run)

raply Replicate expression and return results in a array.

Description

Evalulate expression n times then combine results into an array

Usage

raply(.n, .expr, .progress = "none", .drop = TRUE)

Arguments

.n number of times to evaluate the expression

.expr expression to evaluate

.progress name of the progress bar to use, see create_progress_bar

.drop should extra dimensions of length 1 be dropped, simplifying the output. Defaults
to TRUE

Details

This function runs an expression multiple times, and combines the result into a data frame. If
there are no results, then this function returns a vector of length 0 (vector(0)). This function is
equivalent to replicate, but will always return results as a vector, matrix or array.

rbind.fill 53

Value

if results are atomic with same type and dimensionality, a vector, matrix or array; otherwise, a
list-array (a list with dimensions)

References

Hadley Wickham (2011). The Split-Apply-Combine Strategy for Data Analysis. Journal of Statis-
tical Software, 40(1), 1-29. https://www.jstatsoft.org/v40/i01/.

Examples

raply(100, mean(runif(100)))
raply(100, each(mean, var)(runif(100)))

raply(10, runif(4))
raply(10, matrix(runif(4), nrow=2))

See the central limit theorem in action
hist(raply(1000, mean(rexp(10))))
hist(raply(1000, mean(rexp(100))))
hist(raply(1000, mean(rexp(1000))))

rbind.fill Combine data.frames by row, filling in missing columns.

Description

rbinds a list of data frames filling missing columns with NA.

Usage

rbind.fill(...)

Arguments

... input data frames to row bind together. The first argument can be a list of data
frames, in which case all other arguments are ignored. Any NULL inputs are
silently dropped. If all inputs are NULL, the output is NULL.

Details

This is an enhancement to rbind that adds in columns that are not present in all inputs, accepts a
list of data frames, and operates substantially faster.

Column names and types in the output will appear in the order in which they were encountered.

Unordered factor columns will have their levels unified and character data bound with factors will
be converted to character. POSIXct data will be converted to be in the same time zone. Array and
matrix columns must have identical dimensions after the row count. Aside from these there are no
general checks that each column is of consistent data type.

https://www.jstatsoft.org/v40/i01/

54 rbind.fill.matrix

Value

a single data frame

See Also

Other binding functions: rbind.fill.matrix()

Examples

rbind.fill(mtcars[c("mpg", "wt")], mtcars[c("wt", "cyl")])

rbind.fill.matrix Bind matrices by row, and fill missing columns with NA.

Description

The matrices are bound together using their column names or the column indices (in that order of
precedence.) Numeric columns may be converted to character beforehand, e.g. using format. If a
matrix doesn’t have colnames, the column number is used. Note that this means that a column with
name "1" is merged with the first column of a matrix without name and so on. The returned matrix
will always have column names.

Usage

rbind.fill.matrix(...)

Arguments

... the matrices to rbind. The first argument can be a list of matrices, in which case
all other arguments are ignored.

Details

Vectors are converted to 1-column matrices.

Matrices of factors are not supported. (They are anyways quite inconvenient.) You may convert
them first to either numeric or character matrices. If a matrices of different types are merged, then
normal covnersion precendence will apply.

Row names are ignored.

Value

a matrix with column names

Author(s)

C. Beleites

rdply 55

See Also

rbind, cbind, rbind.fill

Other binding functions: rbind.fill()

Examples

A <- matrix (1:4, 2)
B <- matrix (6:11, 2)
A
B
rbind.fill.matrix (A, B)

colnames (A) <- c (3, 1)
A
rbind.fill.matrix (A, B)

rbind.fill.matrix (A, 99)

rdply Replicate expression and return results in a data frame.

Description

Evaluate expression n times then combine results into a data frame

Usage

rdply(.n, .expr, .progress = "none", .id = NA)

Arguments

.n number of times to evaluate the expression

.expr expression to evaluate

.progress name of the progress bar to use, see create_progress_bar

.id name of the index column. Pass NULL to avoid creation of the index column. For
compatibility, omit this argument or pass NA to use ".n" as column name.

Details

This function runs an expression multiple times, and combines the result into a data frame. If there
are no results, then this function returns a data frame with zero rows and columns (data.frame()).
This function is equivalent to replicate, but will always return results as a data frame.

Value

a data frame

56 rename

References

Hadley Wickham (2011). The Split-Apply-Combine Strategy for Data Analysis. Journal of Statis-
tical Software, 40(1), 1-29. https://www.jstatsoft.org/v40/i01/.

Examples

rdply(20, mean(runif(100)))
rdply(20, each(mean, var)(runif(100)))
rdply(20, data.frame(x = runif(2)))

rename Modify names by name, not position.

Description

Modify names by name, not position.

Usage

rename(x, replace, warn_missing = TRUE, warn_duplicated = TRUE)

Arguments

x named object to modify

replace named character vector, with new names as values, and old names as names.

warn_missing print a message if any of the old names are not actually present in x.

warn_duplicated

print a message if any name appears more than once in x after the operation.
Note: x is not altered: To save the result, you need to copy the returned data into
a variable.

Examples

x <- c("a" = 1, "b" = 2, d = 3, 4)
Rename column d to "c", updating the variable "x" with the result
x <- rename(x, replace = c("d" = "c"))
x
Rename column "disp" to "displacement"
rename(mtcars, c("disp" = "displacement"))

https://www.jstatsoft.org/v40/i01/

revalue 57

revalue Replace specified values with new values, in a factor or character vec-
tor.

Description

If x is a factor, the named levels of the factor will be replaced with the new values.

Usage

revalue(x, replace = NULL, warn_missing = TRUE)

Arguments

x factor or character vector to modify

replace named character vector, with new values as values, and old values as names.

warn_missing print a message if any of the old values are not actually present in x

Details

This function works only on character vectors and factors, but the related mapvalues function
works on vectors of any type and factors, and instead of a named vector specifying the original and
replacement values, it takes two separate vectors

See Also

mapvalues to replace values with vectors of any type

Examples

x <- c("a", "b", "c")
revalue(x, c(a = "A", c = "C"))
revalue(x, c("a" = "A", "c" = "C"))

y <- factor(c("a", "b", "c", "a"))
revalue(y, c(a = "A", c = "C"))

58 rlply

rlply Replicate expression and return results in a list.

Description

Evalulate expression n times then combine results into a list

Usage

rlply(.n, .expr, .progress = "none")

Arguments

.n number of times to evaluate the expression

.expr expression to evaluate

.progress name of the progress bar to use, see create_progress_bar

Details

This function runs an expression multiple times, and combines the result into a list. If there are
no results, then this function will return a list of length 0 (list()). This function is equivalent to
replicate, but will always return results as a list.

Value

list of results

References

Hadley Wickham (2011). The Split-Apply-Combine Strategy for Data Analysis. Journal of Statis-
tical Software, 40(1), 1-29. https://www.jstatsoft.org/v40/i01/.

Examples

mods <- rlply(100, lm(y ~ x, data=data.frame(x=rnorm(100), y=rnorm(100))))
hist(laply(mods, function(x) summary(x)$r.squared))

https://www.jstatsoft.org/v40/i01/

round_any 59

round_any Round to multiple of any number.

Description

Round to multiple of any number.

Usage

round_any(x, accuracy, f = round)

Arguments

x numeric or date-time (POSIXct) vector to round

accuracy number to round to; for POSIXct objects, a number of seconds

f rounding function: floor, ceiling or round

Examples

round_any(135, 10)
round_any(135, 100)
round_any(135, 25)
round_any(135, 10, floor)
round_any(135, 100, floor)
round_any(135, 25, floor)
round_any(135, 10, ceiling)
round_any(135, 100, ceiling)
round_any(135, 25, ceiling)

round_any(Sys.time() + 1:10, 5)
round_any(Sys.time() + 1:10, 5, floor)
round_any(Sys.time(), 3600)

r_ply Replicate expression and discard results.

Description

Evalulate expression n times then discard results

Usage

r_ply(.n, .expr, .progress = "none", .print = FALSE)

60 splat

Arguments

.n number of times to evaluate the expression

.expr expression to evaluate

.progress name of the progress bar to use, see create_progress_bar

.print automatically print each result? (default: FALSE)

Details

This function runs an expression multiple times, discarding the results. This function is equivalent
to replicate, but never returns anything

References

Hadley Wickham (2011). The Split-Apply-Combine Strategy for Data Analysis. Journal of Statis-
tical Software, 40(1), 1-29. https://www.jstatsoft.org/v40/i01/.

Examples

r_ply(10, plot(runif(50)))
r_ply(25, hist(runif(1000)))

splat ‘Splat’ arguments to a function.

Description

Wraps a function in do.call, so instead of taking multiple arguments, it takes a single named list
which will be interpreted as its arguments.

Usage

splat(flat)

Arguments

flat function to splat

Details

This is useful when you want to pass a function a row of data frame or array, and don’t want to
manually pull it apart in your function.

Value

a function

https://www.jstatsoft.org/v40/i01/

strip_splits 61

Examples

hp_per_cyl <- function(hp, cyl, ...) hp / cyl
splat(hp_per_cyl)(mtcars[1,])
splat(hp_per_cyl)(mtcars)

f <- function(mpg, wt, ...) data.frame(mw = mpg / wt)
ddply(mtcars, .(cyl), splat(f))

strip_splits Remove splitting variables from a data frame.

Description

This is useful when you want to perform some operation to every column in the data frame, except
the variables that you have used to split it. These variables will be automatically added back on to
the result when combining all results together.

Usage

strip_splits(df)

Arguments

df data frame produced by d*ply.

Examples

dlply(mtcars, c("vs", "am"))
dlply(mtcars, c("vs", "am"), strip_splits)

summarise Summarise a data frame.

Description

Summarise works in an analogous way to mutate, except instead of adding columns to an existing
data frame, it creates a new data frame. This is particularly useful in conjunction with ddply as it
makes it easy to perform group-wise summaries.

Usage

summarise(.data, ...)

Arguments

.data the data frame to be summarised

... further arguments of the form var = value

62 take

Note

Be careful when using existing variable names; the corresponding columns will be immediately
updated with the new data and this can affect subsequent operations referring to those variables.

Examples

Let's extract the number of teams and total period of time
covered by the baseball dataframe
summarise(baseball,
duration = max(year) - min(year),
nteams = length(unique(team)))

Combine with ddply to do that for each separate id
ddply(baseball, "id", summarise,
duration = max(year) - min(year),
nteams = length(unique(team)))

take Take a subset along an arbitrary dimension

Description

Take a subset along an arbitrary dimension

Usage

take(x, along, indices, drop = FALSE)

Arguments

x matrix or array to subset

along dimension to subset along

indices the indices to select

drop should the dimensions of the array be simplified? Defaults to FALSE which is
the opposite of the useful R default.

Examples

x <- array(seq_len(3 * 4 * 5), c(3, 4, 5))
take(x, 3, 1)
take(x, 2, 1)
take(x, 1, 1)
take(x, 3, 1, drop = TRUE)
take(x, 2, 1, drop = TRUE)
take(x, 1, 1, drop = TRUE)

vaggregate 63

vaggregate Vector aggregate.

Description

This function is somewhat similar to tapply, but is designed for use in conjunction with id. It is
simpler in that it only accepts a single grouping vector (use id if you have more) and uses vapply
internally, using the .default value as the template.

Usage

vaggregate(.value, .group, .fun, ..., .default = NULL, .n = nlevels(.group))

Arguments

.value vector of values to aggregate

.group grouping vector

.fun aggregation function

... other arguments passed on to .fun

.default default value used for missing groups. This argument is also used as the template
for function output.

.n total number of groups

Details

vaggregate should be faster than tapply in most situations because it avoids making a copy of the
data.

Examples

Some examples of use borrowed from ?tapply
n <- 17; fac <- factor(rep(1:3, length.out = n), levels = 1:5)
table(fac)
vaggregate(1:n, fac, sum)
vaggregate(1:n, fac, sum, .default = NA_integer_)
vaggregate(1:n, fac, range)
vaggregate(1:n, fac, range, .default = c(NA, NA) + 0)
vaggregate(1:n, fac, quantile)
Unlike tapply, vaggregate does not support multi-d output:
tapply(warpbreaks$breaks, warpbreaks[,-1], sum)
vaggregate(warpbreaks$breaks, id(warpbreaks[,-1]), sum)

But it is about 10x faster
x <- rnorm(1e6)
y1 <- sample.int(10, 1e6, replace = TRUE)
system.time(tapply(x, y1, mean))
system.time(vaggregate(x, y1, mean))

Index

∗ array input
a_ply, 12
aaply, 4
adply, 6
alply, 8

∗ array output
aaply, 4
daply, 18
laply, 30
maply, 37

∗ binding functions
rbind.fill, 53
rbind.fill.matrix, 54

∗ data frame input
d_ply, 24
daply, 18
ddply, 20
dlply, 23

∗ data frame output
adply, 6
ddply, 20
ldply, 32
mdply, 41

∗ datasets
baseball, 13
ozone, 47

∗ debugging
failwith, 26

∗ list input
l_ply, 36
laply, 30
ldply, 32
llply, 34

∗ list output
alply, 8
dlply, 23
llply, 34
mlply, 42

∗ manip

a_ply, 12
aaply, 4
adply, 6
alply, 8
arrange, 9
as.data.frame.function, 10
count, 16
d_ply, 24
daply, 18
ddply, 20
defaults, 22
desc, 22
dlply, 23
each, 26
idata.frame, 28
join, 29
l_ply, 36
laply, 30
ldply, 32
liply, 33
llply, 34
m_ply, 45
maply, 37
mdply, 41
mlply, 42
name_rows, 46
r_ply, 59
raply, 52
rbind.fill, 53
rbind.fill.matrix, 54
rdply, 55
rlply, 58
round_any, 59
summarise, 61
take, 62

∗ multiple arguments input
m_ply, 45
maply, 37
mdply, 41

64

INDEX 65

mlply, 42
∗ no output

a_ply, 12
d_ply, 24
l_ply, 36
m_ply, 45

∗ progress bars
progress_text, 49
progress_time, 50
progress_tk, 51
progress_win, 51

∗ utilities
create_progress_bar, 17

., 3, 11
~, 3

a_ply, 5, 7, 9, 12, 24, 25, 37, 46
aaply, 4, 7, 9, 13, 18, 19, 32, 38
adply, 5, 6, 9, 13, 20, 21, 33, 42
aggregate, 18
alply, 5, 7, 8, 13, 23, 24, 35, 44
apply, 5, 8
arrange, 9, 44, 49
as.data.frame, 16
as.data.frame.function, 10
as.quoted, 11, 20, 23, 25

baseball, 13
by, 23

catcolwise (colwise), 15
cbind, 55
ceiling, 59
colwise, 15, 49
count, 16, 49
create_progress_bar, 5, 7, 8, 12, 17, 18, 20,

23, 25, 31, 32, 34, 36, 37, 41, 43, 45,
52, 55, 58, 60

d_ply, 13, 19, 21, 24, 24, 37, 46
daply, 5, 18, 21, 24, 25, 32, 38
ddply, 7, 19, 20, 24, 25, 33, 42, 48, 61
defaults, 22
desc, 22
dlply, 9, 19, 21, 23, 25, 35, 44

each, 26

failwith, 26
floor, 59

foreach, 5, 7, 8, 12, 19, 20, 23, 25, 31, 33, 35,
36, 38, 41, 43, 46

here, 27

id, 63
idata.frame, 28
identical, 40
is.quoted (.), 3
isplit2, 49

join, 29, 40, 49
join_all, 30

l_ply, 13, 25, 32, 33, 35, 36, 46, 48
laply, 5, 19, 30, 33, 35, 37, 38
lapply, 35
ldply, 7, 21, 32, 32, 35, 37, 42
liply, 33, 49
llply, 9, 24, 32, 33, 34, 37, 44

m_ply, 13, 25, 37, 38, 42, 44, 45
maply, 5, 19, 32, 37, 42, 44, 46
mapvalues, 39, 57
match, 40
match_df, 40, 49
mdply, 7, 21, 33, 38, 41, 44, 46
merge, 49
mlply, 9, 24, 35, 38, 42, 42, 46
mutate, 44, 49, 61

name_rows, 46, 48
numcolwise (colwise), 15

order, 9
ozone, 47

plyr, 48
plyr-deprecated, 49
plyr-package (plyr), 48
progress_none, 17, 50–52
progress_text, 17, 49, 50–52
progress_time, 50, 50, 51, 52
progress_tk, 17, 50, 51, 52
progress_win, 17, 50, 51, 51

quoted (.), 3

r_ply, 59
raply, 52

66 INDEX

rbind, 53, 55
rbind.fill, 7, 21, 33, 42, 53, 55
rbind.fill.matrix, 54, 54
rdply, 55
rename, 49, 56
replicate, 52, 55, 58, 60
revalue, 39, 57
rlply, 58
round, 59
round_any, 49, 59

sapply, 31
setTxtProgressBar, 50
splat, 38, 41, 43, 46, 60
strip_splits, 61
subset, 9, 44
substitute, 3
summarise, 26, 44, 49, 61
summarize (summarise), 61

table, 16
take, 62
tapply, 21
tkProgressBar, 51
transform, 9, 44, 49
try_default, 27
txtProgressBar, 50

vaggregate, 63
vapply, 63

within, 44

	.
	aaply
	adply
	alply
	arrange
	as.data.frame.function
	as.quoted
	a_ply
	baseball
	colwise
	count
	create_progress_bar
	daply
	ddply
	defaults
	desc
	dlply
	d_ply
	each
	failwith
	here
	idata.frame
	join
	join_all
	laply
	ldply
	liply
	llply
	l_ply
	maply
	mapvalues
	match_df
	mdply
	mlply
	mutate
	m_ply
	name_rows
	ozone
	plyr
	plyr-deprecated
	progress_text
	progress_time
	progress_tk
	progress_win
	raply
	rbind.fill
	rbind.fill.matrix
	rdply
	rename
	revalue
	rlply
	round_any
	r_ply
	splat
	strip_splits
	summarise
	take
	vaggregate
	Index

