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1 Introduction

The package pwrFDR allows computation of sample size required for average power or for TPX Power

under various sequential multiple testing procedures such as the Benjamini-Hochberg False Discovery Rate

(BH-FDR) procedure. Before we begin, we first load some libraries and then provide a brief review of

multiple testing and sequential procedures.

> library(pwrFDR)

> library(ggplot2)

> library(TableMonster)

In addition to the pwrFDR library, we load ggplot2, an advanced plotting package many readers will be

familiar with, and TableMonster, and easy to use frontend to xtable for generating publication quality

tables in LATEX.

In short, statistical hypothesis testing whereby a single p-value is compared to a threshhold value, α, to

determine statistical significance assures that the resulting conclusion has false positive rate less than α.

This guarantee applies in the context of a single statistical hypothesis test only. Adjustment for multiple

tests of hypotheses provides an algorithm whereby the comparison thresholds are adjusted so that some

aggregate false positive rate is guaranteed. We will review several multiple testing procedures and discuss

the aggregate false positive rate or target of protected inference which each one controls. Consider a multiple

testing experiment withm simultaneous tests of hypotheses. The most widely used multiple testing procedure

is Bonferroni’s [3] procedure which guarantees control of the family-wise error rate (FWER). This is the

probability that of one or more of the hypothesis tests results in a false positive. It is applied by referring all
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p-values to the common threshold α/m. This quickly becomes overly conservative as the number of tests,

m, becomes larger. The Benjamini-Hochberg [2] procedure guarantees control of the false discovery rate

(FDR). This is the expected proportion of hypothesis tests declared significant which are false positives. It is

applied by sorting p-values in increasing order, comparing the ith largest to αi/m and then declaring all tests

statistically significant which correspond to p-values not larger than the largest exceeded by its threshold.

Thus the Bonferroni procedure and the BH-FDR procedure control different targets of protected inference.

The domain of application and in particular the cost of a false positive guides the choice of the target for

protected inference, with higher costs (drug development) requiring a more conservative target of control

such as the FWE rate, and lower costs (thresholding in –omics studies) allowing for a less conservative target

of control, such as the FDR.

We now discuss sequential multiple testing procedures in general. The application of a sequential procedure

in a multiple testing experiment usually begins with ordering the m p-values from smallest to largest and

then comparing each sorted p-value with a corresponding member of a sequnce of criterion values. This

sequence of criterion values, also a non-decreasing sequence and specific to the particular procedure, is the

product of α and a sequence of multiple testing penalties, ψm(j). All procedures begin with marking rows

for which the sorted p-value is less than its corresponding criterion value.

Sequential procedures are defined by two distinguishing features which in turn, provide a recipe for their

application. First is the chosen sequence of multiple testing penalties, and second, whether the procedure

is step-up or step-down. This latter distinction provides a recipe for calling tests significant based upon

marked/unmarked rows of p-value and criterion pairs. A step-up procedure calls significant all tests up until

the last marked row. A step-down procedure calls significant tests belonging to a block of contiguous marked

rows beginning with the first. If the first row is not marked, a step-down procedure calls nothing significant.

Table 1 below shows p-values for 10 simultaneous tests of hypotheses, and a sequence of threshold criterion

values, αi/m, with α = 0.05. This sequnce of threshold criterion values should be familiar as it is the one used

in the BH-FDR procedure. Also shown in the table is an indicator of whether or not each p-value is less than

or equal to its corresponding threshold value. A step up procedure based upon the given criterion sequence

will call statistical tests corresponding to the smallest 4 p-values significant. Notice that this includes the

third smallest p-value which was not smaller than its threshold value. A step-down procedure based upon

the given criterion sequence would call only the first two tests significant.

We now discuss the number of significant calls and of these which are true positives and which are false

positives. Let R denote the number of tests called significant by the procedure. As mentioned above in our
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xi X P crit Marked

1 3.931 0.000 0.005 1
1 2.744 0.007 0.010 1
1 2.414 0.018 0.015 0
1 2.385 0.019 0.020 1
1 2.232 0.028 0.025 0
0 -1.904 0.060 0.030 0
0 1.124 0.264 0.035 0
0 -1.007 0.317 0.040 0
0 0.933 0.353 0.045 0
0 0.901 0.370 0.050 0

Table 1: Sorted p-values, their test statistics, population indicators, and BH-FDR threshold in 10 simulta-
neous tests

example, table 1 above, R = 4 under the step-up procedure and R = 2 under the step-down procedure. This

partitions into the unobserved false positive count, V , e.g. the number of tests called significant which are

distributed as the null, and unobserved true positive count, T, e.g. the number of tests called significant

which are distributed as the alternative, V + T = R. We see that V = 0 under both the step-up and

step-down procedures, while T = 3 under the step-up procedure and T = 2 under the step-down procedure.

The ratio, FDP = V/R is called the false discovery proportion and the ratio, TPP = T/M is called true

positive proportion. Here M is the number of statistics distributed as the alternative (more on this below).

We see that FDP = 0 under both the step-up and step-down procedures, while TPP = 3/5 under the step-up

procedure, and TPP = 2/5 under the step-down procedure. We note in passing that the BH-FDR procedure

is the step-up procedure based upon the given criterion sequence.

Within the fairly broad scope of sequential procedures considered here the goal of protected multiple inference

will be to control some summary of the false discovery proportion distribution: P{FDP > x} = P{V/R > x}.

Protected inference must be done within the context of some definition of multiple test or aggregate power

so that multiple testing experiments can be sized and so that we have some idea of the probability of success

as defined appropriately for the application. We will consider definitions of aggregate power based upon

some summary of the true positive proportion distribution: P{TPP > x} = P{T/M > x}.

As previously noted, the BH-FDR procedure is a step-up procedure with multiple testing penalty sequence

ψm(j) = j/m. It guarantees control of the FDR, which is the expected FDP:

FDR = E[FDP] = E[V/R]

The type of aggregate power usually used in conjunction with the BH-FDR procedure is the average power.
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It is the expected TPP:

AvgPwr = E[TPP] = E[T/M ]

Let’s begin by computing the sample size required for 80% average power under the BH-FDR procedure at

FDR = 15% when the effect size is 0.79. There is one more parameter required for calculation of sample

size for multiple test power besides the usual required power, type I error and effect size which are sufficient

to calculate the sample size in the single testing case. Whereas in the single test case, we condition upon

the statistic being drawn from the null or the alternative, in the multiple testing case we must somehow

make a specification regarding the number of tests distributed as the alternative. Our methodology assumes a

common mixture distribution for the p-value CDF. This means that each test statistic is distributed according

to the alternative hypothesis with probability, r1, and distributed according to the null hypothesis with the

complementary probability. This is the additional parameter which must be specified. In applications, a

reasonable working value is drawn from substance experts. Let us assume this is 5%, the value typically

used in larger –omics studies like mRNA profiling and RNAseq ([1, 5]). The last argument, which was not

specified, FDP.control.method, takes its default value, "BHFDR", as we here desire.

You can use this vignette file to follow along or if you prefer, open the companion script file (all supporting

text removed) at /usr/local/lib/R/site-library/pwrFDR/doc/pwrFDR-vignette.R.

We are now ready to call pwrFDR to calculate sample size required for 80% average power under the BH-FDR

procedure at α = 0.15 and above mentioned effect size and prior probability:

> ss.fdr.r05 <- pwrFDR(effect.size=0.79, alpha=0.15, r.1=0.05, average.power=0.80)

Notice that we did not specify the number of tests. The calculation is done using the infinite tests consistent

limit approximation. This consistent limit exists for procedures controlling the FDR and for procedures

controlling the FDX, but not for procedures controlling the family-wise error rate (FWER).

As is the case with the base R library supplied power functions like power.t.test, the routine will solve

for any missing parameter, except in this case, α must be specified. This means that the routine will

calculate the average power or TPX power (see below) under the specified procedure at the given alpha at

the specified effect size and prior probility. It will also find the required sample size, effect size, or prior

probability required for specified average power or TPX power for given values of the other parameters. For

example the following 4 lines of code return essentially the same result, but calculate, in order listed, the
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average power, the sample size required for average power, the effect size required for average power, and

the prior probability required for average power, respectively, for given values of the other parameters.

> find.avp <- pwrFDR(effect.size=0.79, alpha=0.15, n.sample=ss.fdr.r05$n.sample, r.1=0.05)

> find.ss <- pwrFDR(effect.size=0.79, alpha=0.15, r.1=0.05, average.power=0.80)

> find.es <- pwrFDR(alpha=0.15, n.sample=ss.fdr.r05$n.sample, r.1=0.05, average.power=0.80)

> find.r1 <- pwrFDR(effect.size=0.79, alpha=0.15, n.sample=ss.fdr.r05$n.sample, average.power=0.80)

The point is that of the four parameters, desired power (average or TPX), effect size, sample size and prior

probability, the user must specify α together with three of these and the missing one will be calculated. See

the help documentation for more information.

While we’re at it, in order to see how much the alternative hypothesis prior probability, r1, affects the

required sample size, let’s calculate sample size required for 80% average power under BH-FDR at α = 0.15

under the above settings ammended to incorporate a higher prior probability, r.1 = 0.10.

> ss.fdr.r10 <- update(ss.fdr.r05, r.1=0.10)

The following line generates a publication ready table.

> print(ss.fdr.r05, label="tbl:minf", result="tex", cptn="$m=\\infty$")

or we can join the two tables into one, also adding a caption

> print(join.tbl(ss.fdr.r05, ss.fdr.r10), label="tbl:minf-r05-r10",

+ result="tex", cptn="$m=\\infty, r_1=0.05, 0.10$")

The first six lines are user specified parameters or default values, and the seventh through tenth lines are

calculated by the function. As for the last two lines, sample size and power, as is usually the case, one is

specified and the other is calculated. The first line indicates that calculations were done according to the

theoretical method, which in the case of average power under FDR control is the infinite tests consistent

limit approximation. Lines 2 and 4 are here default values. The default method of FDP control is "BHFDR"

as mentioned above and the value Inf for N.tests signifies the infinite tests consistent limit is being used,

and in this case specification of N.tests is not required. Not to belabor an obvious point, but this means

that all quantities derived are independent of the number of simultaneous tests. We shall discuss when

and how this assumption breaks down below. Lines 3, 5, and 6, being α, r1 and effect.size, respectively,

are user specified as discussed above. Recall that result a and b differ only by the specified value for prior
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Parameter result a result b

method Theoretical Theoretical
FDP.control BHFDR BHFDR
alpha 0.15 0.15
N.tests Inf Inf
r.1 0.05 0.1
effect.size 0.79 0.79
gamma 0.0466 0.0925
sigma.rtm.Rom 0.281 0.386
sigma.rtm.VoR 1.74 1.2
sigma.rtm.ToM 2.11 1.51
n.sample 42 37
average.power 0.8 0.8

Table 2: m = ∞, r1 = 0.05, 0.10

probability, r1, being 0.05 and 0.10, respectively. The first of the derived values, γ, on line 7, is the infinite

tests consistent limit of R/m. This limit is the rejection rate, or expected proportion of all tests which are

declared significant. The next three lines are the asymptotic standard deviations of the rejection proportion,

R/m, the false discovery proportion, V/R, and the true positive proportion, T/M . We will see below why it

is useful to know these. Lines 11 and 12 are the sample size and average power, respectively. In this case we

specified average power and the function calculated required sample size given the other parameter values.

Comparing results “a” and “b” it is clear that doubling the prior probability, r1, results in roughly a doubling

of the rejection rate, γ, and roughly three quarters the sample size required for 80% average power.

The package provides a simulation method as a check on the variety of theoretical methods used. In this case

we must specify the number of tests. The simulation method will not find sample size required for specifed

power as it is impractical given the use of a back-solver resulting in more than 20 calls to the function.

Thus we must instead request a computation of power (average power in this case) given specified sample

size. The simulation routine generates replicate data-sets, each containing m full data records, where each

of these consist of a population indicator (bernouli, probability r1), a test statistic distributed under the

alternative or null corresponding to the value of the population indicator, and a corresponding p-value. For

each simulation replicate dataset, the requested procedure is applied to the m test statistics, and then the

numbers of rejected tests, R, and true positives, T , are recorded. The number of statistics distributed as

the alternative, M , is also recorded. Of course, the number of false positives need not be recorded as it can

be found via subtraction: V = R − T . These per simulation replicate statistics are in the reps component

of the detail attribute, which can be obtained for given a pwrFDR object, result, via the expression

detail(result)[["reps"]]. In the following code block we call pwrFDR via the "simulation" method at

the parameter settings used in ss.fdr.r10 above when the number of simultaneous tests is 10,000, 1,000,
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and 100, respectively in the three following lines of code.

> avgpwr.fdr.sim.r10.m1e5 <- pwrFDR(effect.size=0.79, alpha=0.15, r.1=0.10,

+ n.sample=ss.fdr.r10$n.sample, N.tests=10000,

+ meth="sim")

> avgpwr.fdr.sim.r10.m1e3 <- update(avgpwr.fdr.sim.r10.m1e5, N.tests=1000)

> avgpwr.fdr.sim.r10.m100 <- update(avgpwr.fdr.sim.r10.m1e5, N.tests=100)

Parameter result a result b result c

method Simulation Simulation Simulation
FDP.control BHFDR BHFDR BHFDR
alpha 0.15 0.15 0.15
N.tests 10000 1000 100
r.1 0.1 0.1 0.1
effect.size 0.79 0.79 0.79
emp.FDR 0.134 0.134 0.138
emp.FDX 0.084 0.311 0.443
gamma 0.0936 0.0937 0.0964
se.Rom 0.00391 0.0124 0.0384
se.VoR 0.0119 0.0369 0.12
se.ToM 0.0152 0.047 0.165
n.sample 37 37 37
average.power 0.808 0.807 0.807

Table 3: Results of simulation calls with varying ‘m’.

Comparing the simulation results in each of the three columns in table 3 with the theoretical approximation

at the same design parameters in the second column of table 2, the only differences in derived results

beyond that expected from simulation error are the designation that the "Simulation" method was used,

what appear to be standard errors of the rejection proportion, false discovery proportion and true positive

proportion as opposed to asymptotic standard deviations, and appearance of two new derived quantities,

emp.FDR and emp.FDX. First, when the number of tests, N.tests, is specified, the function returns estimated

standard errors instead of asymptotic standard deviations, these being the latter divided by the square root

of the number of tests. Secondly, the two new derived quantities are the empirical FDR and FDX derived as

simulation estimates. The latter estimates P{FDP > α}, the probability that the false discovery proportion

exceeds α. Notice that the empirical FDR’s corresponding to the differing numbers of simultaneous tests

are identical to within simulation error, but the standard error of the false discovery proportion, as well as

those of the other two ratios increase in proportion to the ratio of the square root of number of tests. While

the location, i.e. the mean of the FDP distribution remains more or less constant as the number of tests

decreases from 10,000 to 100, the width of the distribution grows. The point is that the BH-FDR procedure
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guarantees that the mean of the FDP will be less than α, but not what the width of the distribution will

be. BH-FDR control means that if a multiple testing experiment is repeated then the FDP’s corresponding

to each experiment will have average value less than α. Per experiment values of FDP’s may vary wildly

and in fact, have high probability of being unacceptably large. Here we see that while for 10,000 tests, the

probabiliy that the FDP exceeds α is roughly 8%, it becomes quite large as the number of tests decreases,

being 31%, 44% when the number of tests is 1,000 and 100, respectively. This raises the question as to

whether BH-FDR control is appropriate for a moderate to small number of simultaneous tests.

2 Caveats Arising from FDR control and Use of Average Power

This point regarding the appropriateness of BH-FDR control for a moderate to small number of simultaneous

tests is made clearer by having a look at the distribution of the FDP as the number of tests decreases. We

will re-run the above simulations for 6 multiple testing experiments at the same design parameter settings

when the number of tests is 10,000, 2,000, 1,000, 500, 250, and 100, respectively.

> ss <- pwrFDR(effect.size = 0.79, average.power=0.80, r.1 = 0.10, alpha = 0.15)

> avgp <- update(ss, average.power=NULL, n.sample=ss$n.sample)

10000 2000 1000 500 250 100

P (FDP ≥ 0.20) 0 0.007 0.062 0.117 0.209 0.32
P (TPP < 0.70) 0 0.003 0.017 0.069 0.147 0.21

Table 4: Simulation estimates of indicated probabilities of FDX and TPX for indicated values of m when
α = 0.15, r1 = 0.20, effect size 0.79 with average power 80%

A sample of 37 is required for 79.99% average power. Figure 1 below shows violin plots of the FDP distribution

for varying values of m from 10,000 down to 100 when the FDR is 15% and the other parameters are as

indicated above. It is clear that the spread of the FDP distribution goes from very narrow to very disperse.

In the more dispersed cases for 250 and 100 tests, it is clear that controlling the mean of the FDP distribution

offers little assurance as to the value of the FDP. Table 4 shows the probability that the FDP exceeds 20%

for each of the indicated values of m. At the most extreme level of dispersion when m = 100, the probability

that the FDP exceeds 20% is roughly 20%. It is easy to be lulled into a sense that FDR control at 15%

means that the FDP will be less than 15% but here is probability 133% of this value that it exceeds a value

133% of the target. At the larger numbers of tests, the simulation estimate of exceedence probability is zero,

suggesting that FDR control is a good indication that the FDP is controlled when the number of tests is

larger.
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Similar caveats arise from the use of the average power to define the power for a multiple testing experiment.

The average power is the expected value of the TPP, which can be thought of as the average TPP over many

identical multiple testing experiments. That a given sample size guarantees average power says very little

about what the TPP will be for any one given multiple testing experiment. Figure 2 below shows violin

plots of the TPP distribution for varying values of m from 10,000 down to 100 when the average power is

80% and the other parameters are as indicated above. Once again, it is clear that the spread of the TPP

distribution goes from very narrow to very disperse. In the more dispersed cases for 250 and 100 tests, it

is clear that controlling the mean of the TPP distribution offers little assurance as to the value of the TPP.

Table 4 shows the probability that the TPP is less than 70% for each of the indicated values of m. At the

most extreme level of dispersion when m = 100, the probability that the TPP is less than 80% is roughly

15%. It is easy to be lulled into a sense that a sample size required for average power 80% means that the

TPP will 80% but here is probability 15% that the TPP is less than 70%. At the larger numbers of tests,

the simulation estimate of the probability that the TPP is less than 70% is zero, suggesting that the use of

average power to size a multiple testing experiment will result in an equally high TPP when the number of

tests is large.

3 FDX control and the TPX Power

When the FDP distribution is too dispersed as we saw above in the case of only several hundred tests, a

more reliable method of controlling the value of the FDP is to control the probability that the FDP exceeds

a given threshold, P{FDP > δ} ≤ α, known as FDX control. A procedure due to Lehmann, Romano and

Shaikh, [4, 6], controls the FDX. It is a step-down procedure with multiple testing penalty sequence,

ψm(j; δ) =
1 + ⌊δj⌋

m+ 1 + ⌊δj⌋ − j
(1)

Lets compute the sample size required for 80% average power under the Lehmann-Romano-Shaikh procedure

when α = 0.15. This call is exactly the same as the very first sample size we computed above except that

we specify FDP.control.method="Romano" to override its default value, “FDR” .

> ss.Rom <- pwrFDR(effect.size = 0.79, average.power=0.80, r.1 = 0.20, alpha = 0.15,

+ FDP.control.method="Romano")

The following table was generated
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Parameter result a result b result c

method Simulation Simulation Simulation
FDP.control Romano Romano Romano
alpha 0.15 0.15 0.15
delta 0.15 0.15 0.15
N.tests 500 250 100
r.1 0.2 0.2 0.2
effect.size 0.79 0.79 0.79
emp.FDR 0.0223 0.0218 0.0268
emp.FDX 0 0 0.01
gamma 0.165 0.166 0.169
se.Rom 0.0192 0.0275 0.0439
se.VoR 0.017 0.0224 0.04
se.ToM 0.0461 0.0676 0.107
n.sample 46 46 46
average.power 0.804 0.807 0.816

Table 5:

> ss.BHFDX.500 <- pwrFDR(effect.size = 0.79, average.power=0.80, r.1 = 0.20, alpha = 0.15,

+ FDP.control.method="BHFDX", N.tests=500)

> ss.BHFDX.250 <- update(ss.BHFDX.500, N.tests=250)

> ss.BHFDX.100 <- update(ss.BHFDX.500, N.tests=100)

> avgp.BHFDX.500.sim <- update(ss.BHFDX.500, n.sample=ss.BHFDX.500$n.sample, average.power=NULL,

+ method="sim")

> avgp.BHFDX.250.sim <- update(ss.BHFDX.250, n.sample=ss.BHFDX.250$n.sample, average.power=NULL,

+ method="sim")

> avgp.BHFDX.100.sim <- update(ss.BHFDX.100, n.sample=ss.BHFDX.100$n.sample, average.power=NULL,

+ method="sim")
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Figure 1: Violin plots of FDP distribution for numbers of simultaneous tests varying from 10,000 down to
100, effect.size=0.79, n.sample=47, r.1=0.20, alpha=0.15
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Figure 2: Violin plots of TPP distribution for numbers of simultaneous tests varying from 10,000 down to
100, effect.size=0.79, n.sample=47, r.1=0.20, alpha=0.15
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