Package ‘quantregForest’

October 7, 2024
Type Package

Title Quantile Regression Forests
Version 1.3-7.1

Date 2017-12-16

Depends randomForest, RColorBrewer
Imports stats, parallel

Suggests gss, knitr, rmarkdown

Description Quantile Regression Forests is a tree-based ensemble
method for estimation of conditional quantiles. It is
particularly well suited for high-dimensional data. Predictor
variables of mixed classes can be handled. The package is
dependent on the package 'randomForest', written by Andy Liaw.

License GPL

NeedsCompilation yes
URL https://github.com/lorismichel/quantregForest

BugReports https://github.com/lorismichel/quantregForest/issues
RoxygenNote 6.0.1

Repository CRAN

Date/Publication 2024-10-07 08:21:02 UTC

Author Nicolai Meinshausen [aut],
Loris Michel [cre]

Maintainer Loris Michel <michel@stat.math.ethz.ch>

Contents

predict.quantregForest
quantregForest L L e e e

Index

https://github.com/lorismichel/quantregForest
https://github.com/lorismichel/quantregForest/issues

2 predict.quantregForest

predict.quantregForest
Prediction method for class quantregForest

Description

Prediction of test data with quantile regression forests.

Usage

S3 method for class 'quantregForest'
predict(object, newdata = NULL,

what = ¢c(0.1, 0.5, 0.9), ...)
Arguments
object An object of class quantregForest
newdata A data frame or matrix containing new data.
If left at default NULL, the out-of-bag predictions (OOB) are returned, for which
the option keep. inbag has to be set to TRUE at the time of fitting the object.
what Can be a vector of quantiles or a function.
Default for what is a a vector of quantiles (with numerical values in [0,1]) for
which the conditional quantile estimates should be returned.
If a function it has to take as argument a numeric vector and return either a
summary statistic (such as mean,median or sd to get conditional mean, median
or standard deviation) or a vector of values (such as with quantiles or via
sample) or a function (for example with ecdf).
Additional arguments (currently not in use).
Value

A vector, matrix or list.

If what is a vector with desired quantiles (the default is what=c(0.1,0.5,0.9)), a matrix with one
column per requested quantile returned.

If just a single quantile is specified (for example via what=0.5), a vector is returned.

If what is a function with numerical return value (for example viawhat=function(x) sample(x,10,replace=TRUE)
to sample 10 new observations from conditional distribution), the output is also a matrix (or vector
if just a scalar is returned).

If what has a function as output (such as what=ecdf), a list will be returned with one element per
new sample point (and the element contains the desired function).

Author(s)

Nicolai Meinshausen, Christina Heinze

predict.quantregForest

See Also

quantregForest, predict.quantregForest

Examples

HHHHHHHHHHHHEHHEHHHEHAHHHEEEEHEHAH R
Load air-quality data (and preprocessing)
B s

data(airquality)

set.seed(1)

remove observations with mising values

airquality <- airquality['apply(is.na(airquality), 1,any), 1
number of remining samples

n <- nrow(airquality)

divide into training and test data
indextrain <- sample(1:n,round(@.6*n),replace=FALSE)

Xtrain <- airquality[indextrain,2:6]
Xtest <- airquality[-indextrain,2:6]
Ytrain <- airquality[indextrain,1]
Ytest <- airquality[-indextrain,1]

A
compute Quantile Regression Forests
A

grf <- quantregForest(x=Xtrain, y=Ytrain)
grf <- quantregForest(x=Xtrain, y=Ytrain, nodesize=10,sampsize=30)

predict 0.1, 0.5 and 0.9 quantiles for test data
conditionalQuantiles <- predict(qrf, Xtest)
print(conditionalQuantiles[1:4,])

predict 0.1, 0.2,..., 0.9 quantiles for test data
conditionalQuantiles <- predict(qrf, Xtest, what=0.1x(1:9))
print(conditionalQuantiles[1:4,])

estimate conditional standard deviation
conditionalSd <- predict(qrf, Xtest, what=sd)
print(conditionalSd[1:41])

estimate conditional mean (as in original RF)

4 quantregForest

conditionalMean <- predict(qrf, Xtest, what=mean)
print(conditionalMean[1:4])

sample 10 new observations from conditional distribution at each new sample
newSamples <- predict(qrf, Xtest,what = function(x) sample(x,10,replace=TRUE))
print(newSamples[1:4,1)

get ecdf-function for each new test data point

(output will be a list with one element per sample)

condEcdf <- predict(grf, Xtest, what=ecdf)

condEcdf[[10]]1(30) ## get the conditional distribution at value 30 for i=10
or, directly, for all samples at value 30 (returns a vector)

condEcdf30 <- predict(qrf, Xtest, what=function(x) ecdf(x)(30))
print(condEcdf30[1:4])

to use other functions of the package randomForest, convert class back
class(qrf) <- "randomForest”
importance(qrf) ## importance measure from the standard RF

quantregForest Quantile Regression Forests

Description

Quantile Regression Forests infer conditional quantile functions from data

Usage
quantregForest(x,y, nthreads=1, keep.inbag=FALSE, ...)
Arguments
X A matrix or data.frame containing the predictor variables.
y The response variable.
nthreads The number of threads to use (for parallel computation).
keep.inbag Keep information which observations are in and out-of-bag? For out-of-bag
predictions, this argument needs to be set to TRUE.
Other arguments passed to randomForest such as nodesize or mtry etc.
Details

The object can be converted back into a standard randomForest object and all the functions of the
randomForest package can then be used (see example below).

quantregForest 5

The response y should in general be numeric. However, some use cases exists if y is a fac-
tor (such as sampling from conditional distribution when using for example what=function(x)
sample(x,10)). Trying to generate quantiles will generate an error if y is a factor, though.

Parallel computation is invoked by setting the value of nthreads to values larger than 1 (for example
to the number of available CPUs). The argument only has an effect under Linux and Mac OSX and
is without effect on Windows due to restrictions on forking.

Value

A value of class quantregForest, for which print and predict methods are available. Class
quantregForest is a list of the following components additional to the ones given by class randomForest:

call the original call to quantregForest
valuesNodes a matrix that contains per tree and node one subsampled observation
Author(s)

Nicolai Meinshausen, Christina Heinze

References
N. Meinshausen (2006) "Quantile Regression Forests", Journal of Machine Learning Research 7,
983-999 https://jmlr.csail.mit.edu/papers/v7/

See Also

predict.quantregForest

Examples

B s
Load air-quality data (and preprocessing) #i#
HHHEHHHEHEE AR

data(airquality)

set.seed(1)

remove observations with mising values

airquality <- airquality['apply(is.na(airquality), 1,any), 1]
number of remining samples

n <- nrow(airquality)

divide into training and test data
indextrain <- sample(1:n,round(@.6#*n),replace=FALSE)

Xtrain <- airquality[indextrain,2:6]
Xtest <- airquality[-indextrain,2:6]
Ytrain <- airquality[indextrain,1]

Ytest <- airquality[-indextrain,1]

https://jmlr.csail.mit.edu/papers/v7/

HHHHHHHEEEHE A
#it compute Quantile Regression Forests #it
HHHHHHAAE AR

grf <- quantregForest(x=Xtrain, y=Ytrain)
grf <- quantregForest(x=Xtrain, y=Ytrain, nodesize=10,sampsize=30)

for parallel computation use the nthread option
qrf <- quantregForest(x=Xtrain, y=Ytrain, nthread=8)

predict 0.1, 0.5 and 0.9 quantiles for test data
conditionalQuantiles <- predict(qrf, Xtest)
print(conditionalQuantiles[1:4,])

predict 0.1, 0.2,..., 0.9 quantiles for test data
conditionalQuantiles <- predict(grf, Xtest, what=0.1%(1:9))
print(conditionalQuantiles[1:4,])

estimate conditional standard deviation
conditionalSd <- predict(qrf, Xtest, what=sd)
print(conditionalSd[1:41])

estimate conditional mean (as in original RF)
conditionalMean <- predict(qrf, Xtest, what=mean)
print(conditionalMean[1:4])

quantregForest

sample 10 new observations from conditional distribution at each new sample
newSamples <- predict(qrf, Xtest,what = function(x) sample(x,10,replace=TRUE))

print(newSamples[1:4,1)

get ecdf-function for each new test data point
(output will be a list with one element per sample)
condEcdf <- predict(grf, Xtest, what=ecdf)

condEcdf[[10]]1(30) ## get the conditional distribution at value 30 for i=10

or, directly, for all samples at value 30 (returns a vector)
condEcdf30 <- predict(qrf, Xtest, what=function(x) ecdf(x)(30))
print(condEcdf30[1:4])

to use other functions of the package randomForest, convert class back

class(qrf) <- "randomForest”
importance(qrf) ## importance measure from the standard RF

S
out-of-bag predictions and sampling
S

for with option keep.inbag=TRUE
grf <- quantregForest(x=Xtrain, y=Ytrain, keep.inbag=TRUE)

quantregForest

or use parallel version
qrf <- quantregForest(x=Xtrain, y=Ytrain, nthread=8)

get quantiles
oobQuantiles <- predict(grf, what= c(0.2,0.5,0.8))

sample from oob-distribution
oobSample <- predict(qrf, what= function(x) sample(x,1))

Index

* regression
quantregForest, 4

* tree
quantregForest, 4

predict.quantregForest, 2, 3,5

quantregForest, 3,4

	predict.quantregForest
	quantregForest
	Index

