--- title: "Landsat Example" knit: litedown:::knit vignette: > %\VignetteIndexEntry{Landsat Example} %\VignetteEngine{litedown::vignette} %\VignetteEncoding{UTF-8} --- ```{r, include = FALSE} EVAL <- isTRUE(as.logical(Sys.getenv("R_RGEEDIM_RUN_EXAMPLES"))) && requireNamespace("terra", quietly = TRUE) && rgeedim::gd_is_initialized(project = Sys.getenv("GOOGLE_CLOUD_QUOTA_PROJECT", "rgeedim-demo")) litedown::reactor( eval = EVAL, collapse = TRUE, fig.width = 8, fig.align = 'center' ) ``` ```{r, eval=EVAL} library(rgeedim) library(terra) project_id <- Sys.getenv("GOOGLE_CLOUD_QUOTA_PROJECT", "rgeedim-demo") gd_initialize(project = project_id) b <- gd_bbox( xmin = -120.296, xmax = -120.227, ymin = 37.9824, ymax = 38.0071 ) ## landsat example # search collection for date range and minimum data fill (85%) x <- 'LANDSAT/LE07/C02/T1_L2' |> gd_collection_from_name() |> gd_search( start_date = '2020-11-01', end_date = '2021-02-28', region = b, cloudless_portion = 85 ) # inspect individual image metadata in the collection gd_properties(x) # download a single image, with "clouds" masked y <- gd_properties(x)$id[1] |> gd_image_from_id() |> gd_download( filename = "image.tif", region = b, scale = 30, crs = 'EPSG:5070', dtype = 'uint16', overwrite = TRUE, silent = FALSE ) plot(rast(y)[[1:4]]) # create composite landsat image near December 1st, 2020 and download # using q-mosaic method. z <- x |> gd_composite( method = "q-mosaic", date = '2020-12-01' ) |> gd_download( filename = "image.tif", region = b, scale = 30, crs = 'EPSG:5070', dtype = 'uint16', overwrite = TRUE, silent = FALSE ) plot(rast(z)[[1:4]]) ``` ```{r, include=FALSE, eval=EVAL} unlink("image.tif") ```