| Type: | Package | 
| Title: | Risk Quantification for Stock Portfolios under the T-Copula Model | 
| Version: | 0.1.2 | 
| Maintainer: | Wolfgang Hormann <hormanngw@yahoo.com> | 
| Description: | Implements efficient simulation procedures to estimate tail loss probabilities and conditional excess for a stock portfolio. The log-returns are assumed to follow a t-copula model with generalized hyperbolic or t marginals. | 
| Depends: | Runuran | 
| License: | GPL-2 | GPL-3 | 
| Copyright: | Wolfgang Hormann | 
| Packaged: | 2023-09-16 05:48:51 UTC; hormannw | 
| NeedsCompilation: | no | 
| Repository: | CRAN | 
| Date/Publication: | 2023-09-16 08:40:02 UTC | 
| Author: | Wolfgang Hormann [aut, cre], Ismail Basoglu [aut] | 
Risk Quantification for Stock Portfolios under the T-Copula Model
Description
This package can estimate the tail loss probabilities and conditional excess for a stock portfolio. The log-returns are assumed to follow a t-copula model with generalized hyperbolic or t marginals.
Details
To simulate the tailloss probabilities of a portfolio for which the parameters of the t-copula model with generalized hyperbolic or t marginals are available the following two functions can be used.
SISTCopula() is the name of the function that uses stratified importance sampling (SIS) to estimate 
a single or several tailloss probabilities and the corresponding conditional excess in a very efficient way.
NVTCopula() estimates the same quantities using naive simulation (without variance reduction).
Author(s)
Wolfgang Hormann, Ismail Basoglu
References
I Basoglu, W Hormann. 2014. Efficient stratified sampling implementations in multiresponse simulation, in: Proceedings of the 2014 Winter Simulation Conference A. Tolk, S. Y. Diallo, I. O. Ryzhov, L. Yilmaz, S. Buckley, and J. A. Miller, eds.
I Basoglu, W. Hormann, and H. Sak. 2013. Optimally Stratified Importance Sampling for Portfolio Risk with Multiple Loss Thresholds. Optimization 62 (11): 1451-1471
Examples
R<- matrix(
c(1, 	0.554, 	0.632, 	0.419, 	0.400, 
  0.554,1, 		0.495, 	0.540, 	0.479,
  0.632,0.495, 	1, 		0.426, 	0.445,
  0.419,0.540, 	0.426, 	1, 		0.443,
  0.400,0.479, 	0.445, 	0.443, 	1),ncol=5)
  
pmg<- matrix(NA,ncol=5,nrow=5)  
colnames(pmg) <- c("lambda","alpha","beta","delta","mu")
pmg[1,] <- c(-0.602828, 8.52771, -0.533197, 0.014492, -0.000091)
pmg[2,] <- c(-1.331923, 2.72759, -2.573416, 0.019891, 0.001388)
pmg[3,] <- c(-1.602705, 3.26482, 1.456542, 0.035139, -0.001662)
pmg[4,] <- c(-1.131092, 15.13351, -1.722396, 0.014771, 0.001304)
pmg[5,] <- c(-0.955118, 31.14005, 0.896576, 0.015362, -0.000238)
 
portfo <- new.portfobj(nu=8.195,R=R,typemg="GH",parmg=pmg,c=rep(1,5),w=rep(0.2,5))
res1<- SISTCopula(n=10^4,npilot=c(10^3,3*10^3),portfobj=portfo,threshold=c(0.97,0.96,0.95,0.94),
                  stratasize=c(22,22),CEopt=FALSE,beta=0.75,mintype=0)
Efficient tail-loss probability and conditional excess estimation for t-copula model
Description
Using stratified importance sampling (SIS) or naive simulation (NV) the tail-loss probabilities and conditional excess values for several threshold values are estimated for a stock portfolio. The logreturns of the stocks are assumed to follow a t-copula model with generalized hyperbolic or t marginals.
Usage
SISTCopula(n=10^5,npilot=c(10^4,2*10^4),portfobj,threshold=c(0.95,0.9),
           stratasize=c(22,22),CEopt=FALSE,beta=0.75,mintype=-1)
NVTCopula(n=10^5,  portfobj, threshold=c(0.95,0.9))
new.portfobj(nu,R,typemg="GH",parmg,c=rep(1,dim(R)[1]),w=c/sum(c))
Arguments
| n | total sample size | 
| npilot | size of one or several pilot runs, the sum of them should be smaller than  | 
| portfobj | object of portfolio parameters | 
| threshold | one or several threshold values (they should be ordered) | 
| stratasize | a vector of length two holding the number of strata | 
| CEopt | TRUE ... minimize the overall error of Conditional Exess estimates, otherwise of tail-loss estimates | 
| beta | weight of maximal threshold value used for calculating the intermediate threshold used for selecting the IS density,
only used when  | 
| mintype | only used when  | 
| nu | degrees of freedom of the t-copula | 
| R | correlation matrix of the t-copula | 
| typemg | type of the marginal distribution,  | 
| parmg | matrix holding in its rows the parameters of the marginal distribution; for the generalized hyperbolic distribution each row holds the parameters lambda, alpha, beta, delta and mu; for the t-distribution each row holds the parameters mu, sigma and nu (degrees of freedom). | 
| c | scale factor vector of the portfolio | 
| w | portfolio weights | 
Value
For the case that the variable threshold contains only one value a matrix containing 
the results for the tail-loss probability in the first row and that of the conditional excess in the second row
is returned.
In the case that several threshold values are considered, a list consisting of the result matrices for tail-loss probabilities and for conditional excess and the vector of the threshold values is returned.
Author(s)
Ismail Basoglu, Wolfgang Hormann
Examples
R<- matrix(
c(1, 	0.554, 	0.632, 	0.419, 	0.400, 
  0.554,1, 		0.495, 	0.540, 	0.479,
  0.632,0.495, 	1, 		0.426, 	0.445,
  0.419,0.540, 	0.426, 	1, 		0.443,
  0.400,0.479, 	0.445, 	0.443, 	1),ncol=5)
  
pmg<- matrix(NA,ncol=5,nrow=5)  
colnames(pmg) <- c("lambda","alpha","beta","delta","mu")
pmg[1,] <- c(-0.602828, 8.52771, -0.533197, 0.014492, -0.000091)
pmg[2,] <- c(-1.331923, 2.72759, -2.573416, 0.019891, 0.001388)
pmg[3,] <- c(-1.602705, 3.26482, 1.456542, 0.035139, -0.001662)
pmg[4,] <- c(-1.131092, 15.13351, -1.722396, 0.014771, 0.001304)
pmg[5,] <- c(-0.955118, 31.14005, 0.896576, 0.015362, -0.000238)
 
portfo <- new.portfobj(nu=8.195,R=R,typemg="GH",parmg=pmg,c=rep(1,5),w=rep(0.2,5))
res1<- SISTCopula(n=10^4,npilot=c(10^3,3*10^3),portfobj=portfo,threshold=c(0.97,0.96,0.95,0.94),
                  stratasize=c(22,22),CEopt=FALSE,beta=0.75,mintype=0)
 res1
 SISTCopula(n=10^4,npilot=c(10^3,3*10^3),portfobj=portfo,threshold=0.94,
            stratasize=c(22,22),CEopt=FALSE)
 NVTCopula(n=10^4,portfobj=portfo,threshold=c(0.97,0.96,0.95,0.94))
 NVTCopula(n=10^4,portfobj=portfo,threshold=0.94)
########
# example with t-marginals
R<- matrix(
c(1, 	0.551, 	0.636, 	0.421, 	0.398, 
  0.551,1, 	0.496, 	0.540, 	0.477,
  0.636,0.496, 	1, 	0.428, 	0.447,
  0.421,0.540, 	0.428, 	1, 	0.444,
  0.398,0.477, 	0.447, 	0.444, 	1),ncol=5)
   
pmg<- matrix(NA,ncol=3,nrow=5)  
colnames(pmg) <- c("mu","sigma","nu")
pmg[1,] <- c(-0.000258, 0.013769, 1.78)
pmg[2,] <- c(0.000794, 0.012166, 2.64)
pmg[3,] <- c(-0.000837, 0.019616, 3.25)
pmg[4,] <- c(0.001041, 0.009882, 2.67)
pmg[5,] <- c(-0.000104, 0.010812, 3.10)
portfo <- new.portfobj(nu=7.525,R=R,typemg="t",parmg=pmg,c=rep(1,5),w=rep(0.2,5))
res1<- SISTCopula(n=10^4,npilot=c(10^3,3*10^3),portfobj=portfo,threshold=c(0.97,0.96,0.95,0.94),
                  stratasize=c(22,22),CEopt=FALSE,beta=0.75,mintype=0)
res1
SISTCopula(n=10^4,npilot=c(10^3,3000),portfobj=portfo,threshold=0.94,stratasize=c(22,22))
NVTCopula(n=10^4,portfobj=portfo,threshold=c(0.97,0.96,0.95,0.94))
NVTCopula(n=10^4,portfobj=portfo,threshold=0.94)