Package 'sNPLS'

October 14, 2022

Type Package Title NPLS Regression with L1 Penalization **Version** 1.0.27 Author David Hervas Maintainer David Hervas <ddhervas@yahoo.es> **Depends** R (>= 2.10) Imports clickR, future, future.apply, ggplot2, ggrepel, ks, MASS, Matrix, pbapply Description Tools for performing variable selection in three-way data using N-PLS in combination with L1 penalization, Selectivity Ratio and VIP scores. The N-PLS model (Rasmus Bro, 1996 <DOI:10.1002/(SICI)1099-128X(199601)10:1%3C47::AID-CEM400%3E3.0.CO;2-C>) is the natural extension of PLS (Partial Least Squares) to N-way structures, and tries to maximize the covariance between X and Y data arrays. The package also adds variable selection through L1 penalization, Selectivity Ratio and VIP scores. License GPL (>= 2) **Encoding** UTF-8 LazyData true RoxygenNote 7.1.1 NeedsCompilation no

Repository CRAN

Date/Publication 2020-12-16 12:50:02 UTC

R topics documented:

bread	2
coef.sNPLS	3
cv_fit	3
cv_snpls	4
fitted.sNPLS	5
plot.cvsNPLS	6

bread

16

plot.repeatev	6
plot.sNPLS	7
plot_T	7
plot_time	8
plot_U	8
plot_variables	9
plot_Wj	9
plot_Wk	10
predict.sNPLS	10
repeat_cv	11
Rmatrix	12
sNPLS	
SR	14
summary.sNPLS	15
unfold3w	15

Index

bread

Bread data

Description

Evaluation of ten bread with respect to eleven attributes by eight judges (Xbread). The outcome is the salt content of each bread (Ybread).

Usage

data(bread)

Format

An object of class list of length 2.

References

Bro, R, Multi-way Analysis in the Food Industry. Models, Algorithms, and Applications. 1998. PhD thesis, University of Amsterdam (NL) & Royal Veterinary and Agricultural University (DK).

coef.sNPLS

Description

Extract coefficients from a sNPLS model

Usage

```
## S3 method for class 'sNPLS'
coef(object, as.matrix = FALSE, ...)
```

Arguments

object	A sNPLS model fit
as.matrix	Should the coefficients be presented as matrix or vector?
	Further arguments passed to coef

Value

A matrix (or vector) of coefficients

cv_fit	Internal function for cv_snpls	
--------	--------------------------------	--

Description

```
Internal function for cv_snpls
```

```
cv_fit(
   xtrain,
   ytrain,
   xval,
   yval,
   ncomp,
   threshold_j = NULL,
   threshold_k = NULL,
   keepK = NULL,
   method,
   ...
)
```

xtrain	A three-way training array
ytrain	A response training matrix
xval	A three-way test array
yval	A response test matrix
ncomp	Number of components for the sNPLS model
threshold_j	Threshold value on Wj. Scaled between [0, 1)
threshold_k	Threshold value on Wk. Scaled between [0, 1)
keepJ	Number of variables to keep for each component, ignored if threshold_j is pro- vided
кеерК	Number of 'times' to keep for each component, ignored if threshold_k is pro- vided
method	Select between sNPLS, sNPLS-SR or sNPLS-VIP
	Further arguments passed to sNPLS

Value

Returns the CV mean squared error

cv_snpls

Cross-validation for a sNPLS model

Description

Performs cross-validation for a sNPLS model

```
cv_snpls(
 X_npls,
 Y_npls,
 ncomp = 1:3,
 samples = 20,
 keepJ = NULL,
 keepK = NULL,
 nfold = 10,
 parallel = TRUE,
 method = "sNPLS",
 ...
)
```

fitted.sNPLS

Arguments

X_npls	A three-way array containing the predictors.
Y_npls	A matrix containing the response.
ncomp	A vector with the different number of components to test
samples	Number of samples for performing random search in continuous thresholding
keepJ	A vector with the different number of selected variables to test for discrete thresholding
кеерК	A vector with the different number of selected 'times' to test for discrete thresholding
nfold	Number of folds for the cross-validation
parallel	Should the computations be performed in parallel? Set up strategy first with future::plan()
method	Select between sNPLS, sNPLS-SR or sNPLS-VIP
	Further arguments passed to sNPLS

Value

A list with the best parameters for the model and the CV error

Examples

```
## Not run:
X_npls<-array(rpois(7500, 10), dim=c(50, 50, 3))
Y_npls<-matrix(2+0.4*X_npls[,5,1]+0.7*X_npls[,10,1]-0.9*X_npls[,15,1]+
0.6*X_npls[,20,1]- 0.5*X_npls[,25,1]+rnorm(50), ncol=1)
#Grid search for discrete thresholding
cv1<- cv_snpls(X_npls, Y_npls, ncomp=1:2, keepJ = 1:3, keepK = 1:2, parallel = FALSE)
#Random search for continuous thresholding
cv2<- cv_snpls(X_npls, Y_npls, ncomp=1:2, samples=20, parallel = FALSE)</pre>
```

End(Not run)

fitted.sNPLS Fitted method for sNPLS models

Description

Fitted method for sNPLS models

```
## S3 method for class 'sNPLS'
fitted(object, ...)
```

object	A sNPLS model fit
	Further arguments passed to fitted

Value

Fitted values for the sNPLS model

plot.cvsNPLS	Plot cross validation results for sNPLS objects

Description

Plot function for visualization of cross validation results for sNPLS models

Usage

S3 method for class 'cvsNPLS'
plot(x, ...)

Arguments

х	A cv_sNPLS object
	Not used

Value

A facet plot with the results of the cross validation

plot.repeatcv Density plot for repeat_cv results

Description

Plots a grid of slices from the 3-D kernel denity estimates of the repeat_cv function

Usage

S3 method for class 'repeatcv'
plot(x, ...)

Arguments

x	A repeatev object
	Further arguments passed to plot

plot.sNPLS

Value

A grid of slices from a 3-D density plot of the results of the repeated cross-validation

plot.sNPLS

Plots for sNPLS model fits

Description

Different plots for sNPLS model fits

Usage

```
## S3 method for class 'sNPLS'
plot(x, type = "T", comps = c(1, 2), labels = TRUE, group = NULL, ...)
```

Arguments

х	A sNPLS model fit
type	The type of plot. One of those: "T", "U", "Wj", "Wk", "time" or "variables"
comps	Vector with the components to plot. It can be of length ncomp for types "time" and "variables" and of length 2 otherwise.
labels	Should rownames be added as labels to the plot?
group	Vector with categorical variable defining groups (optional)
	Not used

Value

A plot of the type specified in the type parameter

plot_T

Internal function for plot.sNPLS

Description

Internal function for plot.sNPLS

Usage

plot_T(x, comps, labels, group = NULL)

х	A sNPLS model fit
comps	A vector of length two with the components to plot
labels	Should rownames be added as labels to the plot?
group	Vector with categorical variable defining groups

Value

A plot of the T matrix of a sNPLS model fit

plot_time Internal function for plot.sNPLS

Description

Internal function for plot.sNPLS

Usage

plot_time(x, comps)

Arguments

х	A sNPLS model fit
comps	A vector with the components to plot

Value

A plot of Wk coefficients for each component

plot_U

 $\mathit{Internal\,function\,for\,plot.sNPLS}$

Description

Internal function for plot.sNPLS

Usage

plot_U(x, comps, labels, group = NULL)

plot_variables

Arguments

х	A sNPLS model fit
comps	A vector of length two with the components to plot
labels	Should rownames be added as labels to the plot?
group	Vector with categorical variable defining groups

Value

A plot of the U matrix of a sNPLS model fit

plot_variables Internal function for plot.sNPLS

Description

Internal function for plot.sNPLS

Usage

plot_variables(x, comps)

Arguments

х	A sNPLS model fit
comps	A vector with the components to plot

Value

A plot of Wj coefficients for each component

plot_Wj

 $\mathit{Internal\,function\,for}\, \texttt{plot.sNPLS}$

Description

Internal function for plot.sNPLS

Usage

plot_Wj(x, comps, labels)

х	A sNPLS model fit
comps	A vector of length two with the components to plot
labels	Should rownames be added as labels to the plot?

Value

A plot of Wj coefficients

	W	

Internal function for plot.sNPLS

Description

Internal function for plot.sNPLS

Usage

plot_Wk(x, comps, labels)

Arguments

х	A sNPLS model fit
comps	A vector of length two with the components to plot
labels	Should rownames be added as labels to the plot?

Value

A plot of the Wk coefficients

predict.sNPLS Predict for sNPLS models

Description

Predict function for sNPLS models

```
## S3 method for class 'sNPLS'
predict(object, newX, rescale = TRUE, ...)
```

repeat_cv

Arguments

object	A sNPLS model fit
newX	A three-way array containing the new data
rescale	Should the prediction be rescaled to the original scale?
	Further arguments passed to predict

Value

A matrix with the predictions

repeat_cv

Repeated cross-validation for sNPLS models

Description

Performs repeated cross-validatiodn and represents results in a plot

Usage

```
repeat_cv(
 X_npls,
 Y_npls,
 ncomp = 1:3,
 samples = 20,
 keepJ = NULL,
 keepK = NULL,
 nfold = 10,
 times = 30,
 parallel = TRUE,
 method = "sNPLS",
 ...
)
```

Arguments

X_npls	A three-way array containing the predictors.
Y_npls	A matrix containing the response.
ncomp	A vector with the different number of components to test
samples	Number of samples for performing random search in continuous thresholding
keepJ	A vector with the different number of selected variables to test in discrete thresholding
кеерК	A vector with the different number of selected 'times' to test in discrete thresholding
nfold	Number of folds for the cross-validation

times	Number of repetitions of the cross-validation
parallel	Should the computations be performed in parallel? Set up strategy first with future::plan()
method	Select between sNPLS, sNPLS-SR or sNPLS-VIP
	Further arguments passed to cv_snpls

Value

A density plot with the results of the cross-validation and an (invisible) data.frame with these results

Rmatrix

R-matrix from a sNPLS model fit

Description

Builds the R-matrix from a sNPLS model fit

Usage

Rmatrix(x)

Arguments

x A sNPLS model obtained from sNPLS

Value

Returns the R-matrix of the model, needed to compute the coefficients

sNPLS

Fit a sNPLS model

Description

Fits a N-PLS regression model imposing sparsity on wj and wk matrices

sNPLS

Usage

```
sNPLS(
 XN,
  Υ,
  ncomp = 2,
  threshold_j = 0.5,
  threshold_k = 0.5,
  keepJ = NULL,
  keepK = NULL,
  scale.X = TRUE,
  center.X = TRUE,
  scale.Y = TRUE,
  center.Y = TRUE,
  conver = 1e-16,
 max.iteration = 10000,
 silent = F,
 method = "sNPLS"
)
```

Arguments

XN	A three-way array containing the predictors.
Υ	A matrix containing the response.
ncomp	Number of components in the projection
threshold_j	Threshold value on Wj. Scaled between [0, 1)
threshold_k	Threshold value on Wk. scaled between [0, 1)
keepJ	Number of variables to keep for each component, ignored if threshold_j is pro- vided
кеерК	Number of 'times' to keep for each component, ignored if threshold_k is pro- vided
scale.X	Perform unit variance scaling on X?
center.X	Perform mean centering on X?
scale.Y	Perform unit variance scaling on Y?
center.Y	Perform mean centering on Y?
conver	Convergence criterion
<pre>max.iteration</pre>	Maximum number of iterations
silent	Show output?
method	Select between L1 penalization (sNPLS), variable selection with Selectivity Ra- tio (sNPLS-SR) or variable selection with VIP (sNPLS-VIP)

Value

A fitted sNPLS model

References

C. A. Andersson and R. Bro. The N-way Toolbox for MATLAB Chemometrics & Intelligent Laboratory Systems. 52 (1):1-4, 2000.

Hervas, D. Prats-Montalban, J. M., Garcia-Cañaveras, J. C., Lahoz, A., & Ferrer, A. (2019). Sparse N-way partial least squares by L1-penalization. Chemometrics and Intelligent Laboratory Systems, 185, 85-91.

Examples

```
Y_npls <- matrix(2+0.4*X_npls[,5,1]+0.7*X_npls[,10,1]-0.9*X_npls[,15,1]+
0.6*X_npls[,20,1]- 0.5*X_npls[,25,1]+rnorm(50), ncol=1)
#Discrete thresholding
fit <- sNPLS(X_npls, Y_npls, ncomp=3, keepJ = rep(2,3) , keepK = rep(1,3))
#Continuous thresholding
fit2 <- sNPLS(X_npls, Y_npls, ncomp=3, threshold_j=0.5, threshold_k=0.5)
#USe sNPLS-SR method
fit3 <- sNPLS(X_npls, Y_npls, ncomp=3, threshold_j=0.5, threshold_k=0.5, method="sNPLS-SR")</pre>
```

SR

Compute Selectivity Ratio for a sNPLS model

Description

Estimates Selectivity Ratio for the different components of a sNPLS model fit

X_npls<-array(rpois(7500, 10), dim=c(50, 50, 3))

Usage

SR(model)

Arguments

model A sNPLS model

Value

A list of data.frames, each of them including the computed Selectivity Ratios for each variable

summary.sNPLS Summary for sNPLS models

Description

Summary of a sNPLS model fit

Usage

S3 method for class 'sNPLS'
summary(object, ...)

Arguments

object	A sNPLS object
	Further arguments passed to summary.default

Value

A summary inclunding number of components, squared error and coefficients of the fitted model

unfold3w

Unfolding of three-way arrays

Description

Unfolds a three-way array into a matrix

Usage

unfold3w(x)

Arguments ×

A three-way array

Value

Returns a matrix with dimensions dim(x)[1] x dim(x)[2]*dim(x([3]))

Index

* datasets bread, 2 bread, 2coef.sNPLS, 3cv_fit,3 cv_snpls,4 fitted.sNPLS, 5 plot.cvsNPLS,6 plot.repeatcv, 6 plot.sNPLS, 7plot_T,7 plot_time, 8 plot_U, 8 plot_variables, 9 plot_Wj,9 plot_Wk, 10 predict.sNPLS, 10 $repeat_cv, 11$ Rmatrix, 12 sNPLS, 12 SR, 14 summary.sNPLS, 15

unfold3w, 15