
Package ‘sanityTracker’
October 14, 2022

Type Package

Title Keeps Track of all Performed Sanity Checks

Version 0.1.0

Date 2020-04-14

Maintainer Marsel Scheer <scheer@freescience.de>

Description During the preparation of data set(s) one usually performs
some sanity checks. The idea is that irrespective of where the
checks are performed, they are centralized by this package in order
to list all at once with examples if a check failed.

License GPL-3

Encoding UTF-8

LazyData true

RoxygenNote 7.0.2

Imports data.table (>= 1.12.2), checkmate (>= 2.0.0)

Suggests testthat, knitr, rmarkdown

VignetteBuilder knitr

URL https://github.com/MarselScheer/sanityTracker

BugReports https://github.com/MarselScheer/sanityTracker/issues

NeedsCompilation no

Author Marsel Scheer [aut, cre]

Repository CRAN

Date/Publication 2020-04-22 16:12:07 UTC

R topics documented:
.add_sanity_check . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
add_sanity_check . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
clear_sanity_checks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
get_sanity_checks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1

https://github.com/MarselScheer/sanityTracker
https://github.com/MarselScheer/sanityTracker/issues


2 .add_sanity_check

h_add_sanity_check . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
h_collapse_char_vec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
h_complete_list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
h_deparsed_sys_call . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
sc_cols_bounded . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
sc_cols_bounded_above . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
sc_cols_bounded_below . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
sc_cols_non_NA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
sc_cols_positive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
sc_cols_unique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
sc_col_elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
sc_left_join . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Index 16

.add_sanity_check Adds a sanity check to the list of already performed sanity checks

Description

NOTE the also add_sanity_check calls this function, the parameters are documented in add_sanity_check
because that function gets exported.

Usage

.add_sanity_check(
fail_vec,
description,
counter_meas,
data,
data_name,
example_size,
param_name,
call,
fail_callback,
.fail_vec_str,
.generated_desc

)

Arguments

fail_vec see add_sanity_check

description see add_sanity_check

counter_meas see add_sanity_check

data see add_sanity_check

data_name see add_sanity_check

example_size see add_sanity_check



add_sanity_check 3

param_name see add_sanity_check

call see add_sanity_check

fail_callback see add_sanity_check

.fail_vec_str should capture what was used originally for fail_vec.

.generated_desc

for convenience functions like sc_col_elements to provide additional informa-
tion about the check.

Value

see add_sanity_check

add_sanity_check Adds a sanity check to the list of already performed sanity checks

Description

Adds a sanity check to the list of already performed sanity checks

Usage

add_sanity_check(
fail_vec,
description = "-",
counter_meas = "-",
data,
data_name = checkmate::vname(x = data),
example_size = 3,
param_name = "-",
call = h_deparsed_sys_call(which = -3),
fail_callback

)

Arguments

fail_vec logical vector where TRUE indicates that a fail has happend

description (optional) of the sanity check. default is "-".

counter_meas (optional) description of the counter measures that were applied to correct the
problems. default is "-".

data (optional) where the fails were found. Is used to store examples of failures.
default is "-".

data_name (optional) name of the data set that was used. defaults is the name of the object
passed to data.

example_size (optional) number failures to be extracted from the object passed to data. By
default 3 random examples are extracted.



4 clear_sanity_checks

param_name (optional) name of the parameter(s) that is used. This may be helpful for filtering
the table of all performed sanity checks.

call (optional) by default tracks the function that called add_sanity_check.
fail_callback (optional) user-defined function that is called if any element of fail_vec is

TRUE. This is helpful if an additional warning or error should be thrown or maybe
a log-entry should be created.

Value

a list with three elements

entry_sanity_table invisibly the sanity check that is stored internally with the other sanity checks
fail_vec fail_vec as passed over to this function
fail TRUE if any element of fail is TRUE. Otherwise FALSE.

All performed sanity checks can be fetched via get_sanity_checks

Examples

d <- data.frame(person_id = 1:4, bmi = c(18,23,-1,35), age = 31:34)
dummy_call <- function(x) {

add_sanity_check(
x$bmi < 15,
description = "bmi above 15",
counter_meas = "none",
data = x,
param_name = "bmi")

add_sanity_check(
x$bmi > 30,
description = "bmi below 30",
counter_meas = "none")

}
dummy_call(x = d)
get_sanity_checks()
add_sanity_check(

d$bmi < 15,
description = "bmi above 15",
fail_callback = warning)

clear_sanity_checks Removes all tracked sanity checks

Description

Removes all tracked sanity checks

Usage

clear_sanity_checks()



get_sanity_checks 5

get_sanity_checks Returns all performed sanity checks

Description

Returns all performed sanity checks

Usage

get_sanity_checks()

Value

all sanity checks, i.e. a data.table with the following column

description character that was provided by the user through the parameter description

additional_desc character that provides additional information about the check that was generated
by the convenience functions

data_name name of the data set that passed to the function that performed the sanity check. This
can also be specified by the user

n a logical vector is the basis of all sanity checks. This is length of the logical vector that was used,
which in general is the number of rows of the table that was checked

n_fail how often the logical vector was TRUE

n_na how often the logical vector was NA

counter_meas character provided by the user about how a fail will be addressed. Note that this
never happens inside a function of sanityTracker but is realized by the user after the check
was performed. It is only for documentation when the results of the checks are displayed.

fail_vec_str this captures how the actual logical vector of fails was build

param_name usually generated by the convenience functions and it also may be a composition of
more than one parameter name. However this parameter could also have been provided by the
user

call character of the call where the sanity check happend

example if a check failed and the table is available, then some examples of rows that lead to the
fail are stored here

See Also

add_sanity_check



6 h_add_sanity_check

h_add_sanity_check Wrapper for add_sanity_check for internal use

Description

The convenience function usually provide some defaults like description that can be overwritten
by the user through the ... argument of the convenience function. This function manages to
set those values that were NOT overwritten by the user through the ... argument and then call
add_sanity_check.

Usage

h_add_sanity_check(
ellipsis,
fail_vec,
.generated_desc,
data,
data_name = "",
param_name = "",
call = h_deparsed_sys_call(which = -2),
.fail_vec_str = checkmate::vname(x = fail_vec)

)

Arguments

ellipsis usually list(...) of the function that calls this function. It contains the parameters
defined by the user for add_sanity_check.

fail_vec logical vector where TRUE indicates that a fail has happend
.generated_desc

will be passed to .add_sanity_check if ellipsis does not contain a element with
name ’description’

data will be passed to .add_sanity_check if ellipsis does not contain a element with
name ’data’

data_name will be passed to .add_sanity_check if ellipsis does not contain a element with
name ’data_name’

param_name will be passed to .add_sanity_check if ellipsis does not contain a element with
name ’param_name’

call will be passed to .add_sanity_check if ellipsis does not contain a element with
name ’call’

.fail_vec_str usually not used by the user. Captures what was passed to fail_vec.

Value

see return value of add_sanity_check



h_collapse_char_vec 7

Examples

d <- data.frame(type = letters[1:4], nmb = 1:4)
# h_add_sanity_check is used on sc_col_elements()
sc_col_elements(object = d, col = "type", feasible_elements = letters[2:4])
get_sanity_checks()

h_collapse_char_vec Collapse a vector of characters to a string with separators

Description

Collapse a vector of characters to a string with separators

Usage

h_collapse_char_vec(v, collapse = ", ", qoute = "'")

Arguments

v vector of chars to be collapsed

collapse character that separates the elements in the returned object

qoute character that surronds every element in v in the returned object

Value

collapsed version of v

Examples

cat(sanityTracker:::h_collapse_char_vec(v = letters[1:4]))

h_complete_list Extends a list with an named element if the element does not exist

Description

Extends a list with an named element if the element does not exist

Usage

h_complete_list(ell, name, value)



8 h_deparsed_sys_call

Arguments

ell list to be extended (usually an ellipsis as list(...))

name character with the name for the element to be added

value value that will be stored in ell[[el_name]]

Value

if ell already contained the element name, then ell is returned without being modified. Otherwise,
ell is returned extended by a new element with name name and value value.

Examples

ell <- list(a = 1, b = 2)
sanityTracker:::h_complete_list(ell = ell, name = "a", value = 100)
sanityTracker:::h_complete_list(ell = ell, name = "d", value = Inf)

h_deparsed_sys_call Simply converts a call into a character

Description

Simply converts a call into a character

Usage

h_deparsed_sys_call(which)

Arguments

which see sys.call. However the function bounds it by the number of encolsing envi-
ronments.

Value

the call of the corresponding environment as character



sc_cols_bounded 9

sc_cols_bounded Checks that all elements from the specified columns are in a certain
range

Description

Checks that all elements from the specified columns are in a certain range

Usage

sc_cols_bounded(object, cols, rule = "(-Inf, Inf)", ...)

Arguments

object table with a columns specified by cols

cols vector of characters of columns that are checked against the specified range

rule check as two numbers separated by a comma, enclosed by square brackets (end-
point included) or parentheses (endpoint excluded). For example, “[0, 3)” re-
sults in all(x >= 0 & x < 3). The lower and upper bound may be omitted which
is the equivalent of a negative or positive infinite bound, respectively. By defi-
nition [0,] contains Inf, while [0,) does not. The same holds for the left (lower)
boundary and -Inf. This explanation was copied from checkmate::qtest. That
function is also the backbone of the this function.

... further parameters that are passed to add_sanity_check.

Value

list of logical vectors where TRUE indicates where the check failed. Every list entry represents one
of the columns specified in cols. This might be helpful if one wants to apply a counter-measure

Examples

dummy_call <- function(x) {
sc_cols_bounded(object = iris, cols = c("Sepal.Length", "Petal.Length"),

rule = "[1, 7.9)")
}
dummy_call(x = d)
get_sanity_checks()



10 sc_cols_bounded_below

sc_cols_bounded_above Checks that all elements from the given columns are below a certain
number

Description

Checks that all elements from the given columns are below a certain number

Usage

sc_cols_bounded_above(
object,
cols,
upper_bound,
include_upper_bound = TRUE,
...

)

Arguments

object table with a columns specified by cols

cols vector of characters of columns that are checked against the specified range

upper_bound elements of the specified columns must be below this bound

include_upper_bound

if TRUE (default), elements are allowed to be equal to the upper_bound

... further parameters that are passed to add_sanity_check.

Value

list of logical vectors where TRUE indicates where the check failed. Every list entry represents one
of the columns specified in cols. This might be helpful if one wants to apply a counter-measure

sc_cols_bounded_below Checks that all elements from the given columns are above a certain
number

Description

Checks that all elements from the given columns are above a certain number



sc_cols_non_NA 11

Usage

sc_cols_bounded_below(
object,
cols,
lower_bound,
include_lower_bound = TRUE,
...

)

Arguments

object table with a columns specified by cols

cols vector of characters of columns that are checked against the specified range

lower_bound elements of the specified columns must be above this bound
include_lower_bound

if TRUE (default), elements are allowed to be equal to the lower_bound

... further parameters that are passed to add_sanity_check.

Value

list of logical vectors where TRUE indicates where the check failed. Every list entry represents one
of the columns specified in cols. This might be helpful if one wants to apply a counter-measure

Examples

d <- data.frame(a = c(0, 0.2, 3, Inf), b = c(1:4))
dummy_call <- function(x) {

sc_cols_bounded_below(
object = d, cols = c("a", "b"),
lower_bound = 0.2,
include_lower_bound = FALSE,
description = "Measurements are expected to be bounded from below")

}
dummy_call(x = d)
get_sanity_checks()

sc_cols_non_NA Checks that all elements from the specified columns are not NA

Description

Checks that all elements from the specified columns are not NA

Usage

sc_cols_non_NA(object, cols = names(object), ..., unk_cols_callback = stop)



12 sc_cols_positive

Arguments

object table with a columns specified by cols

cols vector of characters of columns that are checked for NAs

... further parameters that are passed to add_sanity_check.
unk_cols_callback

user-defined function that is called if some of the cols are not contained in the
object. This is helpful if an additional warning or error should be thrown or
maybe a log-entry should be created. Default is the function stop

Value

a list where every element is an object returned by add_sanity_check for each column specified in
cols that exists in object

Examples

iris[c(1,3,5,7,9), 1] <- NA
dummy_call <- function(x) {

sc_cols_non_NA(object = iris, description = "No NAs expected in iris")
}
dummy_call(x = iris)
get_sanity_checks()

sc_cols_positive Checks that all elements from the specified columns are positive

Description

Checks that all elements from the specified columns are positive

Usage

sc_cols_positive(object, cols, zero_feasible = TRUE, ...)

Arguments

object table with a columns specified by cols

cols vector of characters of columns that are checked against the specified range

zero_feasible if zero is in the range or not

... further parameters that are passed to add_sanity_check.

Value

list of logical vectors where TRUE indicates where the check failed. Every list entry represents one
of the columns specified in cols. This might be helpful if one wants to apply a counter-measure.



sc_cols_unique 13

Examples

d <- data.frame(a = c(0, 0.2, 3, Inf), b = c(1:4))
dummy_call <- function(x) {

sc_cols_positive(d, cols = c("a", "b"), zero_feasible = FALSE,
description = "Measurements are expected to be positive")

}
dummy_call(x = d)
get_sanity_checks()

sc_cols_unique Checks that the combination of the specified columns is unique

Description

Checks that the combination of the specified columns is unique

Usage

sc_cols_unique(object, cols = names(object), ...)

Arguments

object table with a columns specified by cols

cols vector of characters which combination is checked to be unique

... further parameters that are passed to add_sanity_check.

Value

see return object of add_sanity_check. Note that if a combination appears 3 times, then n_fail will
increased by 3.

Examples

dummy_call <- function(x) {
sc_cols_unique(

object = x,
cols = c("Species", "Sepal.Length",

"Sepal.Width", "Petal.Length"))
}
dummy_call(x = iris)
get_sanity_checks()
get_sanity_checks()[["example"]]



14 sc_left_join

sc_col_elements Checks that the elements of a column belong to a certain set

Description

Checks that the elements of a column belong to a certain set

Usage

sc_col_elements(object, col, feasible_elements, ...)

Arguments

object table with a column specified by col

col name as a character of the column which is checked
feasible_elements

vector with characters that are feasible for col. Note that an element that is NA
it is always counted as a fail if feasible_elements does not explicitly contains
NA.

... further parameters that are passed to add_sanity_check.

Value

see return object of add_sanity_check

Examples

d <- data.frame(type = letters[1:4], nmb = 1:4)
dummy_call <- function(x) {

sc_col_elements(object = d, col = "type", feasible_elements = letters[2:4])
}
dummy_call(x = d)
get_sanity_checks()

sc_left_join Performs various checks after a left-join was performed

Description

One check is that no rows were duplicated during merge and the other check is that no columns
were duplicated during merge.

Usage

sc_left_join(joined, left, right, by, ..., find_nonunique_key = TRUE)



sc_left_join 15

Arguments

joined the result of the left-join

left the left table used in the left-join

right the right table used in the left-join

by the variables used for the left-join

... further parameters that are passed to add_sanity_check.
find_nonunique_key

if TRUE a sanity-check is performed that finds keys (defined by by) that are
non-unique. However this can be a time-consuming step.

Value

list with two elements for the two sanity checks performed by this function. The structure of each
element is as the return object of add_sanity_check.

Examples

ab <- data.table::data.table(a = 1:4, b = letters[1:4])
abc <- data.table::data.table(a = c(1:4, 2), b = letters[1:5], c = rnorm(5))
j <- merge(x = ab, y = abc, by = "a")
dummy_call <- function() {

sc_left_join(joined = j, left = ab, right = abc, by = "a",
description = "Left join outcome to main population")

}
dummy_call()
get_sanity_checks()



Index

.add_sanity_check, 2, 6

add_sanity_check, 2, 3, 3, 4–6, 9–15

clear_sanity_checks, 4

get_sanity_checks, 4, 5

h_add_sanity_check, 6
h_collapse_char_vec, 7
h_complete_list, 7
h_deparsed_sys_call, 8

sc_col_elements, 3, 14
sc_cols_bounded, 9
sc_cols_bounded_above, 10
sc_cols_bounded_below, 10
sc_cols_non_NA, 11
sc_cols_positive, 12
sc_cols_unique, 13
sc_left_join, 14
sys.call, 8

16


	.add_sanity_check
	add_sanity_check
	clear_sanity_checks
	get_sanity_checks
	h_add_sanity_check
	h_collapse_char_vec
	h_complete_list
	h_deparsed_sys_call
	sc_cols_bounded
	sc_cols_bounded_above
	sc_cols_bounded_below
	sc_cols_non_NA
	sc_cols_positive
	sc_cols_unique
	sc_col_elements
	sc_left_join
	Index

