
Package ‘shapley’
March 19, 2025

Type Package

Title Weighted Mean SHAP and CI for Robust Feature Assessment in ML
Grid

Version 0.5

Depends R (>= 3.5.0)

Description
This R package introduces Weighted Mean SHapley Additive exPlanations (WMSHAP), an in-
novative method for calculating SHAP values for a grid of fine-tuned base-learner machine learn-
ing models as well as stacked ensembles, a method not previously available due to the com-
mon reliance on single best-performing models. By integrating the weighted mean SHAP val-
ues from individual base-learners comprising the ensemble or individual base-learners in a tun-
ing grid search, the package weights SHAP contributions according to each model's perfor-
mance, assessed by multiple either R squared (for both regression and classification models). al-
ternatively, this software also offers weighting SHAP values based on the area under the preci-
sion-recall curve (AUCPR), the area under the curve (AUC), and F2 measures for binary classi-
fiers. It further extends this framework to implement weighted confidence inter-
vals for weighted mean SHAP values, offering a more comprehensive and robust feature impor-
tance evaluation over a grid of machine learning models, instead of solely computing SHAP val-
ues for the best model. This methodology is particularly beneficial for addressing the se-
vere class imbalance (class rarity) problem by providing a transparent, generalized mea-
sure of feature importance that mitigates the risk of reporting SHAP values for an overfitted or bi-
ased model and maintains robustness under severe class imbalance, where there is no univer-
sal criteria of identifying the absolute best model. Furthermore, the package implements hypoth-
esis testing to ascertain the statistical significance of SHAP values for individual fea-
tures, as well as comparative significance testing of SHAP contributions between features. Addi-
tionally, it tackles a critical gap in feature selection literature by presenting criteria for the auto-
matic feature selection of the most important features across a grid of models or stacked ensem-
bles, eliminating the need for arbitrary determination of the number of top features to be ex-
tracted. This utility is invaluable for researchers analyzing feature significance, particu-
larly within severely imbalanced outcomes where conventional methods fall short. More-
over, it is also expected to report democratic feature importance across a grid of models, result-
ing in a more comprehensive and generalizable feature selection. The package further imple-
ments a novel method for visualizing SHAP values both at subject level and fea-
ture level as well as a plot for feature selection based on the weighted mean SHAP ratios.

License MIT + file LICENSE

1

2 feature.selection

Encoding UTF-8

Imports ggplot2 (>= 3.4.2), h2o (>= 3.34.0.0), curl (>= 4.3.0), waffle
(>= 1.0.2), pander (>= 0.6.5)

RoxygenNote 7.3.2

URL https://github.com/haghish/shapley,

https://www.sv.uio.no/psi/english/people/academic/haghish/

BugReports https://github.com/haghish/shapley/issues

NeedsCompilation no

Author E. F. Haghish [aut, cre, cph]

Maintainer E. F. Haghish <haghish@hotmail.com>

Repository CRAN

Date/Publication 2025-03-18 23:40:02 UTC

Contents

feature.selection . 2
feature.test . 3
h2o.get_ids . 4
normalize . 5
shapley . 5
shapley.domain . 9
shapley.feature.test . 11
shapley.plot . 12
shapley.row.plot . 14
shapley.table . 16
shapley.top . 19

Index 21

feature.selection Selects the top features with highest weighted mean shap values based
on the specified criteria

Description

This function specifies the top features and prepares the data for plotting SHAP contributions for
each row, or summary of absolute SHAP contributions for each feature.

https://github.com/haghish/shapley
https://www.sv.uio.no/psi/english/people/academic/haghish/
https://github.com/haghish/shapley/issues

feature.test 3

Usage

feature.selection(
shapley,
method = "mean",
cutoff = 0,
top_n_features = NULL,
features = NULL

)

Arguments

shapley shapley object

method Character. The column name in summaryShaps used for feature selection. De-
fault is "mean", which selects important features which have weighted mean
shap ratio (WMSHAP) higher than the specified cutoff. Other alternative is
"lowerCI", which selects features which their lower bound of confidence inter-
val is higher than the cutoff.

cutoff numeric, specifying the cutoff for the method used for selecting the top features.
the default is zero, which means that all features with the "method" criteria above
zero will be selected.

top_n_features integer. if specified, the top n features with the highest weighted SHAP values
will be selected, overrullung the ’cutoff’ and ’method’ arguments.

features character vector, specifying the feature to be plotted.

Value

normalized numeric vector

Author(s)

E. F. Haghish

feature.test Weighted Permutation Test for Difference of Means

Description

This function performs a weighted permutation test to determine if there is a significant difference
between the means of two weighted numeric vectors. It tests the null hypothesis that the difference
in means is zero against the alternative that it is not zero.

Usage

feature.test(var1, var2, weights, n = 2000)

4 h2o.get_ids

Arguments

var1 A numeric vector.

var2 A numeric vector of the same length as var1.

weights A numeric vector of weights, assumed to be the same for both var1 and var2.

n The number of permutations to perform (default is 2000).

Value

A list containing the observed difference in means and the p-value of the test.

h2o.get_ids h2o.get_ids

Description

extracts the model IDs from H2O AutoML object or H2O grid

Usage

h2o.get_ids(automl)

Arguments

automl a h2o "AutoML" grid object

Value

a character vector of trained models’ names (IDs)

Author(s)

E. F. Haghish

Examples

Not run:
library(h2o)
h2o.init(ignore_config = TRUE, nthreads = 2, bind_to_localhost = FALSE, insecure = TRUE)
prostate_path <- system.file("extdata", "prostate.csv", package = "h2o")
prostate <- h2o.importFile(path = prostate_path, header = TRUE)
y <- "CAPSULE"
prostate[,y] <- as.factor(prostate[,y]) #convert to factor for classification
aml <- h2o.automl(y = y, training_frame = prostate, max_runtime_secs = 30)

get the model IDs
ids <- h2o.ids(aml)

End(Not run)

normalize 5

normalize Normalize a vector based on specified minimum and maximum values

Description

This function normalizes a vector based on specified minimum and maximum values. If the min-
imum and maximum values are not specified, the function will use the minimum and maximum
values of the vector.

Usage

normalize(x, min = NULL, max = NULL)

Arguments

x numeric vector

min minimum value

max maximum value

Value

normalized numeric vector

Author(s)

E. F. Haghish

shapley Weighted Mean SHAP Ratio and Confidence Interval for a ML Grid of
Fine-Tuned Models or Base-Learners of a Stacked Ensemble Model

Description

Calculates weighted mean SHAP ratios and confidence intervals to assess feature importance across
a collection of models (e.g., a grid of fine-tuned models or base-learners in a stacked ensemble).
Rather than reporting relative SHAP contributions for only a single model, this function accounts
for variability in feature importance across multiple models. Each model’s performance metric is
used as a weight. The function also provides a plot of weighted SHAP values with confidence
intervals. Currently, only models trained by the h2o machine learning platform, autoEnsemble,
and the HMDA R packages are supported.

6 shapley

Usage

shapley(
models,
newdata,
plot = TRUE,
performance_metric = "r2",
standardize_performance_metric = FALSE,
performance_type = "xval",
minimum_performance = 0,
method = "mean",
cutoff = 0.01,
top_n_features = NULL,
n_models = 10,
sample_size = nrow(newdata)

)

Arguments

models h2o search grid, autoML grid, or a character vector of H2O model IDs.

newdata An h2o frame (or data.frame) already uploaded to the h2o server. This data
will be used for computing SHAP contributions for each model, alongside model’s
performance weights.

plot logical. if TRUE, the weighted mean and confidence intervals of the SHAP
values are plotted. The default is TRUE.

performance_metric

Character specifying which performance metric to use as weights. The default
is "r2", which can be used for both regression and classification. For binary
classification, other options include: "aucpr" (area under the precision-recall
curve), "auc" (area under the ROC curve), and "f2" (F2 score).

standardize_performance_metric

Logical, indicating whether to standardize the performance metric used as weights
so their sum equals the number of models. The default is FALSE.

performance_type

Character. Specify which performance metric should be reported: "train" for
training data, "valid" for validation, or "xval" for cross-validation (default).

minimum_performance

Numeric. Specify the minimum performance metric for a model to be included
in calculating weighted mean SHAP ratio Models below this threshold receive
zero weight. The default is 0.

method Character. Specify the method for selecting important features based on their
weighted mean SHAP ratios. The default is "mean", which selects features
whose weighted mean shap ratio (WMSHAP) exceeds the cutoff. The alter-
native is "lowerCI", which selects features whose lower bound of confidence
interval exceeds the cutoff.

cutoff numeric, specifying the cutoff for the method used for selecting the top features.

shapley 7

top_n_features integer. if specified, the top n features with the highest weighted SHAP values
will be selected, overrullung the ’cutoff’ and ’method’ arguments. specifying
top_n_feature is also a way to reduce computation time, if many features are
present in the data set. The default is NULL, which means the shap values will
be computed for all features.

n_models minimum number of models that should meet the ’minimum_performance’ cri-
terion in order to compute WMSHAP and CI. If the intention is to compute
global summary SHAP values (at feature level) for a single model, set n_models
to 1. The default is 10.

sample_size integer. number of rows in the newdata that should be used for SHAP assess-
ment. By default, all rows are used, which is the recommended procedure for
scientific analyses. However, SHAP analysis is time consuming and in the pro-
cess of code development, lower values can be used for quicker shapley analy-
ses.

Details

The function works as follows:

1. SHAP contributions are computed at the individual level (row) for each model for the given
"newdata".

2. Each model’s feature-level SHAP ratios (i.e., share of total SHAP) are computed.

3. The performance metrics of the models are used as weights.

4. Using the weights vector and shap ratio of features for each model, the weighted mean SHAP
ratios and their confidence intervals are computed.

Value

a list including the GGPLOT2 object, the data frame of SHAP values, and performance metric of
all models, as well as the model IDs.

Author(s)

E. F. Haghish

Examples

Not run:
load the required libraries for building the base-learners and the ensemble models
library(h2o) #shapley supports h2o models
library(shapley)

initiate the h2o server
h2o.init(ignore_config = TRUE, nthreads = 2, bind_to_localhost = FALSE, insecure = TRUE)

upload data to h2o cloud
prostate_path <- system.file("extdata", "prostate.csv", package = "h2o")
prostate <- h2o.importFile(path = prostate_path, header = TRUE)

8 shapley

set.seed(10)

H2O provides 2 types of grid search for tuning the models, which are
AutoML and Grid. Below, I demonstrate how weighted mean shapley values
can be computed for both types.

###
PREPARE AutoML Grid (takes a couple of minutes)
###
run AutoML to tune various models (GBM) for 60 seconds
y <- "CAPSULE"
prostate[,y] <- as.factor(prostate[,y]) #convert to factor for classification
aml <- h2o.automl(y = y, training_frame = prostate, max_runtime_secs = 120,

include_algos=c("GBM"),

this setting ensures the models are comparable for building a meta learner
seed = 2023, nfolds = 10,
keep_cross_validation_predictions = TRUE)

call 'shapley' function to compute the weighted mean and weighted confidence intervals
of SHAP values across all trained models.
Note that the 'newdata' should be the testing dataset!
result <- shapley(models = aml, newdata = prostate, performance_metric = "aucpr", plot = TRUE)

###
PREPARE H2O Grid (takes a couple of minutes)
###
make sure equal number of "nfolds" is specified for different grids
grid <- h2o.grid(algorithm = "gbm", y = y, training_frame = prostate,

hyper_params = list(ntrees = seq(1,50,1)),
grid_id = "ensemble_grid",

this setting ensures the models are comparable for building a meta learner
seed = 2023, fold_assignment = "Modulo", nfolds = 10,
keep_cross_validation_predictions = TRUE)

result2 <- shapley(models = grid, newdata = prostate, performance_metric = "aucpr", plot = TRUE)

###
PREPARE autoEnsemble STACKED ENSEMBLE MODEL
###

get the models' IDs from the AutoML and grid searches.
this is all that is needed before building the ensemble,
i.e., to specify the model IDs that should be evaluated.
library(autoEnsemble)
ids <- c(h2o.get_ids(aml), h2o.get_ids(grid))
autoSearch <- ensemble(models = ids, training_frame = prostate, strategy = "search")
result3 <- shapley(models = autoSearch, newdata = prostate,

performance_metric = "aucpr", plot = TRUE)

shapley.domain 9

End(Not run)

shapley.domain compute and plot weighted mean SHAP contributions at group level
(factors or domains)

Description

This function applies different criteria to visualize SHAP contributions

Usage

shapley.domain(
shapley,
domains,
plot = "bar",
legendstyle = "continuous",
scale_colour_gradient = NULL,
print = FALSE

)

Arguments

shapley object of class ’shapley’, as returned by the ’shapley’ function

domains character list, specifying the domains for grouping the features’ contributions.
Domains are clusters of features’ names, that can be used to compute WMSHAP
at higher level, along with their 95 better understand how a cluster of features
influence the outcome. Note that either of ’features’ or ’domains’ arguments can
be specified at the time.

plot character, specifying the type of the plot, which can be either ’bar’, ’waffle’, or
’shap’. The default is ’bar’.

legendstyle character, specifying the style of the plot legend, which can be either ’contin-
uous’ (default) or ’discrete’. the continuous legend is only applicable to ’shap’
plots and other plots only use ’discrete’ legend.

scale_colour_gradient

character vector for specifying the color gradients for the plot.

print logical. if TRUE, the WMSHAP summary table for the given row is printed

Value

ggplot object

Author(s)

E. F. Haghish

10 shapley.domain

Examples

Not run:
load the required libraries for building the base-learners and the ensemble models
library(h2o) #shapley supports h2o models
library(shapley)

initiate the h2o server
h2o.init(ignore_config = TRUE, nthreads = 2, bind_to_localhost = FALSE, insecure = TRUE)

upload data to h2o cloud
prostate_path <- system.file("extdata", "prostate.csv", package = "h2o")
prostate <- h2o.importFile(path = prostate_path, header = TRUE)

H2O provides 2 types of grid search for tuning the models, which are
AutoML and Grid. Below, I demonstrate how weighted mean shapley values
can be computed for both types.

set.seed(10)

###
PREPARE AutoML Grid (takes a couple of minutes)
###
run AutoML to tune various models (GBM) for 60 seconds
y <- "CAPSULE"
prostate[,y] <- as.factor(prostate[,y]) #convert to factor for classification
aml <- h2o.automl(y = y, training_frame = prostate, max_runtime_secs = 120,

include_algos=c("GBM"),

this setting ensures the models are comparable for building a meta learner
seed = 2023, nfolds = 10,
keep_cross_validation_predictions = TRUE)

call 'shapley' function to compute the weighted mean and weighted confidence intervals
of SHAP values across all trained models.
Note that the 'newdata' should be the testing dataset!
result <- shapley(models = aml, newdata = prostate, plot = TRUE)

###
PLOT THE WEIGHTED MEAN SHAP VALUES
###

shapley.plot(result, plot = "bar")
shapley.plot(result, plot = "waffle")

###
DEFINE DOMAINS (GROUPS OF FEATURES OR FACTORS)
###
shapley.domain(shapley = shapley, plot = "bar",

domains = list(Demographic = c("RACE", "AGE"),
Cancer = c("VOL", "PSA", "GLEASON"),
Tests = c("DPROS", "DCAPS")),
print = TRUE

shapley.feature.test 11

End(Not run)

shapley.feature.test Normalize a vector based on specified minimum and maximum values

Description

This function normalizes a vector based on specified minimum and maximum values. If the min-
imum and maximum values are not specified, the function will use the minimum and maximum
values of the vector.

Usage

shapley.feature.test(shapley, features, n = 5000)

Arguments

shapley object of class ’shapley’, as returned by the ’shapley’ function

features character, name of two features to be compared with permutation test

n integer, number of permutations

Value

normalized numeric vector

Author(s)

E. F. Haghish

Examples

Not run:
load the required libraries for building the base-learners and the ensemble models
library(h2o) #shapley supports h2o models
library(autoEnsemble) #autoEnsemble models, particularly useful under severe class imbalance
library(shapley)

initiate the h2o server
h2o.init(ignore_config = TRUE, nthreads = 2, bind_to_localhost = FALSE, insecure = TRUE)

upload data to h2o cloud
prostate_path <- system.file("extdata", "prostate.csv", package = "h2o")
prostate <- h2o.importFile(path = prostate_path, header = TRUE)

H2O provides 2 types of grid search for tuning the models, which are
AutoML and Grid. Below, I demonstrate how weighted mean shapley values
can be computed for both types.

12 shapley.plot

set.seed(10)

###
PREPARE AutoML Grid (takes a couple of minutes)
###
run AutoML to tune various models (GBM) for 60 seconds
y <- "CAPSULE"
prostate[,y] <- as.factor(prostate[,y]) #convert to factor for classification
aml <- h2o.automl(y = y, training_frame = prostate, max_runtime_secs = 120,

include_algos=c("GBM"),

this setting ensures the models are comparable for building a meta learner
seed = 2023, nfolds = 10,
keep_cross_validation_predictions = TRUE)

call 'shapley' function to compute the weighted mean and weighted confidence intervals
of SHAP values across all trained models.
Note that the 'newdata' should be the testing dataset!
result <- shapley(models = aml, newdata = prostate, plot = TRUE)

###
Significance testing of contributions of two features
###

shapley.test(result, features = c("GLEASON", "PSA"), n=5000)

End(Not run)

shapley.plot Plot weighted SHAP contributions

Description

This function applies different criteria to visualize SHAP contributions

Usage

shapley.plot(
shapley,
plot = "bar",
method = "mean",
cutoff = 0.01,
top_n_features = NULL,
features = NULL,
legendstyle = "continuous",
scale_colour_gradient = NULL

)

shapley.plot 13

Arguments

shapley object of class ’shapley’, as returned by the ’shapley’ function

plot character, specifying the type of the plot, which can be either ’bar’, ’waffle’, or
’shap’. The default is ’bar’.

method Character. The column name in summaryShaps used for feature selection. De-
fault is "mean", which selects important features which have weighted mean
shap ratio (WMSHAP) higher than the specified cutoff. Other alternative is
"lowerCI", which selects features which their lower bound of confidence inter-
val is higher than the cutoff.

cutoff numeric, specifying the cutoff for the method used for selecting the top features.

top_n_features Integer. If specified, the top n features with the highest weighted SHAP values
will be selected, overrullung the ’cutoff’ and ’method’ arguments.

features character vector, specifying the feature to be plotted.

legendstyle character, specifying the style of the plot legend, which can be either ’contin-
uous’ (default) or ’discrete’. the continuous legend is only applicable to ’shap’
plots and other plots only use ’discrete’ legend.

scale_colour_gradient

character vector for specifying the color gradients for the plot.

Value

ggplot object

Author(s)

E. F. Haghish

Examples

Not run:
load the required libraries for building the base-learners and the ensemble models
library(h2o) #shapley supports h2o models
library(shapley)

initiate the h2o server
h2o.init(ignore_config = TRUE, nthreads = 2, bind_to_localhost = FALSE, insecure = TRUE)

upload data to h2o cloud
prostate_path <- system.file("extdata", "prostate.csv", package = "h2o")
prostate <- h2o.importFile(path = prostate_path, header = TRUE)

H2O provides 2 types of grid search for tuning the models, which are
AutoML and Grid. Below, I demonstrate how weighted mean shapley values
can be computed for both types.

set.seed(10)

###

14 shapley.row.plot

PREPARE AutoML Grid (takes a couple of minutes)
###
run AutoML to tune various models (GBM) for 60 seconds
y <- "CAPSULE"
prostate[,y] <- as.factor(prostate[,y]) #convert to factor for classification
aml <- h2o.automl(y = y, training_frame = prostate, max_runtime_secs = 120,

include_algos=c("GBM"),

this setting ensures the models are comparable for building a meta learner
seed = 2023, nfolds = 10,
keep_cross_validation_predictions = TRUE)

call 'shapley' function to compute the weighted mean and weighted confidence intervals
of SHAP values across all trained models.
Note that the 'newdata' should be the testing dataset!
result <- shapley(models = aml, newdata = prostate, plot = TRUE)

###
PLOT THE WEIGHTED MEAN SHAP VALUES
###

shapley.plot(result, plot = "bar")
shapley.plot(result, plot = "waffle")

End(Not run)

shapley.row.plot Weighted mean SHAP values computed at subject level

Description

Weighted mean of SHAP values and weighted SHAP confidence intervals provide a measure of
feature importance for a grid of fine-tuned models or base-learners of a stacked ensemble model at
subject level, showing that how each feature influences the prediction made for a row in the dataset
and to what extend different models agree on that effect. If the 95 vertical line at 0.00, then it can
be concluded that the feature does not significantly influences the subject, when variability across
models is taken into consideration.

Usage

shapley.row.plot(
shapley,
row_index,
features = NULL,
plot = TRUE,
print = FALSE

)

shapley.row.plot 15

Arguments

shapley object of class ’shapley’, as returned by the ’shapley’ function

row_index subject or row number in a wide-format dataset to be visualized

features character vector, specifying the feature to be plotted.

plot logical. if TRUE, the plot is visualized.

print logical. if TRUE, the WMSHAP summary table for the given row is printed

Value

a list including the GGPLOT2 object, the data frame of SHAP values, and performance metric of
all models, as well as the model IDs.

Author(s)

E. F. Haghish

Examples

Not run:
load the required libraries for building the base-learners and the ensemble models
library(h2o) #shapley supports h2o models
library(shapley)

initiate the h2o server
h2o.init(ignore_config = TRUE, nthreads = 2, bind_to_localhost = FALSE,

insecure = TRUE)

upload data to h2o cloud
prostate_path <- system.file("extdata", "prostate.csv", package = "h2o")
prostate <- h2o.importFile(path = prostate_path, header = TRUE)

set.seed(10)

H2O provides 2 types of grid search for tuning the models, which are
AutoML and Grid. Below, I demonstrate how weighted mean shapley values
can be computed for both types.

###
PREPARE AutoML Grid (takes a couple of minutes)
###
run AutoML to tune various models (GBM) for 60 seconds
y <- "CAPSULE"
prostate[,y] <- as.factor(prostate[,y]) #convert to factor for classification
aml <- h2o.automl(y = y, training_frame = prostate, max_runtime_secs = 120,

include_algos=c("GBM"),

seed = 2023, nfolds = 10,
keep_cross_validation_predictions = TRUE)

call 'shapley' function to compute the weighted mean and weighted confidence intervals

16 shapley.table

of SHAP values across all trained models.
Note that the 'newdata' should be the testing dataset!
result <- shapley(models = aml, newdata = prostate,

performance_metric = "aucpr", plot = TRUE)

###
PREPARE H2O Grid (takes a couple of minutes)
###
make sure equal number of "nfolds" is specified for different grids
grid <- h2o.grid(algorithm = "gbm", y = y, training_frame = prostate,

hyper_params = list(ntrees = seq(1,50,1)),
grid_id = "ensemble_grid",

this setting ensures the models are comparable for building a meta learner
seed = 2023, fold_assignment = "Modulo", nfolds = 10,
keep_cross_validation_predictions = TRUE)

result2 <- shapley(models = grid, newdata = prostate,
performance_metric = "aucpr", plot = TRUE)

###
PREPARE autoEnsemble STACKED ENSEMBLE MODEL
###

get the models' IDs from the AutoML and grid searches.
this is all that is needed before building the ensemble,
i.e., to specify the model IDs that should be evaluated.
library(autoEnsemble)
ids <- c(h2o.get_ids(aml), h2o.get_ids(grid))
autoSearch <- ensemble(models = ids, training_frame = prostate, strategy = "search")
result3 <- shapley(models = autoSearch, newdata = prostate,

performance_metric = "aucpr", plot = TRUE)

#plot all important features
shapley.row.plot(shapley, row_index = 11)

#plot only the given features
shapPlot <- shapley.row.plot(shapley, row_index = 11, features = c("PSA", "AGE"))

inspect the computed data for the row 11
ptint(shapPlot$rowSummarySHAP)

End(Not run)

shapley.table Create SHAP Summary Table Based on the Given Criterion

Description

Generates a summary table of weighted mean SHAP (WMSHAP) values and confidence intervals
for each feature based on a weighted SHAP analysis. The function filters the SHAP summary table

shapley.table 17

(from a wmshap object) by selecting features that meet or exceed a specified cutoff using a selection
method (default "mean", which is weighted mean shap ratio). It then sorts the table by the mean
SHAP value, formats the SHAP values along with their 95% confidence intervals into a single
string, and optionally adds human-readable feature descriptions from a provided dictionary. The
output is returned as a markdown table using the pander package, or as a data frame if requested.

Usage

shapley.table(
wmshap,
method = "mean",
cutoff = 0.01,
round = 3,
exclude_features = NULL,
dict = NULL,
markdown.table = TRUE,
split.tables = 120,
split.cells = 50

)

Arguments

wmshap A wmshap object, returned by the shapley function containing a data frame
summaryShaps.

method Character. The column name in summaryShaps used for feature selection. De-
fault is "mean", which selects important features which have weighted mean
shap ratio (WMSHAP) higher than the specified cutoff. Other alternative is
"lowerCI", which selects features which their lower bound of confidence inter-
val is higher than the cutoff.

cutoff Numeric. The threshold cutoff for the selection method; only features with a
value in the method column greater than or equal to this value are retained.
Default is 0.01.

round Integer. The number of decimal places to round the SHAP mean and confidence
interval values. Default is 3.

exclude_features

Character vector. A vector of feature names to be excluded from the summary
table. Default is NULL.

dict A data frame containing at least two columns named "name" and "description".
If provided, the function uses this dictionary to add human-readable feature de-
scriptions. Default is NULL.

markdown.table Logical. If TRUE, the output is formatted as a markdown table using the pander
package; otherwise, a data frame is returned. Default is TRUE.

split.tables Integer. Controls table splitting in pander(). Default is 120.

split.cells Integer. Controls cell splitting in pander(). Default is 50.

18 shapley.table

Value

If markdown.table = TRUE, returns a markdown table (invisibly) showing two columns: "Description"
and "WMSHAP". If markdown.table = FALSE, returns a data frame with these columns.

Author(s)

E. F. Haghish

Examples

Not run:
load the required libraries for building the base-learners and the ensemble models
library(h2o) #shapley supports h2o models
library(shapley)

initiate the h2o server
h2o.init(ignore_config = TRUE, nthreads = 2, bind_to_localhost = FALSE, insecure = TRUE)

upload data to h2o cloud
prostate_path <- system.file("extdata", "prostate.csv", package = "h2o")
prostate <- h2o.importFile(path = prostate_path, header = TRUE)

set.seed(10)

H2O provides 2 types of grid search for tuning the models, which are
AutoML and Grid. Below, I demonstrate how weighted mean shapley values
can be computed for both types.

###
PREPARE AutoML Grid (takes a couple of minutes)
###
run AutoML to tune various models (GBM) for 60 seconds
y <- "CAPSULE"
prostate[,y] <- as.factor(prostate[,y]) #convert to factor for classification
aml <- h2o.automl(y = y, training_frame = prostate, max_runtime_secs = 120,

include_algos=c("GBM"),

this setting ensures the models are comparable for building a meta learner
seed = 2023, nfolds = 10,
keep_cross_validation_predictions = TRUE)

call 'shapley' function to compute the weighted mean and weighted confidence intervals
of SHAP values across all trained models.
Note that the 'newdata' should be the testing dataset!
result <- shapley(models = aml, newdata = prostate, performance_metric = "aucpr", plot = TRUE)

###
PREPARE H2O Grid (takes a couple of minutes)
###
make sure equal number of "nfolds" is specified for different grids
grid <- h2o.grid(algorithm = "gbm", y = y, training_frame = prostate,

hyper_params = list(ntrees = seq(1,50,1)),

shapley.top 19

grid_id = "ensemble_grid",

this setting ensures the models are comparable for building a meta learner
seed = 2023, fold_assignment = "Modulo", nfolds = 10,
keep_cross_validation_predictions = TRUE)

result2 <- shapley(models = grid, newdata = prostate, performance_metric = "aucpr", plot = TRUE)

get the output as a Markdown table:
md_table <- shapley.table(wmshap = result2,

method = "mean",
cutoff = 0.01,
round = 3,
markdown.table = TRUE)

head(md_table)

End(Not run)

shapley.top Select top features in a model

Description

This function applies different criteria simultaniously to identify the most important features in
a model. The criteria include: 1) minimum limit of lower weighted confidence intervals of SHAP
values relative to the feature with highest SHAP value. 2) minimum limit of percentage of weighted
mean SHAP values relative to over all SHAP values of all features. These are specified with two
different cutoff values.

Usage

shapley.top(shapley, mean = 0.01, lowerCI = 0.01)

Arguments

shapley object of class ’shapley’, as returned by the ’shapley’ function

mean Numeric. specifying the cutoff of weighted mean SHAP ratio (WMSHAP). The
default is 0.01. Lower values will be more generous in defining "importance",
while higher values are more restrictive. However, these default values are not
generalizable to all situations and algorithms.

lowerCI numeric. Specifying the limit of lower bound of 95% WMSHAP The default
is 0.01. Lower values will be more generous in defining "importance", while
higher values are more restrictive. However, these default values are not gener-
alizable to all situations and algorithms.

Value

data.frame of selected features

20 shapley.top

Author(s)

E. F. Haghish

Examples

Not run:
load the required libraries for building the base-learners and the ensemble models
library(h2o) #shapley supports h2o models
library(shapley)

initiate the h2o server
h2o.init(ignore_config = TRUE, nthreads = 2, bind_to_localhost = FALSE, insecure = TRUE)

upload data to h2o cloud
prostate_path <- system.file("extdata", "prostate.csv", package = "h2o")
prostate <- h2o.importFile(path = prostate_path, header = TRUE)

H2O provides 2 types of grid search for tuning the models, which are
AutoML and Grid. Below, I demonstrate how weighted mean shapley values
can be computed for both types.

set.seed(10)

###
PREPARE AutoML Grid (takes a couple of minutes)
###
run AutoML to tune various models (GBM) for 60 seconds
y <- "CAPSULE"
prostate[,y] <- as.factor(prostate[,y]) #convert to factor for classification
aml <- h2o.automl(y = y, training_frame = prostate, max_runtime_secs = 120,

include_algos=c("GBM"),

this setting ensures the models are comparable for building a meta learner
seed = 2023, nfolds = 10,
keep_cross_validation_predictions = TRUE)

call 'shapley' function to compute the weighted mean and weighted confidence intervals
of SHAP values across all trained models.
Note that the 'newdata' should be the testing dataset!
result <- shapley(models = aml, newdata = prostate, plot = TRUE)

###
Significance testing of contributions of two features
###

shapley.top(result, mean = 0.005, lowerCI = 0.01)

End(Not run)

Index

feature.selection, 2
feature.test, 3

h2o.get_ids, 4

normalize, 5

shapley, 5
shapley.domain, 9
shapley.feature.test, 11
shapley.plot, 12
shapley.row.plot, 14
shapley.table, 16
shapley.top, 19

21

	feature.selection
	feature.test
	h2o.get_ids
	normalize
	shapley
	shapley.domain
	shapley.feature.test
	shapley.plot
	shapley.row.plot
	shapley.table
	shapley.top
	Index

