| Type: | Package | 
| Title: | A Collection of Utility Function from the Inserm/Inria SISTM Team | 
| Version: | 0.1.1 | 
| Author: | Boris Hejblum [aut], Mélanie Huchon [aut, cre] | 
| Maintainer: | Mélanie Huchon <melanie.huchon@u-bordeaux.fr> | 
| Description: | Functions common to members of the SISTM team. | 
| License: | MIT + file LICENSE | 
| Encoding: | UTF-8 | 
| RoxygenNote: | 7.1.2 | 
| Imports: | BlandAltmanLeh, dplyr, ggbeeswarm, ggplot2, ggrepel, rlang, scales, stats | 
| NeedsCompilation: | no | 
| Packaged: | 2022-03-23 16:14:49 UTC; mh8 | 
| Repository: | CRAN | 
| Date/Publication: | 2022-03-24 08:30:02 UTC | 
Bland-Altman plot function
Description
Bland-Altman plot function
Usage
BlandAltmanPlot(
  var1,
  var2,
  with_gradient = FALSE,
  line_color = c("blue", "lightblue"),
  extremum_pctg = TRUE
)
Arguments
| var1 | a vector of numerics for the 1rst group to be compared. | 
| var2 | a vector of numerics for the 2nd group to be compared. | 
| with_gradient | a logical indicating if you have a lot of measures, use  | 
| line_color | a vector of color for the three lines : average difference and upper and lower limits of the confidence interval for the average difference. | 
| extremum_pctg | a logical indicating if you want to add the percentage of points outside the confidence interval for the upper and lower limits. Default is TRUE. | 
Value
a ggplot2 object
Examples
 
library(ggplot2)
#Small sample
#Generate data
x <- rnorm(30)
y <- rnorm(30, mean = 5, sd = 3)
#Plotting
BlandAltmanPlot(var1 = x, var2 = y) 
#Add color by group 
gr  <- c(rep("G1", 15), rep("G2", 15))
BlandAltmanPlot(var1 = x, var2 = y) + geom_point(aes(color = gr))
#High sample
#Generate data
x <- rnorm(10000)
y <- rnorm(10000, mean = 5, sd = 3)
#Plotting with gradient
BlandAltmanPlot(var1 = x, var2 = y, with_gradient = TRUE)
Multiple boxplots for many times
Description
Multiple boxplots for many times
Usage
multipleBoxplots(data, x_var, y_var, add_points = TRUE)
Arguments
| data | a dataset from which the variable  | 
| x_var | corresponding to the x coordinates for the plot, it must be a factor to obtain multiple boxplots. | 
| y_var | corresponding to the y coordinates for the plot. | 
| add_points | if you want to add points on boxplots. Default value is  | 
Value
a ggplot2 object
Examples
library(ggplot2)
#Generate data
x_ex <- factor(c(rep("J0", 10), rep("J7", 10), rep("J14", 10)), levels = c("J0", "J7", "J14"))
y_ex <- rnorm(30)
data_ex <- cbind.data.frame(x_ex, y_ex)
#Plotting
multipleBoxplots(data = data_ex, x_var = x_ex, y_var = y_ex)
multipleBoxplots(data = data_ex, x_var = x_ex, y_var = y_ex) + 
labs(x = "Time", y = "Value") + 
theme(legend.position = "none")
Functions
Description
Functions
Usage
normal_distribution(vec)
Arguments
| vec | a  | 
Value
a vector
sistmr.
Description
This package contains functions common to members of the SISTM team.
Volcano plot function
Description
Volcano plot function
Usage
volcanoPlot(
  log2fc,
  pValue,
  data,
  FDR_threshold = 0.05,
  LFC_threshold = log2(1.5),
  color = c("red", "black"),
  geneNames = NULL,
  nb_geneTags = 20,
  logTransformPVal = TRUE
)
Arguments
| log2fc | a magnitude of change (fold-change) in base log 2 corresponding to the x-axis. | 
| pValue | a statistical significance (p-value) corresponding to the y-axis. | 
| data | a data.frame of differentially expressed results from which the 
variable  | 
| FDR_threshold | a threshold of false discovery rate. | 
| LFC_threshold | a threshold of log fold change. | 
| color | a vector of two colors for significant or not significant points. | 
| geneNames | a vector of gene names if you want to put gene tags on the volcano plot. Default is NULL. | 
| nb_geneTags | number of tags for the significant genes if  | 
| logTransformPVal | If TRUE, the p-values will have a negative logarithm transformation (base 10). Default is TRUE. | 
Value
a ggplot2 object
Examples
genes <- paste0("G", 1:500)
pval <- runif(500, max = 0.5)
log2FC <- runif(500, min = -4, max = 4)
data <- cbind.data.frame(genes, pval, log2FC)
rm(genes, pval, log2FC)
volcanoPlot(log2FC, pval, data, geneNames = genes)