
Package ‘spNetwork’
March 29, 2025

Type Package

Title Spatial Analysis on Network

Version 0.4.4.6

Description Perform spatial analysis on network.
Implement several methods for spatial analysis on network: Network Kernel Density estimation,
building of spatial matrices based on network distance ('listw' objects from 'spdep' pack-
age), K functions estimation
for point pattern analysis on network, k nearest neighbours on network, reachable area calcula-
tion, and graph generation
References: Okabe et al (2019) <doi:10.1080/13658810802475491>;
Okabe et al (2012, ISBN:978-0470770818);Baddeley et al (2015, ISBN:9781482210200).

License GPL-2

Encoding UTF-8

LazyData true

Imports spdep (>= 1.1.2), igraph (>= 1.2.6), cubature (>= 2.0.4.1),
future.apply (>= 1.4.0), methods (>= 1.7.1), ggplot2 (>=
3.3.0), progressr (>= 0.4.0), data.table (>= 1.12.8), Rcpp (>=
1.0.4.6), Rdpack (>= 2.1.1), dbscan (>= 1.1-8), sf (>= 1.0-3),
abind (>= 1.4-5), sfheaders (>= 0.4.4), cppRouting (>= 3.1)

Depends R (>= 3.6)

Suggests future (>= 1.16.0), testthat (>= 3.0.0), kableExtra (>=
1.1.0), RColorBrewer (>= 1.1-2), classInt (>= 0.4-3), reshape2
(>= 1.4.3), rlang (>= 0.4.6), rgl (>= 0.107.14), tmap (>=
3.3-1), smoothr (>= 0.2.2), concaveman (>= 1.1.0), covr (>=
3.5.1), knitr, rmarkdown

RoxygenNote 7.3.2

VignetteBuilder knitr

URL https://jeremygelb.github.io/spNetwork/

BugReports https://github.com/JeremyGelb/spNetwork/issues

LinkingTo Rcpp, RcppProgress, RcppArmadillo, BH

RdMacros Rdpack

1

https://doi.org/10.1080/13658810802475491
https://jeremygelb.github.io/spNetwork/
https://github.com/JeremyGelb/spNetwork/issues

2 Contents

Language en-CA

SystemRequirements C++17

NeedsCompilation yes

Author Jeremy Gelb [aut, cre] (<https://orcid.org/0000-0002-7114-2714>),
Philippe Apparicio [ctb] (<https://orcid.org/0000-0001-6466-9342>)

Maintainer Jeremy Gelb <jeremy.gelb@ucs.inrs.ca>

Repository CRAN

Date/Publication 2025-03-29 16:00:02 UTC

Contents
spNetwork-package . 3
adaptive_bw_tnkde_cpp . 4
adaptive_bw_tnkde_cpp2 . 6
aggregate_points . 7
bike_accidents . 8
build_graph . 8
build_graph_directed . 9
bw_cvl_calc . 10
bw_cvl_calc.mc . 13
bw_cv_likelihood_calc . 16
bw_cv_likelihood_calc.mc . 18
bw_cv_likelihood_calc_tkde . 21
bw_tnkde_cv_likelihood_calc . 22
bw_tnkde_cv_likelihood_calc.mc . 25
calc_isochrones . 29
closest_points . 30
cosine_kernel . 31
cross_gfunc_cpp . 32
cross_kfunctions . 32
cross_kfunctions.mc . 34
cross_kfunc_cpp . 36
epanechnikov_kernel . 37
esc_kernel_loo_nkde . 38
esc_kernel_loo_tnkde . 38
esd_kernel_loo_nkde . 39
esd_kernel_loo_tnkde . 40
gaussian_kernel . 40
gaussian_kernel_scaled . 41
gfunc_cpp . 41
graph_checking . 42
kfunctions . 43
kfunctions.mc . 45
kfunc_cpp . 47
k_nt_functions . 48
k_nt_functions.mc . 50

https://orcid.org/0000-0002-7114-2714
https://orcid.org/0000-0001-6466-9342

spNetwork-package 3

lines_center . 53
lines_direction . 53
lines_extremities . 54
lines_points_along . 55
lixelize_lines . 55
lixelize_lines.mc . 56
main_network_mtl . 57
mtl_libraries . 58
mtl_network . 58
mtl_theatres . 59
network_knn . 59
network_knn.mc . 61
network_listw . 62
network_listw.mc . 64
nkde . 66
nkde.mc . 70
nkde_get_loo_values . 72
quartic_kernel . 74
simple_lines . 74
simplify_network . 75
small_mtl_network . 76
split_graph_components . 76
split_lines_at_vertex . 77
st_bbox_by_feature . 78
tkde . 78
tnkde . 79
tnkde.mc . 83
tnkde_get_loo_values . 86
tnkde_get_loo_values2 . 87
tnkde_worker_bw_sel . 88
triangle_kernel . 90
tricube_kernel . 91
triweight_kernel . 91
uniform_kernel . 92
worker_adaptive_bw_tnkde . 92

Index 94

spNetwork-package spNetwork: Spatial Analysis on Network

Description

Perform spatial analysis on network. Implement several methods for spatial analysis on network:
Network Kernel Density estimation, building of spatial matrices based on network distance (’listw’
objects from ’spdep’ package), K functions estimation for point pattern analysis on network, k near-
est neighbours on network, reachable area calculation, and graph generation References: Okabe et

4 adaptive_bw_tnkde_cpp

al (2019) doi:10.1080/13658810802475491; Okabe et al (2012, ISBN:978-0470770818);Baddeley
et al (2015, ISBN:9781482210200).

Perform spatial analysis on network. Implement several methods for spatial analysis on network:
Network Kernel Density estimation, building of spatial matrices based on network distance (’listw’
objects from ’spdep’ package), K functions estimation for point pattern analysis on network, k near-
est neighbours on network, reachable area calculation, and graph generation References: Okabe et
al (2019) doi:10.1080/13658810802475491; Okabe et al (2012, ISBN:978-0470770818);Baddeley
et al (2015, ISBN:9781482210200).

Author(s)

Maintainer: Jeremy Gelb <jeremy.gelb@ucs.inrs.ca> (ORCID)

Other contributors:

• Philippe Apparicio <philippe.apparicio@ucs.inrs.ca> (ORCID) [contributor]

See Also

Useful links:

• https://jeremygelb.github.io/spNetwork/

• Report bugs at https://github.com/JeremyGelb/spNetwork/issues

Useful links:

• https://jeremygelb.github.io/spNetwork/

• Report bugs at https://github.com/JeremyGelb/spNetwork/issues

adaptive_bw_tnkde_cpp The exposed function to calculate adaptive bandwidth with space-time
interaction for TNKDE (INTERNAL)

Description

The exposed function to calculate adaptive bandwidth with space-time interaction for TNKDE (IN-
TERNAL)

Usage

adaptive_bw_tnkde_cpp(
method,
neighbour_list,
sel_events,
sel_events_wid,
sel_events_time,
events,
events_wid,
events_time,

https://doi.org/10.1080/13658810802475491
https://doi.org/10.1080/13658810802475491
https://orcid.org/0000-0002-7114-2714
https://orcid.org/0000-0001-6466-9342
https://jeremygelb.github.io/spNetwork/
https://github.com/JeremyGelb/spNetwork/issues
https://jeremygelb.github.io/spNetwork/
https://github.com/JeremyGelb/spNetwork/issues

adaptive_bw_tnkde_cpp 5

weights,
bws_net,
bws_time,
kernel_name,
line_list,
max_depth,
min_tol

)

Arguments

method a string, one of "simple", "continuous", "discontinuous"

neighbour_list a List, giving for each node an IntegerVector with its neighbours

sel_events a Numeric vector indicating the selected events (id of nodes)

sel_events_wid a Numeric Vector indicating the unique if of the selected events

sel_events_time

a Numeric Vector indicating the time of the selected events

events a NumericVector indicating the nodes in the graph being events

events_wid a NumericVector indicating the unique id of all the events

events_time a NumericVector indicating the timestamp of each event

weights a cube with the weights associated with each event for each bws_net and bws_time.

bws_net an arma::vec with the network bandwidths to consider

bws_time an arma::vec with the time bandwidths to consider

kernel_name a string with the name of the kernel to use

line_list a DataFrame describing the lines

max_depth the maximum recursion depth

min_tol a double indicating by how much 0 in density values must be replaced

Value

a vector witht the estimated density at each event location

Examples

no example provided, this is an internal function

6 adaptive_bw_tnkde_cpp2

adaptive_bw_tnkde_cpp2

The exposed function to calculate adaptive bandwidth with space-time
interaction for TNKDE (INTERNAL)

Description

The exposed function to calculate adaptive bandwidth with space-time interaction for TNKDE (IN-
TERNAL)

Usage

adaptive_bw_tnkde_cpp2(
method,
neighbour_list,
sel_events,
sel_events_wid,
sel_events_time,
events,
events_wid,
events_time,
weights,
bws_net,
bws_time,
kernel_name,
line_list,
max_depth,
min_tol

)

Arguments

method a string, one of "simple", "continuous", "discontinuous"

neighbour_list a List, giving for each node an IntegerVector with its neighbours

sel_events a Numeric vector indicating the selected events (id of nodes)

sel_events_wid a Numeric Vector indicating the unique if of the selected events
sel_events_time

a Numeric Vector indicating the time of the selected events

events a NumericVector indicating the nodes in the graph being events

events_wid a NumericVector indicating the unique id of all the events

events_time a NumericVector indicating the timestamp of each event

weights a cube with the weights associated with each event for each bws_net and bws_time.

bws_net an arma::vec with the network bandwidths to consider

bws_time an arma::vec with the time bandwidths to consider

aggregate_points 7

kernel_name a string with the name of the kernel to use
line_list a DataFrame describing the lines
max_depth the maximum recursion depth
min_tol a double indicating by how much 0 in density values must be replaced

Value

a vector with the estimated density at each event location

Examples

no example provided, this is an internal function

aggregate_points Events aggregation

Description

Function to aggregate points within a radius.

Usage

aggregate_points(points, maxdist, weight = "weight", return_ids = FALSE)

Arguments

points The feature collection of points to contract (must have a weight column)
maxdist The distance to use
weight The name of the column to use as weight (default is "weight"). The values of the

aggregated points for this column will be summed. For all the other columns,
only the max value is retained.

return_ids A boolean (default is FALSE), if TRUE, then an index indicating for each point
the group it belongs to is returned. If FALSE, then a spatial point features is
returned with the points already aggregated.

Details

This function can be used to aggregate points within a radius. This is done by using the dbscan
algorithm. This process is repeated until no more modification is applied.

Value

A new feature collection of points

Examples

data(bike_accidents)
bike_accidents$weight <- 1
agg_points <- aggregate_points(bike_accidents, 5)

8 build_graph

bike_accidents Road accidents including a bicyle in Montreal in 2016

Description

A feature collection (sf object) representing road accidents including a cyclist in Montreal in 2016.
The EPSG is 3797, and the data comes from the Montreal OpenData website. It is only a small
subset in central districts used to demonstrate the main functions of spNetwork.

Usage

bike_accidents

Format

A sf object with 347 rows and 4 variables

NB_VICTIME the number of victims

AN the year of the accident

Date the date of the accident (yyyy/mm/dd)

geom the geometry (points)

Source

https://donnees.montreal.ca/dataset/collisions-routieres

build_graph Network generation with igraph

Description

Generate an igraph object from a feature collection of linestrings

Usage

build_graph(lines, digits, line_weight, attrs = FALSE)

Arguments

lines A feature collection of lines

digits The number of digits to keep from the coordinates

line_weight The name of the column giving the weight of the lines

attrs A boolean indicating if the original lines’ attributes should be stored in the final
object

https://donnees.montreal.ca/dataset/collisions-routieres

build_graph_directed 9

Details

This function can be used to generate an undirected graph object (igraph object). It uses the coor-
dinates of the linestrings extremities to create the nodes of the graph. This is why the number of
digits in the coordinates is important. Too high precision (high number of digits) might break some
connections.

Value

A list containing the following elements:

• graph: an igraph object;

• linelist: the dataframe used to build the graph;

• lines: the original feature collection of linestrings;

• spvertices: a feature collection of points representing the vertices of the graph;

• digits : the number of digits kept for the coordinates.

Examples

data(mtl_network)
mtl_network$length <- as.numeric(sf::st_length(mtl_network))
graph_result <- build_graph(mtl_network, 2, "length", attrs = TRUE)

build_graph_directed Directed network generation

Description

Generate a directed igraph object from a feature collection of linestrings

Usage

build_graph_directed(lines, digits, line_weight, direction, attrs = FALSE)

Arguments

lines A feature collection of linestrings

digits The number of digits to keep from the coordinates

line_weight The name of the column giving the weight of the lines

direction A column name indicating authorized travelling direction on lines. if NULL,
then all lines can be used in both directions. Must be the name of a column
otherwise. The values of the column must be "FT" (From - To), "TF" (To -
From) or "Both"

attrs A boolean indicating if the original lines’ attributes should be stored in the final
object

10 bw_cvl_calc

Details

This function can be used to generate a directed graph object (igraph object). It uses the coordinates
of the linestrings extremities to create the nodes of the graph. This is why the number of digits in the
coordinates is important. Too high precision (high number of digits) might break some connections.
The column used to indicate directions can only have the following values: "FT" (From-To), "TF"
(To-From) and "Both".

Value

A list containing the following elements:

• graph: an igraph object;

• linelist: the dataframe used to build the graph;

• lines: the original feature collection of lines;

• spvertices: a feature collection of points representing the vertices of the graph;

• digits : the number of digits kept for the coordinates.

Examples

data(mtl_network)
mtl_network$length <- as.numeric(sf::st_length(mtl_network))
mtl_network$direction <- "Both"
mtl_network[6, "direction"] <- "TF"
mtl_network_directed <- lines_direction(mtl_network, "direction")
graph_result <- build_graph_directed(lines = mtl_network_directed,

digits = 2,
line_weight = "length",
direction = "direction",
attrs = TRUE)

bw_cvl_calc Bandwidth selection by Cronie and Van Lieshout’s Criterion

Description

Calculate for multiple bandwidth the Cronie and Van Lieshout’s Criterion to select an appropriate
bandwidth in a data-driven approach.

Usage

bw_cvl_calc(
bws = NULL,
lines,
events,
w,
kernel_name,

bw_cvl_calc 11

method,
diggle_correction = FALSE,
study_area = NULL,
adaptive = FALSE,
trim_bws = NULL,
mat_bws = NULL,
max_depth = 15,
digits = 5,
tol = 0.1,
agg = NULL,
sparse = TRUE,
zero_strat = "min_double",
grid_shape = c(1, 1),
sub_sample = 1,
verbose = TRUE,
check = TRUE

)

Arguments

bws An ordered numeric vector with the bandwidths

lines A feature collection of linestrings representing the underlying network. The ge-
ometries must be simple Linestrings (may crash if some geometries are invalid)
without MultiLineSring.

events events A feature collection of points representing the events on the network. The
points will be snapped on the network to their closest line.

w A vector representing the weight of each event

kernel_name The name of the kernel to use. Must be one of triangle, gaussian, tricube, cosine,
triweight, quartic, epanechnikov or uniform.

method The method to use when calculating the NKDE, must be one of simple / discon-
tinuous / continuous (see nkde details for more information)

diggle_correction

A Boolean indicating if the correction factor for edge effect must be used.

study_area A feature collection of polygons representing the limits of the study area.

adaptive A boolean indicating if an adaptive bandwidth must be used. If adaptive =
TRUE, the local bandwidth are derived from the global bandwidths (bws)

trim_bws A vector indicating the maximum value an adaptive bandwidth can reach. Higher
values will be trimmed. It must have the same length as bws.

mat_bws A matrix giving the bandwidths for each observation and for each global band-
width. This is usefull when the user want to use a different method from Abram-
son’s smoothing regimen.

max_depth when using the continuous and discontinuous methods, the calculation time and
memory use can go wild if the network has many small edges (area with many of
intersections and many events). To avoid it, it is possible to set here a maximum
depth. Considering that the kernel is divided at intersections, a value of 10
should yield good estimates in most cases. A larger value can be used without

12 bw_cvl_calc

a problem for the discontinuous method. For the continuous method, a larger
value will strongly impact calculation speed.

digits The number of digits to retain from the spatial coordinates. It ensures that topol-
ogy is good when building the network. Default is 3. Too high a precision (high
number of digits) might break some connections

tol A float indicating the minimum distance between the events and the lines’ ex-
tremities when adding the point to the network. When points are closer, they are
added at the extremity of the lines.

agg A double indicating if the events must be aggregated within a distance. If NULL,
the events are aggregated only by rounding the coordinates.

sparse A Boolean indicating if sparse or regular matrices should be used by the Rcpp
functions. These matrices are used to store edge indices between two nodes in
a graph. Regular matrices are faster, but require more memory, in particular
with multiprocessing. Sparse matrices are slower (a bit), but require much less
memory.

zero_strat A string indicating what to do when density is 0 when calculating LOO density
estimate for an isolated event. "min_double" (default) replace the 0 value by the
minimum double possible on the machine. "remove" will remove them from the
final score. The first approach penalizes more strongly the small bandwidths.

grid_shape A vector of two values indicating how the study area must be split when per-
forming the calculus. Default is c(1,1) (no split). A finer grid could reduce
memory usage and increase speed when a large dataset is used. When using
multiprocessing, the work in each grid is dispatched between the workers.

sub_sample A float between 0 and 1 indicating the percentage of quadra to keep in the cal-
culus. For large datasets, it may be useful to limit the bandwidth evaluation and
thus reduce calculation time.

verbose A Boolean, indicating if the function should print messages about the process.
check A Boolean indicating if the geometry checks must be run before the operation.

This might take some times, but it will ensure that the CRS of the provided
objects are valid and identical, and that geometries are valid.

Details

The Cronie and Van Lieshout’s Criterion (Cronie and Van Lieshout 2018) find the optimal band-
width by minimizing the difference between the size of the observation window and the sum of the
reciprocal of the estimated kernel density at the events locations. In the network case, the size of
the study area is the sum of the length of each line in the network. Thus, it is important to only use
the necessary parts of the network.

Value

A dataframe with two columns, one for the bandwidths and the second for the Cronie and Van
Lieshout’s Criterion.

References

Cronie O, Van Lieshout MNM (2018). “A non-model-based approach to bandwidth selection for
kernel estimators of spatial intensity functions.” Biometrika, 105(2), 455–462.

bw_cvl_calc.mc 13

Examples

data(mtl_network)
data(bike_accidents)
cv_scores <- bw_cvl_calc(seq(200,400,50),

mtl_network, bike_accidents,
rep(1,nrow(bike_accidents)),
"quartic", "discontinuous",
diggle_correction = FALSE, study_area = NULL,
max_depth = 8,
digits=2, tol=0.1, agg=5,
sparse=TRUE, grid_shape=c(1,1),
sub_sample = 1, verbose=TRUE, check=TRUE)

bw_cvl_calc.mc Bandwidth selection by Cronie and Van Lieshout’s Criterion (multi-
core version)

Description

Calculate for multiple bandwidths the Cronie and Van Lieshout’s Criterion to select an appropriate
bandwidth in a data-driven approach. A plan from the package future can be used to split the work
across several cores. The different cells generated in accordance with the argument grid_shape are
used for the parallelization. So if only one cell is generated (grid_shape = c(1,1)), the function
will use only one core. The progress bar displays the progression for the cells.

Usage

bw_cvl_calc.mc(
bws = NULL,
lines,
events,
w,
kernel_name,
method,
diggle_correction = FALSE,
study_area = NULL,
adaptive = FALSE,
trim_bws = NULL,
mat_bws = NULL,
max_depth = 15,
digits = 5,
tol = 0.1,
agg = NULL,
sparse = TRUE,
zero_strat = "min_double",
grid_shape = c(1, 1),

14 bw_cvl_calc.mc

sub_sample = 1,
verbose = TRUE,
check = TRUE

)

Arguments

bws An ordered numeric vector with the bandwidths

lines A feature collection of linestrings representing the underlying network. The ge-
ometries must be simple Linestrings (may crash if some geometries are invalid)
without MultiLineSring.

events events A feature collection of points representing the events on the network. The
points will be snapped on the network to their closest line.

w A vector representing the weight of each event

kernel_name The name of the kernel to use. Must be one of triangle, gaussian, tricube, cosine,
triweight, quartic, epanechnikov or uniform.

method The method to use when calculating the NKDE, must be one of simple / discon-
tinuous / continuous (see nkde details for more information)

diggle_correction

A Boolean indicating if the correction factor for edge effect must be used.

study_area A feature collection of polygons representing the limits of the study area.

adaptive A boolean indicating if an adaptive bandwidth must be used. If adaptive =
TRUE, the local bandwidth are derived from the global bandwidths calculated
from bw_range and bw_step.

trim_bws A vector indicating the maximum value an adaptive bandwidth can reach. Higher
values will be trimmed. It must have the same length as bws.

mat_bws A matrix giving the bandwidths for each observation and for each global band-
width. This is usefull when the user want to use a different method from Abram-
son’s smoothing regimen.

max_depth when using the continuous and discontinuous methods, the calculation time and
memory use can go wild if the network has many small edges (area with many of
intersections and many events). To avoid it, it is possible to set here a maximum
depth. Considering that the kernel is divided at intersections, a value of 10
should yield good estimates in most cases. A larger value can be used without
a problem for the discontinuous method. For the continuous method, a larger
value will strongly impact calculation speed.

digits The number of digits to retain from the spatial coordinates. It ensures that topol-
ogy is good when building the network. Default is 3. Too high a precision (high
number of digits) might break some connections

tol A float indicating the minimum distance between the events and the lines’ ex-
tremities when adding the point to the network. When points are closer, they are
added at the extremity of the lines.

agg A double indicating if the events must be aggregated within a distance. If NULL,
the events are aggregated only by rounding the coordinates.

bw_cvl_calc.mc 15

sparse A Boolean indicating if sparse or regular matrices should be used by the Rcpp
functions. These matrices are used to store edge indices between two nodes in
a graph. Regular matrices are faster, but require more memory, in particular
with multiprocessing. Sparse matrices are slower (a bit), but require much less
memory.

zero_strat A string indicating what to do when density is 0 when calculating LOO density
estimate for an isolated event. "min_double" (default) replace the 0 value by the
minimum double possible on the machine. "remove" will remove them from the
final score. The first approach penalizes more strongly the small bandwidths.

grid_shape A vector of two values indicating how the study area must be split when per-
forming the calculus. Default is c(1,1) (no split). A finer grid could reduce
memory usage and increase speed when a large dataset is used. When using
multiprocessing, the work in each grid is dispatched between the workers.

sub_sample A float between 0 and 1 indicating the percentage of quadra to keep in the cal-
culus. For large datasets, it may be useful to limit the bandwidth evaluation and
thus reduce calculation time.

verbose A Boolean, indicating if the function should print messages about the process.

check A Boolean indicating if the geometry checks must be run before the operation.
This might take some times, but it will ensure that the CRS of the provided
objects are valid and identical, and that geometries are valid.

Details

For more details, see help(bw_cvl_calc)

Value

A dataframe with two columns, one for the bandwidths and the second for the Cronie and Van
Lieshout’s Criterion.

Examples

data(mtl_network)
data(bike_accidents)
future::plan(future::multisession(workers=1))
cv_scores <- bw_cvl_calc.mc(seq(200,400,50),

mtl_network, bike_accidents,
rep(1,nrow(bike_accidents)),
"quartic", "discontinuous",
diggle_correction = FALSE, study_area = NULL,
max_depth = 8,
digits=2, tol=0.1, agg=5,
sparse=TRUE, grid_shape=c(1,1),
sub_sample = 1, verbose=TRUE, check=TRUE)

make sure any open connections are closed afterward
if (!inherits(future::plan(), "sequential")) future::plan(future::sequential)

16 bw_cv_likelihood_calc

bw_cv_likelihood_calc Bandwidth selection by likelihood cross validation

Description

Calculate for multiple bandwidth the cross validation likelihood to select an appropriate bandwidth
in a data-driven approach

Usage

bw_cv_likelihood_calc(
bws = NULL,
lines,
events,
w,
kernel_name,
method,
diggle_correction = FALSE,
study_area = NULL,
adaptive = FALSE,
trim_bws = NULL,
mat_bws = NULL,
max_depth = 15,
digits = 5,
tol = 0.1,
agg = NULL,
sparse = TRUE,
grid_shape = c(1, 1),
sub_sample = 1,
zero_strat = "min_double",
verbose = TRUE,
check = TRUE

)

Arguments

bws An ordered numeric vector with the bandwidths

lines A feature collection of linestrings representing the underlying network. The ge-
ometries must be simple Linestrings (may crash if some geometries are invalid)
without MultiLineSring.

events events A feature collection of points representing the events on the network. The
points will be snapped on the network to their closest line.

w A vector representing the weight of each event

kernel_name The name of the kernel to use. Must be one of triangle, gaussian, tricube, cosine,
triweight, quartic, epanechnikov or uniform.

bw_cv_likelihood_calc 17

method The method to use when calculating the NKDE, must be one of simple / discon-
tinuous / continuous (see nkde details for more information)

diggle_correction

A Boolean indicating if the correction factor for edge effect must be used.

study_area A feature collection of polygons representing the limits of the study area.

adaptive A boolean indicating if an adaptive bandwidth must be used. If adaptive =
TRUE, the local bandwidth are derived from the global bandwidths (bws)

trim_bws A vector indicating the maximum value an adaptive bandwidth can reach. Higher
values will be trimmed. It must have the same length as bws.

mat_bws A matrix giving the bandwidths for each observation and for each global band-
width. This is usefull when the user want to use a different method from Abram-
son’s smoothing regimen.

max_depth when using the continuous and discontinuous methods, the calculation time and
memory use can go wild if the network has many small edges (area with many of
intersections and many events). To avoid it, it is possible to set here a maximum
depth. Considering that the kernel is divided at intersections, a value of 10
should yield good estimates in most cases. A larger value can be used without
a problem for the discontinuous method. For the continuous method, a larger
value will strongly impact calculation speed.

digits The number of digits to retain from the spatial coordinates. It ensures that topol-
ogy is good when building the network. Default is 3. Too high a precision (high
number of digits) might break some connections

tol A float indicating the minimum distance between the events and the lines’ ex-
tremities when adding the point to the network. When points are closer, they are
added at the extremity of the lines.

agg A double indicating if the events must be aggregated within a distance. If NULL,
the events are aggregated only by rounding the coordinates.

sparse A Boolean indicating if sparse or regular matrices should be used by the Rcpp
functions. These matrices are used to store edge indices between two nodes in
a graph. Regular matrices are faster, but require more memory, in particular
with multiprocessing. Sparse matrices are slower (a bit), but require much less
memory.

grid_shape A vector of two values indicating how the study area must be split when per-
forming the calculus. Default is c(1,1) (no split). A finer grid could reduce
memory usage and increase speed when a large dataset is used. When using
multiprocessing, the work in each grid is dispatched between the workers.

sub_sample A float between 0 and 1 indicating the percentage of quadra to keep in the cal-
culus. For large datasets, it may be useful to limit the bandwidth evaluation and
thus reduce calculation time.

zero_strat A string indicating what to do when density is 0 when calculating LOO density
estimate for an isolated event. "min_double" (default) replace the 0 value by the
minimum double possible on the machine. "remove" will remove them from the
final score. The first approach penalizes more strongly the small bandwidths.

verbose A Boolean, indicating if the function should print messages about the process.

18 bw_cv_likelihood_calc.mc

check A Boolean indicating if the geometry checks must be run before the operation.
This might take some times, but it will ensure that the CRS of the provided
objects are valid and identical, and that geometries are valid.

Details

The function calculates the likelihood cross validation score for several bandwidths in order to find
the most appropriate one. The general idea is to find the bandwidth that would produce the most
similar results if one event was removed from the dataset (leave one out cross validation). We use
here the shortcut formula as described by the package spatstat (Baddeley et al. 2021).

LCV (h) =
∑

i log λ̂−i(xi)

Where the sum is taken for all events xi and where λ̂−i(xi) is the leave-one-out kernel estimate at
xi for a bandwidth h. A higher value indicates a better bandwidth.

Value

A dataframe with two columns, one for the bandwidths and the second for the cross validation score
(the lower the better).

References

Baddeley A, Turner R, Rubak E (2021). spatstat: Spatial Point Pattern Analysis, Model-Fitting,
Simulation, Tests. R package version 2.1-0, https://CRAN.R-project.org/package=spatstat.

Examples

data(mtl_network)
data(bike_accidents)
cv_scores <- bw_cv_likelihood_calc(seq(200,800,50),

mtl_network, bike_accidents,
rep(1,nrow(bike_accidents)),
"quartic", "simple",
diggle_correction = FALSE, study_area = NULL,
max_depth = 8,
digits=2, tol=0.1, agg=5,
sparse=TRUE, grid_shape=c(1,1),
sub_sample = 1, verbose=TRUE, check=TRUE)

bw_cv_likelihood_calc.mc

Bandwidth selection by likelihood cross validation (multicore)

Description

Calculate for multiple bandwidth the cross validation likelihood to select an appropriate bandwidth
in a data-driven approach

https://CRAN.R-project.org/package=spatstat

bw_cv_likelihood_calc.mc 19

Usage

bw_cv_likelihood_calc.mc(
bws,
lines,
events,
w,
kernel_name,
method,
diggle_correction = FALSE,
study_area = NULL,
adaptive = FALSE,
trim_bws = NULL,
mat_bws = NULL,
max_depth = 15,
digits = 5,
tol = 0.1,
agg = NULL,
sparse = TRUE,
grid_shape = c(1, 1),
sub_sample = 1,
zero_strat = "min_double",
verbose = TRUE,
check = TRUE

)

Arguments

bws An ordered numeric vector with the bandwidths

lines A feature collection of linestrings representing the underlying network. The ge-
ometries must be simple Linestrings (may crash if some geometries are invalid)
without MultiLineSring.

events events A feature collection of points representing the events on the network. The
points will be snapped on the network to their closest line.

w A vector representing the weight of each event

kernel_name The name of the kernel to use. Must be one of triangle, gaussian, tricube, cosine,
triweight, quartic, epanechnikov or uniform.

method The method to use when calculating the NKDE, must be one of simple / discon-
tinuous / continuous (see nkde details for more information)

diggle_correction

A Boolean indicating if the correction factor for edge effect must be used.

study_area A feature collection of polygons representing the limits of the study area.

adaptive A boolean indicating if an adaptive bandwidth must be used. If adaptive =
TRUE, the local bandwidth are derived from the global bandwidths (bws)

trim_bws A vector indicating the maximum value an adaptive bandwidth can reach. Higher
values will be trimmed. It must have the same length as bws.

20 bw_cv_likelihood_calc.mc

mat_bws A matrix giving the bandwidths for each observation and for each global band-
width. This is usefull when the user want to use a different method from Abram-
son’s smoothing regimen.

max_depth when using the continuous and discontinuous methods, the calculation time and
memory use can go wild if the network has many small edges (area with many of
intersections and many events). To avoid it, it is possible to set here a maximum
depth. Considering that the kernel is divided at intersections, a value of 10
should yield good estimates in most cases. A larger value can be used without
a problem for the discontinuous method. For the continuous method, a larger
value will strongly impact calculation speed.

digits The number of digits to retain from the spatial coordinates. It ensures that topol-
ogy is good when building the network. Default is 3. Too high a precision (high
number of digits) might break some connections

tol A float indicating the minimum distance between the events and the lines’ ex-
tremities when adding the point to the network. When points are closer, they are
added at the extremity of the lines.

agg A double indicating if the events must be aggregated within a distance. If NULL,
the events are aggregated only by rounding the coordinates.

sparse A Boolean indicating if sparse or regular matrices should be used by the Rcpp
functions. These matrices are used to store edge indices between two nodes in
a graph. Regular matrices are faster, but require more memory, in particular
with multiprocessing. Sparse matrices are slower (a bit), but require much less
memory.

grid_shape A vector of two values indicating how the study area must be split when per-
forming the calculus. Default is c(1,1) (no split). A finer grid could reduce
memory usage and increase speed when a large dataset is used. When using
multiprocessing, the work in each grid is dispatched between the workers.

sub_sample A float between 0 and 1 indicating the percentage of quadra to keep in the cal-
culus. For large datasets, it may be useful to limit the bandwidth evaluation and
thus reduce calculation time.

zero_strat A string indicating what to do when density is 0 when calculating LOO density
estimate for an isolated event. "min_double" (default) replace the 0 value by the
minimum double possible on the machine. "remove" will remove them from the
final score. The first approach penalizes more strongly the small bandwidths.

verbose A Boolean, indicating if the function should print messages about the process.

check A Boolean indicating if the geometry checks must be run before the operation.
This might take some times, but it will ensure that the CRS of the provided
objects are valid and identical, and that geometries are valid.

Details

See the function bw_cv_likelihood_calc for more details. The calculation is split according to the
parameter grid_shape. If grid_shape = c(1,1), then parallel processing cannot be used.

bw_cv_likelihood_calc_tkde 21

Value

A dataframe with two columns, one for the bandwidths and the second for the cross validation score
(the lower the better).

Examples

data(mtl_network)
data(bike_accidents)
future::plan(future::multisession(workers=1))
cv_scores <- bw_cv_likelihood_calc.mc(seq(200,800,50),

mtl_network, bike_accidents,
rep(1,nrow(bike_accidents)),
"quartic", "simple",
diggle_correction = FALSE, study_area = NULL,
max_depth = 8,
digits=2, tol=0.1, agg=5,
sparse=TRUE, grid_shape=c(1,1),
sub_sample = 1, verbose=TRUE, check=TRUE)

make sure any open connections are closed afterward
if (!inherits(future::plan(), "sequential")) future::plan(future::sequential)

bw_cv_likelihood_calc_tkde

Bandwidth selection for Temporal Kernel density estimate by likeli-
hood cross validation

Description

Calculate the likelihood cross validation score for several bandwidths for the Temporal Kernel den-
sity

Usage

bw_cv_likelihood_calc_tkde(events, w, bws, kernel_name)

Arguments

events A numeric vector representing the moments of occurrence of events

w The weight of the events

bws A numeric vector, the bandwidths to use

kernel_name The name of the kernel to use

Value

A vector with the cross validation scores (the higher the better).

22 bw_tnkde_cv_likelihood_calc

Examples

data(bike_accidents)
bike_accidents$Date <- as.POSIXct(bike_accidents$Date, format = "%Y/%m/%d")
start <- min(bike_accidents$Date)
diff <- as.integer(difftime(bike_accidents$Date , start, units = "days"))
w <- rep(1,length(diff))
scores <- bw_cv_likelihood_calc_tkde(diff, w, seq(10,60,10), "quartic")

bw_tnkde_cv_likelihood_calc

Bandwidth selection by likelihood cross validation for temporal NKDE

Description

Calculate for multiple network and time bandwidths the cross validation likelihood to select an
appropriate bandwidth in a data-driven approach

Usage

bw_tnkde_cv_likelihood_calc(
bws_net = NULL,
bws_time = NULL,
lines,
events,
time_field,
w,
kernel_name,
method,
arr_bws_net = NULL,
arr_bws_time = NULL,
diggle_correction = FALSE,
study_area = NULL,
adaptive = FALSE,
trim_net_bws = NULL,
trim_time_bws = NULL,
max_depth = 15,
digits = 5,
tol = 0.1,
agg = NULL,
sparse = TRUE,
zero_strat = "min_double",
grid_shape = c(1, 1),
sub_sample = 1,
verbose = TRUE,
check = TRUE

)

bw_tnkde_cv_likelihood_calc 23

Arguments

bws_net An ordered numeric vector with all the network bandwidths

bws_time An ordered numeric vector with all the time bandwidths

lines A feature collection of linestrings representing the underlying network. The ge-
ometries must be simple Linestrings (may crash if some geometries are invalid)
without MultiLineSring.

events events A feature collection of points representing the events on the network. The
points will be snapped on the network to their closest line.

time_field The name of the field in events indicating when the events occurred. It must be
a numeric field

w A vector representing the weight of each event

kernel_name The name of the kernel to use. Must be one of triangle, gaussian, tricube, cosine,
triweight, quartic, epanechnikov or uniform.

method The method to use when calculating the NKDE, must be one of simple / discon-
tinuous / continuous (see nkde details for more information)

arr_bws_net An array with all the local netowrk bandwidths precalculated (for each event,
and at each possible combinaison of network and temporal bandwidths). The
dimensions must be c(length(net_bws), length(time_bws), nrow(events)))

arr_bws_time An array with all the local time bandwidths precalculated (for each event, and at
each possible combinaison of network and temporal bandwidths). The dimen-
sions must be c(length(net_bws), length(time_bws), nrow(events)))

diggle_correction

A Boolean indicating if the correction factor for edge effect must be used.

study_area A feature collection of polygons representing the limits of the study area.

adaptive A boolean indicating if local bandwidths must be calculated

trim_net_bws A numeric vector with the maximum local network bandwidth. If local band-
widths have higher values, they will be replaced by the corresponding value in
this vector.

trim_time_bws A numeric vector with the maximum local time bandwidth. If local bandwidths
have higher values, they will be replaced by the corresponding value in this
vector.

max_depth when using the continuous and discontinuous methods, the calculation time and
memory use can go wild if the network has many small edges (area with many of
intersections and many events). To avoid it, it is possible to set here a maximum
depth. Considering that the kernel is divided at intersections, a value of 10
should yield good estimates in most cases. A larger value can be used without
a problem for the discontinuous method. For the continuous method, a larger
value will strongly impact calculation speed.

digits The number of digits to retain from the spatial coordinates. It ensures that topol-
ogy is good when building the network. Default is 3. Too high a precision (high
number of digits) might break some connections

tol A float indicating the minimum distance between the events and the lines’ ex-
tremities when adding the point to the network. When points are closer, they are
added at the extremity of the lines.

24 bw_tnkde_cv_likelihood_calc

agg A double indicating if the events must be aggregated within a distance. If NULL,
the events are aggregated only by rounding the coordinates.

sparse A Boolean indicating if sparse or regular matrices should be used by the Rcpp
functions. These matrices are used to store edge indices between two nodes in
a graph. Regular matrices are faster, but require more memory, in particular
with multiprocessing. Sparse matrices are slower (a bit), but require much less
memory.

zero_strat A string indicating what to do when density is 0 when calculating LOO density
estimate for an isolated event. "min_double" (default) replace the 0 value by the
minimum double possible on the machine. "remove" will remove them from the
final score. The first approach penalizes more strongly the small bandwidths.

grid_shape A vector of two values indicating how the study area must be split when per-
forming the calculus. Default is c(1,1) (no split). A finer grid could reduce
memory usage and increase speed when a large dataset is used. When using
multiprocessing, the work in each grid is dispatched between the workers.

sub_sample A float between 0 and 1 indicating the percentage of quadra to keep in the cal-
culus. For large datasets, it may be useful to limit the bandwidth evaluation and
thus reduce calculation time.

verbose A Boolean, indicating if the function should print messages about the process.

check A Boolean indicating if the geometry checks must be run before the operation.
This might take some times, but it will ensure that the CRS of the provided
objects are valid and identical, and that geometries are valid.

Details

The function calculates the likelihood cross validation score for several time and network band-
widths in order to find the most appropriate one. The general idea is to find the pair of bandwidths
that would produce the most similar results if one event is removed from the dataset (leave one out
cross validation). We use here the shortcut formula as described by the package spatstat (Baddeley
et al. 2021).

LCV (h) =
∑

i log λ̂−i(xi)

Where the sum is taken for all events xi and where λ̂−i(xi) is the leave-one-out kernel estimate at
xi for a bandwidth h. A higher value indicates a better bandwidth.

Value

A matrix with the cross validation score. Each row corresponds to a network bandwidth and each
column to a time bandwidth (the higher the better).

References

Baddeley A, Turner R, Rubak E (2021). spatstat: Spatial Point Pattern Analysis, Model-Fitting,
Simulation, Tests. R package version 2.1-0, https://CRAN.R-project.org/package=spatstat.

https://CRAN.R-project.org/package=spatstat

bw_tnkde_cv_likelihood_calc.mc 25

Examples

loading the data
data(mtl_network)
data(bike_accidents)

converting the Date field to a numeric field (counting days)
bike_accidents$Time <- as.POSIXct(bike_accidents$Date, format = "%Y/%m/%d")
bike_accidents$Time <- difftime(bike_accidents$Time, min(bike_accidents$Time), units = "days")
bike_accidents$Time <- as.numeric(bike_accidents$Time)
bike_accidents <- subset(bike_accidents, bike_accidents$Time>=89)

calculating the cross validation values
cv_scores <- bw_tnkde_cv_likelihood_calc(

bws_net = seq(100,800,100),
bws_time = seq(10,60,5),
lines = mtl_network,
events = bike_accidents,
time_field = "Time",
w = rep(1, nrow(bike_accidents)),
kernel_name = "quartic",
method = "discontinuous",
diggle_correction = FALSE,
study_area = NULL,
max_depth = 10,
digits = 2,
tol = 0.1,
agg = 15,
sparse=TRUE,
grid_shape=c(1,1),
sub_sample=1,
verbose = FALSE,
check = TRUE)

bw_tnkde_cv_likelihood_calc.mc

Bandwidth selection by likelihood cross validation for temporal NKDE
(multicore)

Description

Calculate for multiple network and time bandwidths the cross validation likelihood to select an
appropriate bandwidth in a data-driven approach with multicore support

Usage

bw_tnkde_cv_likelihood_calc.mc(
bws_net = NULL,
bws_time = NULL,

26 bw_tnkde_cv_likelihood_calc.mc

lines,
events,
time_field,
w,
kernel_name,
method,
arr_bws_net = NULL,
arr_bws_time = NULL,
diggle_correction = FALSE,
study_area = NULL,
adaptive = FALSE,
trim_net_bws = NULL,
trim_time_bws = NULL,
max_depth = 15,
digits = 5,
tol = 0.1,
agg = NULL,
sparse = TRUE,
zero_strat = "min_double",
grid_shape = c(1, 1),
sub_sample = 1,
verbose = TRUE,
check = TRUE

)

Arguments

bws_net An ordered numeric vector with all the network bandwidths
bws_time An ordered numeric vector with all the time bandwidths
lines A feature collection of linestrings representing the underlying network. The ge-

ometries must be simple Linestrings (may crash if some geometries are invalid)
without MultiLineSring.

events events A feature collection of points representing the events on the network. The
points will be snapped on the network to their closest line.

time_field The name of the field in events indicating when the events occurred. It must be
a numeric field

w A vector representing the weight of each event
kernel_name The name of the kernel to use. Must be one of triangle, gaussian, tricube, cosine,

triweight, quartic, epanechnikov or uniform.
method The method to use when calculating the NKDE, must be one of simple / discon-

tinuous / continuous (see nkde details for more information)
arr_bws_net An array with all the local netowrk bandwidths precalculated (for each event,

and at each possible combinaison of network and temporal bandwidths). The
dimensions must be c(length(net_bws), length(time_bws), nrow(events)))

arr_bws_time An array with all the local time bandwidths precalculated (for each event, and at
each possible combinaison of network and temporal bandwidths). The dimen-
sions must be c(length(net_bws), length(time_bws), nrow(events)))

bw_tnkde_cv_likelihood_calc.mc 27

diggle_correction

A Boolean indicating if the correction factor for edge effect must be used.

study_area A feature collection of polygons representing the limits of the study area.

adaptive A boolean indicating if local bandwidths must be calculated

trim_net_bws A numeric vector with the maximum local network bandwidth. If local band-
widths have higher values, they will be replaced by the corresponding value in
this vector.

trim_time_bws A numeric vector with the maximum local time bandwidth. If local bandwidths
have higher values, they will be replaced by the corresponding value in this
vector.

max_depth when using the continuous and discontinuous methods, the calculation time and
memory use can go wild if the network has many small edges (area with many of
intersections and many events). To avoid it, it is possible to set here a maximum
depth. Considering that the kernel is divided at intersections, a value of 10
should yield good estimates in most cases. A larger value can be used without
a problem for the discontinuous method. For the continuous method, a larger
value will strongly impact calculation speed.

digits The number of digits to retain from the spatial coordinates. It ensures that topol-
ogy is good when building the network. Default is 3. Too high a precision (high
number of digits) might break some connections

tol A float indicating the minimum distance between the events and the lines’ ex-
tremities when adding the point to the network. When points are closer, they are
added at the extremity of the lines.

agg A double indicating if the events must be aggregated within a distance. If NULL,
the events are aggregated only by rounding the coordinates.

sparse A Boolean indicating if sparse or regular matrices should be used by the Rcpp
functions. These matrices are used to store edge indices between two nodes in
a graph. Regular matrices are faster, but require more memory, in particular
with multiprocessing. Sparse matrices are slower (a bit), but require much less
memory.

zero_strat A string indicating what to do when density is 0 when calculating LOO density
estimate for an isolated event. "min_double" (default) replace the 0 value by the
minimum double possible on the machine. "remove" will remove them from the
final score. The first approach penalizes more strongly the small bandwidths.

grid_shape A vector of two values indicating how the study area must be split when per-
forming the calculus. Default is c(1,1) (no split). A finer grid could reduce
memory usage and increase speed when a large dataset is used. When using
multiprocessing, the work in each grid is dispatched between the workers.

sub_sample A float between 0 and 1 indicating the percentage of quadra to keep in the cal-
culus. For large datasets, it may be useful to limit the bandwidth evaluation and
thus reduce calculation time.

verbose A Boolean, indicating if the function should print messages about the process.

check A Boolean indicating if the geometry checks must be run before the operation.
This might take some times, but it will ensure that the CRS of the provided
objects are valid and identical, and that geometries are valid.

28 bw_tnkde_cv_likelihood_calc.mc

Details

See the function bws_tnkde_cv_likelihood_calc for more details. Note that the calculation is split
according to the grid_shape argument. If the grid_shape is c(1,1) then only one process can be
used.

Value

A matrix with the cross validation score. Each row corresponds to a network bandwidth and each
column to a time bandwidth (the higher the better).

Examples

loading the data
data(mtl_network)
data(bike_accidents)

converting the Date field to a numeric field (counting days)
bike_accidents$Time <- as.POSIXct(bike_accidents$Date, format = "%Y/%m/%d")
bike_accidents$Time <- difftime(bike_accidents$Time, min(bike_accidents$Time), units = "days")
bike_accidents$Time <- as.numeric(bike_accidents$Time)
bike_accidents <- subset(bike_accidents, bike_accidents$Time>=89)

future::plan(future::multisession(workers=1))

calculating the cross validation values
cv_scores <- bw_tnkde_cv_likelihood_calc.mc(

bws_net = seq(100,800,100),
bws_time = seq(10,60,5),
lines = mtl_network,
events = bike_accidents,
time_field = "Time",
w = rep(1, nrow(bike_accidents)),
kernel_name = "quartic",
method = "discontinuous",
diggle_correction = FALSE,
study_area = NULL,
max_depth = 10,
digits = 2,
tol = 0.1,
agg = 15,
sparse=TRUE,
grid_shape=c(1,1),
sub_sample=1,
verbose = FALSE,
check = TRUE)

make sure any open connections are closed afterward
if (!inherits(future::plan(), "sequential")) future::plan(future::sequential)

calc_isochrones 29

calc_isochrones Isochrones calculation

Description

Calculate isochrones on a network

Usage

calc_isochrones(
lines,
dists,
start_points,
donught = FALSE,
mindist = 1,
weight = NULL,
direction = NULL

)

Arguments

lines A feature collection of lines representing the edges of the network

dists A vector of the size of the desired isochrones. Can also be a list of vector when
each start point must have its own distances. If so, the length of the list must be
equal to the number of rows in start_points.

start_points A feature collection of points representing the starting points if the isochrones

donught A boolean indicating if the returned lines must overlap for each distance (FALSE,
default) or if the lines must be cut between each distance step (TRUE).

mindist The minimum distance between two points. When two points are too close, they
might end up snapped at the same location on a line. Default is 1.

weight The name of the column in lines to use an edge weight. If NULL, the geograph-
ical length is used. Note that if lines are split during the network creation, the
weight column is recalculated proportionally to the new lines length.

direction The name of the column indicating authorized travelling direction on lines. if
NULL, then all lines can be used in both directions (undirected). The values of
the column must be "FT" (From - To), "TF" (To - From) or "Both".

Details

An isochrone is the set of reachable lines around a node in a network within a specified distance (or
time). This function perform dynamic segmentation to return the part of the edges reached and not
only the fully covered edges. Several start points and several distances can be given. The network
can also be directed. The lines returned by the function are the most accurate representation of the
isochrones. However, if polygons are required for mapping, the vignette "Calculating isochrones"
shows how to create smooth polygons from the returned sets of lines.

30 closest_points

Value

A feature collection of lines representing the isochrones with the following columns

• point_id: the index of the point at the centre of the isochrone;
• distance: the size of the isochrone

Examples

library(sf)
creating a simple network
wkt_lines <- c(

"LINESTRING (0.0 0.0, 5.0 0.0)",
"LINESTRING (0.0 -5.0, 5.0 -5.0)",
"LINESTRING (5.0 0.0, 5.0 5.0)",
"LINESTRING (5.0 -5.0, 5.0 -10.0)",
"LINESTRING (5.0 0.0, 5.0 -5.0)",
"LINESTRING (5.0 0.0, 10.0 0.0)",
"LINESTRING (5.0 -5.0, 10.0 -5.0)",
"LINESTRING (10.0 0, 10.0 -5.0)",
"LINESTRING (10.0 -10.0, 10.0 -5.0)",
"LINESTRING (15.0 -5.0, 10.0 -5.0)",
"LINESTRING (10.0 0.0, 15.0 0.0)",
"LINESTRING (10.0 0.0, 10.0 5.0)")

linesdf <- data.frame(wkt = wkt_lines,
id = paste("l",1:length(wkt_lines),sep=""))

lines <- st_as_sf(linesdf, wkt = "wkt", crs = 32188)

and the definition of the starting point
start_points <- data.frame(x=c(5),

y=c(-2.5))
start_points <- st_as_sf(start_points, coords = c("x","y"), crs = 32188)

setting the directions

lines$direction <- "Both"
lines[6,"direction"] <- "TF"

isochrones <- calc_isochrones(lines,dists = c(10,12),
donught = TRUE,
start_points = start_points,
direction = "direction")

closest_points Find closest points

Description

Solve the nearest neighbour problem for two feature collections of points This is a simple wrap-up
of the dbscan::kNN function

cosine_kernel 31

Usage

closest_points(origins, targets)

Arguments

origins a feature collection of points

targets a feature collection of points

Value

for each origin point, the index of the nearest target point

Examples

data(mtl_libraries)
data(mtl_theatres)
close_libs <- closest_points(mtl_theatres, mtl_libraries)

cosine_kernel Cosine kernel

Description

Function implementing the cosine kernel.

Usage

cosine_kernel(d, bw)

Arguments

d The distance from the event

bw The bandwidth used for the kernel

Value

The estimated density

Examples

#This is an internal function, no example provided

32 cross_kfunctions

cross_gfunc_cpp c++ cross g function

Description

c++ cross g function (INTERNAL)

Usage

cross_gfunc_cpp(dist_mat, start, end, step, width, Lt, na, nb, wa, wb)

Arguments

dist_mat A matrix with the distances between points

start A float, the start value for evaluating the g-function

end A float, the last value for evaluating the g-function

step A float, the jump between two evaluations of the k-function

width The width of each donut

Lt The total length of the network

na The number of points in set A

nb The number of points in set B

wa The weight of the points in set A (coincident points)

wb The weight of the points in set B (coincident points)

cross_kfunctions Network cross k and g functions (maturing)

Description

Calculate the cross k and g functions for a set of points on a network. (maturing)

Usage

cross_kfunctions(
lines,
pointsA,
pointsB,
start,
end,
step,
width,
nsim,
conf_int = 0.05,

cross_kfunctions 33

digits = 2,
tol = 0.1,
resolution = NULL,
agg = NULL,
verbose = TRUE,
return_sims = FALSE,
calc_g_func = TRUE

)

Arguments

lines A feature collection of linestrings representing the underlying network. The ge-
ometries must be simple Linestrings (may crash if some geometries are invalid)
without MultiLineSring

pointsA A feature collection of points representing the points to which the distances are
calculated.

pointsB A feature collection of points representing the points from which the distances
are calculated.

start A double, the lowest distance used to evaluate the k and g functions

end A double, the highest distance used to evaluate the k and g functions

step A double, the step between two evaluations of the k and g function. start, end
and step are used to create a vector of distances with the function seq

width The width of each donut for the g-function. Half of the width is applied on both
sides of the considered distance

nsim An integer indicating the number of Monte Carlo simulations to perform for
inference

conf_int A double indicating the width confidence interval (default = 0.05) calculated on
the Monte Carlo simulations

digits An integer indicating the number of digits to retain from the spatial coordinates

tol When adding the points to the network, specify the minimum distance between
these points and the lines’ extremities. When points are closer, they are added
at the extremity of the lines

resolution When simulating random points on the network, selecting a resolution will re-
duce greatly the calculation time. When resolution is null the random points
can occur everywhere on the graph. If a value is specified, the edges are split
according to this value and the random points can only be vertices on the new
network

agg A double indicating if the events must be aggregated within a distance. If NULL,
the events are aggregated only by rounding the coordinates

verbose A Boolean indicating if progress messages should be displayed

return_sims a boolean indicating if the simulated k and g values must also be returned.

calc_g_func A Boolean indicating if the G function must also be calculated (TRUE by de-
fault). If FALSE, then only the K function is calculated

34 cross_kfunctions.mc

Details

The cross k-function is a method to characterize the dispersion of a set of points (A) around a
second set of points (B). For each point in B, the numbers of other points in A in subsequent radii
are calculated. This empirical cross k-function can be more or less clustered than a cross k-function
obtained if the points in A were randomly located around points in B. In a network, the network
distance is used instead of the Euclidean distance. This function uses Monte Carlo simulations to
assess if the points are clustered or dispersed and gives the results as a line plot. If the line of the
observed cross k-function is higher than the shaded area representing the values of the simulations,
then the points in A are more clustered around points in B than what we can expect from randomness
and vice-versa. The function also calculates the cross g-function, a modified version of the cross
k-function using rings instead of disks. The width of the ring must be chosen. The main interest is
to avoid the cumulative effect of the classical k-function. Note that the cross k-function of points A
around B is not necessarily the same as the cross k-function of points B around A. This function is
maturing, it works as expected (unit tests) but will probably be modified in the future releases (gain
speed, advanced features, etc.).

Value

A list with the following values :

plotk A ggplot2 object representing the values of the cross k-function

plotg A ggplot2 object representing the values of the cross g-function

values A DataFrame with the values used to build the plots

Examples

data(main_network_mtl)
data(mtl_libraries)
data(mtl_theatres)
result <- cross_kfunctions(main_network_mtl, mtl_theatres, mtl_libraries,

start = 0, end = 2500, step = 10, width = 250,
nsim = 50, conf_int = 0.05, digits = 2,
tol = 0.1, agg = NULL, verbose = FALSE)

cross_kfunctions.mc Network cross k and g functions (maturing, multicore)

Description

Calculate the cross k and g functions for a set of points on a network. For more details, see the
document of the function cross_kfunctions.

cross_kfunctions.mc 35

Usage

cross_kfunctions.mc(
lines,
pointsA,
pointsB,
start,
end,
step,
width,
nsim,
conf_int = 0.05,
digits = 2,
tol = 0.1,
resolution = NULL,
agg = NULL,
verbose = TRUE,
return_sims = FALSE,
calc_g_func = TRUE,
grid_shape = c(1, 1)

)

Arguments

lines A feature collection of linestrings representing the underlying network. The ge-
ometries must be simple Linestrings (may crash if some geometries are invalid)
without MultiLineSring

pointsA A feature collection of points representing the points to which the distances are
calculated.

pointsB A feature collection of points representing the points from which the distances
are calculated.

start A double, the lowest distance used to evaluate the k and g functions

end A double, the highest distance used to evaluate the k and g functions

step A double, the step between two evaluations of the k and g function. start, end
and step are used to create a vector of distances with the function seq

width The width of each donut for the g-function. Half of the width is applied on both
sides of the considered distance

nsim An integer indicating the number of Monte Carlo simulations to perform for
inference

conf_int A double indicating the width confidence interval (default = 0.05) calculated on
the Monte Carlo simulations

digits An integer indicating the number of digits to retain from the spatial coordinates

tol When adding the points to the network, specify the minimum distance between
these points and the lines’ extremities. When points are closer, they are added
at the extremity of the lines

36 cross_kfunc_cpp

resolution When simulating random points on the network, selecting a resolution will re-
duce greatly the calculation time. When resolution is null the random points
can occur everywhere on the graph. If a value is specified, the edges are split
according to this value and the random points can only be vertices on the new
network

agg A double indicating if the events must be aggregated within a distance. If NULL,
the events are aggregated only by rounding the coordinates

verbose A Boolean indicating if progress messages should be displayed

return_sims a boolean indicating if the simulated k and g values must also be returned.

calc_g_func A Boolean indicating if the G function must also be calculated (TRUE by de-
fault). If FALSE, then only the K function is calculated

grid_shape A vector of two values indicating how the study area must be split when per-
forming the calculus. Default is c(1,1) (no split). A finer grid could reduce
memory usage and increase speed when a large dataset is used. When using
multiprocessing, the work in each grid is dispatched between the workers.

Value

A list with the following values :

plotk A ggplot2 object representing the values of the cross k-function

plotg A ggplot2 object representing the values of the cross g-function

values A DataFrame with the values used to build the plots

Examples

data(main_network_mtl)
data(mtl_libraries)
data(mtl_theatres)
future::plan(future::multisession(workers=1))
result <- cross_kfunctions.mc(main_network_mtl, mtl_theatres, mtl_libraries,

start = 0, end = 2500, step = 10, width = 250,
nsim = 50, conf_int = 0.05, digits = 2,
tol = 0.1, agg = NULL, verbose = FALSE)

cross_kfunc_cpp c++ cross k function

Description

c++ cross k function

Usage

cross_kfunc_cpp(dist_mat, start, end, step, Lt, na, nb, wa, wb)

epanechnikov_kernel 37

Arguments

dist_mat A square matrix with the distances between points

start A float, the start value for evaluating the k-function

end A float, the last value for evaluating the k-function

step A float, the jump between two evaluations of the k-function

Lt The total length of the network

na The number of points in set A

nb The number of points in set B

wa The weight of the points in set A (coincident points)

wb The weight of the points in set B (coincident points)

epanechnikov_kernel Epanechnikov kernel

Description

Function implementing the epanechnikov kernel.

Usage

epanechnikov_kernel(d, bw)

Arguments

d The distance from the event

bw The bandwidth used for the kernel

Value

The estimated density

Examples

#This is an internal function, no example provided

38 esc_kernel_loo_tnkde

esc_kernel_loo_nkde The worker function to calculate continuous TNKDE likelihood cv

Description

The worker function to calculate continuous TNKDE likelihood cv (INTERNAL)

Arguments

kernel_func a cpp pointer function (selected with the kernel name)

edge_mat matrix, to find the id of each edge given two neighbours.

events a NumericVector indicating the nodes in the graph being events

neighbour_list a List, giving for each node an IntegerVector with its neighbours

v the actual node to consider (int)

bws_net an arma::vec with the network bandwidths to consider

line_weights a vector with the length of the edges

depth the actual recursion depth

max_depth the maximum recursion depth

Value

a cube with the impact of the event v on each other events for each pair of bandwidths (cube(bws_net,
bws_time, events))

esc_kernel_loo_tnkde The worker function to calculate continuous TNKDE likelihood cv

Description

The worker function to calculate continuous TNKDE likelihood cv (INTERNAL)

Arguments

kernel_func a cpp pointer function (selected with the kernel name)

edge_mat matrix, to find the id of each edge given two neighbours.

events a NumericVector indicating the nodes in the graph being events

time_events a NumericVector indicating the timestamp of each event

neighbour_list a List, giving for each node an IntegerVector with its neighbours

v the actual node to consider (int)

v_time the time of v (double)

bws_net an arma::vec with the network bandwidths to consider

esd_kernel_loo_nkde 39

bws_time an arma::vec with the time bandwidths to consider

line_weights a vector with the length of the edges

depth the actual recursion depth

max_depth the maximum recursion depth

Value

a cube with the impact of the event v on each other event for each pair of bandwidths (cube(bws_net,
bws_time, events))

esd_kernel_loo_nkde The worker function to calculate discontinuous TNKDE likelihood cv

Description

The worker function to calculate discontinuous TNKDE likelihood cv (INTERNAL)

Arguments

kernel_func a cpp pointer function (selected with the kernel name)

edge_mat matrix, to find the id of each edge given two neighbours.

events a NumericVector indicating the nodes in the graph being events

neighbour_list a List, giving for each node an IntegerVector with its neighbours

v the actual node to consider (int)

bws_net an arma::vec with the network bandwidths to consider

line_weights a vector with the length of the edges

depth the actual recursion depth

max_depth the maximum recursion depth

Value

a cube with the impact of the event v on each other events for each pair of bandwidths (cube(bws_net,
bws_time, events))

40 gaussian_kernel

esd_kernel_loo_tnkde The worker function to calculate discontinuous TNKDE likelihood cv

Description

The worker function to calculate discontinuous TNKDE likelihood cv (INTERNAL)

Arguments

kernel_func a cpp pointer function (selected with the kernel name)

edge_mat matrix, to find the id of each edge given two neighbours.

events a NumericVector indicating the nodes in the graph being events

time_events a NumericVector indicating the timestamp of each event

neighbour_list a List, giving for each node an IntegerVector with its neighbours

v the actual node to consider (int)

v_time the time of v (double)

bws_net an arma::vec with the network bandwidths to consider

bws_time an arma::vec with the time bandwidths to consider

line_weights a vector with the length of the edges

depth the actual recursion depth

max_depth the maximum recursion depth

Value

a cube with the impact of the event v on each other event for each pair of bandwidths (cube(bws_net,
bws_time, events))

gaussian_kernel Gaussian kernel

Description

Function implementing the gaussian kernel.

Usage

gaussian_kernel(d, bw)

Arguments

d The distance from the event

bw The bandwidth used for the kernel

gaussian_kernel_scaled 41

Value

The estimated density

Examples

#This is an internal function, no example provided

gaussian_kernel_scaled

Scaled gaussian kernel

Description

Function implementing the scaled gaussian kernel.

Usage

gaussian_kernel_scaled(d, bw)

Arguments

d The distance from the event

bw The bandwidth used for the kernel

Value

The estimated density

Examples

#This is an internal function, no example provided

gfunc_cpp c++ g function

Description

c++ g function (INTERNAL)

Usage

gfunc_cpp(dist_mat, start, end, step, width, Lt, n, w)

42 graph_checking

Arguments

dist_mat A square matrix with the distances between points

start A float, the start value for evaluating the g-function

end A float, the last value for evaluating the g-function

step A float, the jump between two evaluations of the k-function

width The width of each donut

Lt The total length of the network

n The number of points

w The weight of the points (coincident points)

Value

A numeric vector with the values of the g function evaluated at the required distances

graph_checking Topological error

Description

A utility function to find topological errors in a network.

Usage

graph_checking(lines, digits, max_search = 5, tol = 0.1)

Arguments

lines A feature collection of linestrings representing the network

digits An integer indicating the number of digits to retain for coordinates

max_search The maximum number of nearest neighbour to search to find close_nodes

tol The minimum distance expected between two nodes. If two nodes are closer,
they are returned in the result of the function.

Details

This function can be used to check for three common problems in networks: disconnected compo-
nents, dangle nodes and close nodes. When a network has disconnected components, this means
that several unconnected graphs are composing the overall network. This can be caused by topo-
logical errors in the dataset. Dangle nodes are nodes connected to only one other node. This type of
node can be normal at the border of a network, but can also be caused by topological errors. Close
nodes are nodes that are not coincident, but so close that they probably should be coincident.

kfunctions 43

Value

A list with three elements. The first is a feature collection of points indicating for each node of the
network to which component it belongs. The second is a feature collection of points with nodes that
are too close one of each other. The third is a feature collection of points with the dangle nodes of
the network.

Examples

data(mtl_netowrk)
topo_errors <- graph_checking(mtl_network, 2)

kfunctions Network k and g functions (maturing)

Description

Calculate the k and g functions for a set of points on a network (maturing).

Usage

kfunctions(
lines,
points,
start,
end,
step,
width,
nsim,
conf_int = 0.05,
digits = 2,
tol = 0.1,
agg = NULL,
verbose = TRUE,
return_sims = FALSE,
calc_g_func = TRUE,
resolution = NULL

)

Arguments

lines A feature collection of linestrings representing the underlying network. The ge-
ometries must be simple Linestrings (may crash if some geometries are invalid)
without MultiLineSring

points A feature collection of points representing the points on the network. These
points will be snapped on their nearest line

start A double, the lowest distance used to evaluate the k and g functions

44 kfunctions

end A double, the highest distance used to evaluate the k and g functions

step A double, the step between two evaluations of the k and g function. start, end
and step are used to create a vector of distances with the function seq

width The width of each donut for the g-function. Half of the width is applied on both
sides of the considered distance

nsim An integer indicating the number of Monte Carlo simulations to perform for
inference

conf_int A double indicating the width confidence interval (default = 0.05) calculated on
the Monte Carlo simulations

digits An integer indicating the number of digits to retain from the spatial coordinates

tol When adding the points to the network, specify the minimum distance between
these points and the lines’ extremities. When points are closer, they are added
at the extremity of the lines

agg A double indicating if the events must be aggregated within a distance. If NULL,
the events are aggregated only by rounding the coordinates

verbose A Boolean indicating if progress messages should be displayed

return_sims a boolean indicating if the simulated k and g values must also be returned.

calc_g_func A Boolean indicating if the G function must also be calculated (TRUE by de-
fault). If FALSE, then only the K function is calculated

resolution When simulating random points on the network, selecting a resolution will re-
duce greatly the calculation time. When resolution is null the random points
can occur everywhere on the graph. If a value is specified, the edges are split
according to this value and the random points can only be vertices on the new
network

Details

The k-function is a method to characterize the dispersion of a set of points. For each point, the
numbers of other points in subsequent radii are calculated. This empirical k-function can be more
or less clustered than a k-function obtained if the points were randomly located in space. In a
network, the network distance is used instead of the Euclidean distance. This function uses Monte
Carlo simulations to assess if the points are clustered or dispersed, and gives the results as a line
plot. If the line of the observed k-function is higher than the shaded area representing the values
of the simulations, then the points are more clustered than what we can expect from randomness
and vice-versa. The function also calculates the g-function, a modified version of the k-function
using rings instead of disks. The width of the ring must be chosen. The main interest is to avoid the
cumulative effect of the classical k-function. This function is maturing, it works as expected (unit
tests) but will probably be modified in the future releases (gain speed, advanced features, etc.).

Value

A list with the following values :

• plotk: A ggplot2 object representing the values of the k-function

• plotg: A ggplot2 object representing the values of the g-function

• values: A DataFrame with the values used to build the plots

kfunctions.mc 45

Examples

data(main_network_mtl)
data(mtl_libraries)
result <- kfunctions(main_network_mtl, mtl_libraries,

start = 0, end = 2500, step = 100,
width = 200, nsim = 50,
conf_int = 0.05, tol = 0.1, agg = NULL,
calc_g_func = TRUE,
verbose = FALSE)

kfunctions.mc Network k and g functions (multicore)

Description

Calculate the k and g functions for a set of points on a network with multicore support. For details,
please see the function kfunctions. (maturing)

Usage

kfunctions.mc(
lines,
points,
start,
end,
step,
width,
nsim,
conf_int = 0.05,
digits = 2,
tol = 0.1,
agg = NULL,
verbose = TRUE,
return_sims = FALSE,
calc_g_func = TRUE,
resolution = NULL,
grid_shape = c(1, 1)

)

Arguments

lines A feature collection of linestrings representing the underlying network. The ge-
ometries must be simple Linestrings (may crash if some geometries are invalid)
without MultiLineSring

points A feature collection of points representing the points on the network. These
points will be snapped on their nearest line

46 kfunctions.mc

start A double, the lowest distance used to evaluate the k and g functions

end A double, the highest distance used to evaluate the k and g functions

step A double, the step between two evaluations of the k and g function. start, end
and step are used to create a vector of distances with the function seq

width The width of each donut for the g-function. Half of the width is applied on both
sides of the considered distance

nsim An integer indicating the number of Monte Carlo simulations to perform for
inference

conf_int A double indicating the width confidence interval (default = 0.05) calculated on
the Monte Carlo simulations

digits An integer indicating the number of digits to retain from the spatial coordinates

tol When adding the points to the network, specify the minimum distance between
these points and the lines’ extremities. When points are closer, they are added
at the extremity of the lines

agg A double indicating if the events must be aggregated within a distance. If NULL,
the events are aggregated only by rounding the coordinates

verbose A Boolean indicating if progress messages should be displayed

return_sims a boolean indicating if the simulated k and g values must also be returned.

calc_g_func A Boolean indicating if the G function must also be calculated (TRUE by de-
fault). If FALSE, then only the K function is calculated

resolution When simulating random points on the network, selecting a resolution will re-
duce greatly the calculation time. When resolution is null the random points
can occur everywhere on the graph. If a value is specified, the edges are split
according to this value and the random points can only be vertices on the new
network

grid_shape A vector of two values indicating how the study area must be split when per-
forming the calculus. Default is c(1,1) (no split). A finer grid could reduce
memory usage and increase speed when a large dataset is used. When using
multiprocessing, the work in each grid is dispatched between the workers.

Details

For details, please look at the function kfunctions.

Value

A list with the following values :

• plotk: A ggplot2 object representing the values of the k-function

• plotg: A ggplot2 object representing the values of the g-function

• values: A DataFrame with the values used to build the plots

kfunc_cpp 47

Examples

data(main_network_mtl)
data(mtl_libraries)
result <- kfunctions(main_network_mtl, mtl_libraries,

start = 0, end = 2500, step = 10,
width = 200, nsim = 50,
conf_int = 0.05, tol = 0.1, agg = NULL,
verbose = FALSE)

kfunc_cpp c++ k function

Description

c++ k function (INTERNAL)

Usage

kfunc_cpp(dist_mat, start, end, step, Lt, n, w)

Arguments

dist_mat A square matrix with the distances between points

start A float, the start value for evaluating the k-function

end A float, the last value for evaluating the k-function

step A float, the jump between two evaluations of the k-function

Lt The total length of the network

n The number of points

w The weight of the points (coincident points)

Value

A numeric vector with the values of the k function evaluated at the required distances

48 k_nt_functions

k_nt_functions Network k and g functions for spatio-temporal data (experimental,
NOT READY FOR USE)

Description

Calculate the k and g functions for a set of points on a network and in time (experimental, NOT
READY FOR USE).

Usage

k_nt_functions(
lines,
points,
points_time,
start_net,
end_net,
step_net,
width_net,
start_time,
end_time,
step_time,
width_time,
nsim,
conf_int = 0.05,
digits = 2,
tol = 0.1,
resolution = NULL,
agg = NULL,
verbose = TRUE,
calc_g_func = TRUE

)

Arguments

lines A feature collection of linestrings representing the underlying network. The ge-
ometries must be simple Linestrings (may crash if some geometries are invalid)
without MultiLineSring

points A feature collection of points representing the points on the network. These
points will be snapped on their nearest line

points_time A numeric vector indicating when the point occured

start_net A double, the lowest network distance used to evaluate the k and g functions

end_net A double, the highest network distance used to evaluate the k and g functions

step_net A double, the step between two evaluations of the k and g for the network dis-
tance function. start_net, end_net and step_net are used to create a vector of
distances with the function seq

k_nt_functions 49

width_net The width (network distance) of each donut for the g-function. Half of the width
is applied on both sides of the considered distance

start_time A double, the lowest time distance used to evaluate the k and g functions

end_time A double, the highest time distance used to evaluate the k and g functions

step_time A double, the step between two evaluations of the k and g for the time distance
function. start_time, end_time and step_time are used to create a vector of dis-
tances with the function seq

width_time The width (time distance) of each donut for the g-function. Half of the width is
applied on both sides of the considered distance

nsim An integer indicating the number of Monte Carlo simulations to perform for
inference

conf_int A double indicating the width confidence interval (default = 0.05) calculated on
the Monte Carlo simulations

digits An integer indicating the number of digits to retain from the spatial coordinates

tol When adding the points to the network, specify the minimum distance between
these points and the lines’ extremities. When points are closer, they are added
at the extremity of the lines

resolution When simulating random points on the network, selecting a resolution will re-
duce greatly the calculation time. When resolution is null the random points
can occur everywhere on the graph. If a value is specified, the edges are split
according to this value and the random points can only be vertices on the new
network

agg A double indicating if the events must be aggregated within a distance. If NULL,
the events are aggregated only by rounding the coordinates

verbose A Boolean indicating if progress messages should be displayed

calc_g_func A boolean indicating if the G function must also be calculated

Details

The k-function is a method to characterize the dispersion of a set of points. For each point, the
numbers of other points in subsequent radii are calculated in both space and time. This empirical
k-function can be more or less clustered than a k-function obtained if the points were randomly
located . In a network, the network distance is used instead of the Euclidean distance. This function
uses Monte Carlo simulations to assess if the points are clustered or dispersed. The function also
calculates the g-function, a modified version of the k-function using rings instead of disks. The
width of the ring must be chosen. The main interest is to avoid the cumulative effect of the classical
k-function. This function is maturing, it works as expected (unit tests) but will probably be modified
in the future releases (gain speed, advanced features, etc.).

Value

A list with the following values :

• obs_k: A matrix with the observed k-values

• lower_k: A matrix with the lower bounds of the simulated k-values

50 k_nt_functions.mc

• upper_k: A matrix with the upper bounds of the simulated k-values

• obs_g: A matrix with the observed g-values

• lower_g: A matrix with the lower bounds of the simulated g-values

• upper_g: A matrix with the upper bounds of the simulated g-values

• distances_net: A vector with the used network distances

• distances_time: A vector with the used time distances

Examples

data(mtl_network)
data(bike_accidents)

converting the Date field to a numeric field (counting days)
bike_accidents$Time <- as.POSIXct(bike_accidents$Date, format = "%Y/%m/%d")
start <- as.POSIXct("2016/01/01", format = "%Y/%m/%d")
bike_accidents$Time <- difftime(bike_accidents$Time, start, units = "days")
bike_accidents$Time <- as.numeric(bike_accidents$Time)

values <- k_nt_functions(
lines = mtl_network,
points = bike_accidents,
points_time = bike_accidents$Time,
start_net = 0 ,
end_net = 2000,
step_net = 10,
width_net = 200,
start_time = 0,
end_time = 360,
step_time = 7,
width_time = 14,
nsim = 50,
conf_int = 0.05,
digits = 2,
tol = 0.1,
resolution = NULL,
agg = 15,
verbose = TRUE)

k_nt_functions.mc Network k and g functions for spatio-temporal data (multicore, exper-
imental, NOT READY FOR USE)

Description

Calculate the k and g functions for a set of points on a network and in time (multicore, experimental,
NOT READY FOR USE).

k_nt_functions.mc 51

Usage

k_nt_functions.mc(
lines,
points,
points_time,
start_net,
end_net,
step_net,
width_net,
start_time,
end_time,
step_time,
width_time,
nsim,
conf_int = 0.05,
digits = 2,
tol = 0.1,
resolution = NULL,
agg = NULL,
verbose = TRUE,
calc_g_func = TRUE,
grid_shape = c(1, 1)

)

Arguments

lines A feature collection of linestrings representing the underlying network. The ge-
ometries must be simple Linestrings (may crash if some geometries are invalid)
without MultiLineSring

points A feature collection of points representing the points on the network. These
points will be snapped on their nearest line

points_time A numeric vector indicating when the point occured
start_net A double, the lowest network distance used to evaluate the k and g functions
end_net A double, the highest network distance used to evaluate the k and g functions
step_net A double, the step between two evaluations of the k and g for the network dis-

tance function. start_net, end_net and step_net are used to create a vector of
distances with the function seq

width_net The width (network distance) of each donut for the g-function. Half of the width
is applied on both sides of the considered distance

start_time A double, the lowest time distance used to evaluate the k and g functions
end_time A double, the highest time distance used to evaluate the k and g functions
step_time A double, the step between two evaluations of the k and g for the time distance

function. start_time, end_time and step_time are used to create a vector of dis-
tances with the function seq

width_time The width (time distance) of each donut for the g-function. Half of the width is
applied on both sides of the considered distance

52 k_nt_functions.mc

nsim An integer indicating the number of Monte Carlo simulations to perform for
inference

conf_int A double indicating the width confidence interval (default = 0.05) calculated on
the Monte Carlo simulations

digits An integer indicating the number of digits to retain from the spatial coordinates

tol When adding the points to the network, specify the minimum distance between
these points and the lines’ extremities. When points are closer, they are added
at the extremity of the lines

resolution When simulating random points on the network, selecting a resolution will re-
duce greatly the calculation time. When resolution is null the random points
can occur everywhere on the graph. If a value is specified, the edges are split
according to this value and the random points can only be vertices on the new
network

agg A double indicating if the events must be aggregated within a distance. If NULL,
the events are aggregated only by rounding the coordinates

verbose A Boolean indicating if progress messages should be displayed

calc_g_func A boolean indicating if the G function must also be calculated

grid_shape A vector of two values indicating how the study area must be split when per-
forming the calculus. Default is c(1,1) (no split). A finer grid could reduce
memory usage and increase speed when a large dataset is used. When using
multiprocessing, the work in each grid is dispatched between the workers.

Details

The k-function is a method to characterize the dispersion of a set of points. For each point, the
numbers of other points in subsequent radii are calculated. This empirical k-function can be more
or less clustered than a k-function obtained if the points were randomly located in space. In a
network, the network distance is used instead of the Euclidean distance. This function uses Monte
Carlo simulations to assess if the points are clustered or dispersed, and gives the results as a line
plot. If the line of the observed k-function is higher than the shaded area representing the values
of the simulations, then the points are more clustered than what we can expect from randomness
and vice-versa. The function also calculates the g-function, a modified version of the k-function
using rings instead of disks. The width of the ring must be chosen. The main interest is to avoid the
cumulative effect of the classical k-function. This function is maturing, it works as expected (unit
tests) but will probably be modified in the future releases (gain speed, advanced features, etc.).

Value

A list with the following values :

• obs_k: A matrix with the observed k-values

• lower_k: A matrix with the lower bounds of the simulated k-values

• upper_k: A matrix with the upper bounds of the simulated k-values

• obs_g: A matrix with the observed g-values

• lower_g: A matrix with the lower bounds of the simulated g-values

lines_center 53

• upper_g: A matrix with the upper bounds of the simulated g-values

• distances_net: A vector with the used network distances

• distances_time: A vector with the used time distances

lines_center Centre points of lines

Description

Generate a feature collection of points at the centre of the lines of a feature collection of linestrings.
The length of the lines is used to determine their centres.

Usage

lines_center(lines)

Arguments

lines A feature collection of linestrings to use

Value

A feature collection of points

Examples

data(mtl_network)
centers <- lines_center(mtl_network)

lines_direction Unify lines direction

Description

A function to deal with the directions of lines. It ensures that only From-To situation are present by
reverting To-From lines. For the lines labelled as To-From, the order of their vertices is reverted.

Usage

lines_direction(lines, field)

54 lines_extremities

Arguments

lines A sf object with linestring type geometries

field Indicate a field giving information about authorized travelling direction on lines.
if NULL, then all lines can be used in both directions. Must be the name of a
column otherwise. The values of the column must be "FT" (From - To), "TF"
(To - From) or "Both".

Value

A sf object with linestring type geometries

Examples

data(mtl_network)
mtl_network$length <- as.numeric(sf::st_length(mtl_network))
mtl_network$direction <- "Both"
mtl_network[6, "direction"] <- "TF"
mtl_network_directed <- lines_direction(mtl_network, "direction")

lines_extremities Get lines extremities

Description

Generate a feature collection of points with the first and last vertex of each line in a feature collection
of linestrings.

Usage

lines_extremities(lines)

Arguments

lines A feature collection of linestrings (simple Linestrings)

Value

A feature collection of points

Examples

wkt_lines <- c(
"LINESTRING (0 0, 1 0)",
"LINESTRING (1 0, 2 0)",
"LINESTRING (2 0, 3 0)",
"LINESTRING (0 1, 1 1)")

linesdf <- data.frame(wkt = wkt_lines,

lines_points_along 55

id = paste("l",1:length(wkt_lines),sep=""))

all_lines <- sf::st_as_sf(linesdf, wkt = "wkt")
all_lines <- cbind(linesdf$wkt,all_lines)
points <- lines_extremities(all_lines)

lines_points_along Points along lines

Description

Generate a feature collection of points along the lines of feature collection of Linestrings.

Usage

lines_points_along(lines, dist)

Arguments

lines A feature collection of linestrings to use

dist The distance between the points along the lines

Value

A feature collection of points

Examples

data(mtl_network)
new_pts <- lines_points_along(mtl_network,50)

lixelize_lines Cut lines into lixels

Description

Cut the lines of a feature collection of linestrings into lixels with a specified minimal distance may
fail if the line geometries are self intersecting.

Usage

lixelize_lines(lines, lx_length, mindist = NULL)

56 lixelize_lines.mc

Arguments

lines The sf object with linestring geometry type to modify

lx_length The length of a lixel

mindist The minimum length of a lixel. After cut, if the length of the final lixel is shorter
than the minimum distance, then it is added to the previous lixel. if NULL, then
mindist = maxdist/10. Note that the segments that are already shorter than the
minimum distance are not modified.

Value

An sf object with linestring geometry type

Examples

data(mtl_network)
lixels <- lixelize_lines(mtl_network,150,50)

lixelize_lines.mc Cut lines into lixels (multicore)

Description

Cut the lines of a feature collection of linestrings into lixels with a specified minimal distance may
fail if the line geometries are self intersecting with multicore support.

Usage

lixelize_lines.mc(
lines,
lx_length,
mindist = NULL,
verbose = TRUE,
chunk_size = 100

)

Arguments

lines A feature collection of linestrings to convert to lixels

lx_length The length of a lixel

mindist The minimum length of a lixel. After cut, if the length of the final lixel is shorter
than the minimum distance, then it is added to the previous lixel. If NULL, then
mindist = maxdist/10

verbose A Boolean indicating if a progress bar must be displayed

chunk_size The size of a chunk used for multiprocessing. Default is 100.

main_network_mtl 57

Value

A feature collection of linestrings

Examples

data(mtl_network)
future::plan(future::multisession(workers=1))
lixels <- lixelize_lines.mc(mtl_network,150,50)
make sure any open connections are closed afterward
if (!inherits(future::plan(), "sequential")){
future::plan(future::sequential)
}

main_network_mtl Primary road network of Montreal

Description

A feature collection (sf object) representing the primary road network of Montreal. The EPSG is
3797, and the data comes from the Montreal OpenData website.

Usage

main_network_mtl

Format

A sf object with 2945 rows and 2 variables

TYPE the type of road

geom the geometry (linestrings)

Source

https://donnees.montreal.ca/dataset/geobase

https://donnees.montreal.ca/dataset/geobase

58 mtl_network

mtl_libraries Libraries of Montreal

Description

A feature collection (sf object) representing the libraries of Montreal. The EPSG is 3797 and the
data comes from the Montreal OpenData website.

Usage

mtl_libraries

Format

A sf object with 55 rows and 3 variables.

CP the postal code
NAME the name of the library
geom the geometry (points)

Source

https://donnees.montreal.ca/dataset/lieux-culturels

mtl_network Road network of Montreal

Description

A feature collection (sf object) representing the road network of Montreal. The EPSG is 3797, and
the data comes from the Montreal OpenData website. It is only a small subset in central districts
used to demonstrate the main functions of spNetwork.

Usage

mtl_network

Format

A sf object with 2945 rows and 2 variables

ClsRte the category of the road
geom the geometry (linestrings)

Source

https://donnees.montreal.ca/dataset/geobase

https://donnees.montreal.ca/dataset/lieux-culturels
https://donnees.montreal.ca/dataset/geobase

mtl_theatres 59

mtl_theatres Theatres of Montreal

Description

A feature collection (sf object) representing the theatres of Montreal. The EPSG is 3797 and the
data comes from the Montreal OpenData website.

Usage

mtl_theatres

Format

A sf object with 54 rows and 3 variables.

CP the postal code
NAME the name of the theatre
geom the geometry (points)

Source

https://donnees.montreal.ca/dataset/lieux-culturels

network_knn K-nearest points on network

Description

Calculate the K-nearest points for a set of points on a network.

Usage

network_knn(
origins,
lines,
k,
destinations = NULL,
maxdistance = 0,
snap_dist = Inf,
line_weight = "length",
direction = NULL,
grid_shape = c(1, 1),
verbose = FALSE,
digits = 3,
tol = 0.1

)

https://donnees.montreal.ca/dataset/lieux-culturels

60 network_knn

Arguments

origins A feature collection of points, for each point, its k nearest neighbours will be
found on the network.

lines A feature collection of linestrings representing the underlying network

k An integer indicating the number of neighbours to find.

destinations A feature collection of points, might be used if the neighbours must be found in
a separate set of points NULL if the neighbours must be found in origins.

maxdistance The maximum distance between two observations to consider them as neigh-
bours. It is useful only if a grid is used, a lower value will reduce calculating
time, but one must be sure that the k nearest neighbours are within this radius.
Otherwise NAs will be present in the results.

snap_dist The maximum distance to snap the start and end points on the network.

line_weight The weighting to use for lines. Default is "length" (the geographical length),
but can be the name of a column. The value is considered proportional to the
geographical length of the lines.

direction The name of a column indicating authorized travelling direction on lines. if
NULL, then all lines can be used in both directions. Must be the name of a
column otherwise. The values of the column must be "FT" (From - To), "TF"
(To - From) or "Both".

grid_shape A vector of length 2 indicating the shape of the grid to use for splitting the
dataset. Default is c(1,1), so all the calculation is done in one go. It might be
necessary to split it if the dataset is large.

verbose A Boolean indicating if the function should print its progress

digits The number of digits to retain from the spatial coordinates (simplification used
to reduce risk of topological error)

tol A float indicating the minimum distance between the points and the lines’ ex-
tremities when adding the point to the network. When points are closer, they are
added at the extremity of the lines.

Details

The k nearest neighbours of each point are found by using the network distance. The results could
not be exact if some points share the exact same location. As an example, consider the following
case. If A and B are two points at the exact same location, and C is a third point close to A and B.
If the 1 nearest neighbour is requested for C, the function could return either A or B but not both.
When such situation happens, a warning is raised by the function.

Value

A list with two matrices, one with the index of the neighbours and one with the distances.

Examples

data(main_network_mtl)
data(mtl_libraries)

network_knn.mc 61

results <- network_knn(mtl_libraries, main_network_mtl,
k = 3, maxdistance = 1000, line_weight = "length",
grid_shape=c(1,1), verbose = FALSE)

network_knn.mc K-nearest points on network (multicore version)

Description

Calculate the K-nearest points for a set of points on a network with multicore support.

Usage

network_knn.mc(
origins,
lines,
k,
destinations = NULL,
maxdistance = 0,
snap_dist = Inf,
line_weight = "length",
direction = NULL,
grid_shape = c(1, 1),
verbose = FALSE,
digits = 3,
tol = 0.1

)

Arguments

origins A feature collection of points, for each point, its k nearest neighbours will be
found on the network.

lines A feature collection of linestrings representing the underlying network

k An integer indicating the number of neighbours to find.

destinations A feature collection of points, might be used if the neighbours must be found in
a separate set of points NULL if the neighbours must be found in origins.

maxdistance The maximum distance between two observations to consider them as neigh-
bours. It is useful only if a grid is used, a lower value will reduce calculating
time, but one must be sure that the k nearest neighbours are within this radius.
Otherwise NAs will be present in the results.

snap_dist The maximum distance to snap the start and end points on the network.

line_weight The weighting to use for lines. Default is "length" (the geographical length),
but can be the name of a column. The value is considered proportional to the
geographical length of the lines.

62 network_listw

direction The name of a column indicating authorized travelling direction on lines. if
NULL, then all lines can be used in both directions. Must be the name of a
column otherwise. The values of the column must be "FT" (From - To), "TF"
(To - From) or "Both".

grid_shape A vector of length 2 indicating the shape of the grid to use for splitting the
dataset. Default is c(1,1), so all the calculation is done in one go. It might be
necessary to split it if the dataset is large.

verbose A Boolean indicating if the function should print its progress

digits The number of digits to retain from the spatial coordinates (simplification used
to reduce risk of topological error)

tol A float indicating the minimum distance between the points and the lines’ ex-
tremities when adding the point to the network. When points are closer, they are
added at the extremity of the lines.

Value

A list with two matrices, one with the index of the neighbours and one with the distances.

Examples

data(main_network_mtl)
data(mtl_libraries)
future::plan(future::multisession(workers=1))
results <- network_knn.mc(mtl_libraries, main_network_mtl,

k = 3, maxdistance = 1000, line_weight = "length",
grid_shape=c(1,1), verbose = FALSE)

make sure any open connections are closed afterward
if (!inherits(future::plan(), "sequential")) future::plan(future::sequential)

network_listw Network distance listw

Description

Generate listw object (spdep like) based on network distances.

Usage

network_listw(
origins,
lines,
maxdistance,
method = "centroid",
point_dist = NULL,
snap_dist = Inf,
line_weight = "length",

network_listw 63

mindist = 10,
direction = NULL,
dist_func = "inverse",
matrice_type = "B",
grid_shape = c(1, 1),
verbose = FALSE,
digits = 3,
tol = 0.1

)

Arguments

origins A feature collection of lines, points, or polygons for which the spatial neigh-
bouring list will be built

lines A feature collection of lines representing the network
maxdistance The maximum distance between two observations to consider them as neigh-

bours.
method A string indicating how the starting points will be built. If ’centroid’ is used,

then the centre of lines or polygons is used. If ’pointsalong’ is used, then points
will be placed along polygons’ borders or along lines as starting and end points.
If ’ends’ is used (only for lines) the first and last vertices of lines are used as
starting and ending points.

point_dist A float, defining the distance between points when the method ’pointsalong’ is
selected.

snap_dist The maximum distance to snap the start and end points on the network.
line_weight The weighting to use for lines. Default is "length" (the geographical length),

but can be the name of a column. The value is considered proportional to the
geographical length of the lines.

mindist The minimum distance between two different observations. It is important for it
to be different from 0 when a W style is used.

direction Indicates a field providing information about authorized travelling direction on
lines. if NULL, then all lines can be used in both directions. Must be the name
of a column otherwise. The values of the column must be "FT" (From - To),
"TF" (To - From) or "Both".

dist_func Indicates the function to use to convert the distance between observation in spa-
tial weights. Can be ’identity’, ’inverse’, ’squared inverse’ or a function with
one parameter x that will be vectorized internally

matrice_type The type of the weighting scheme. Can be ’B’ for Binary, ’W’ for row weighted,
or ’I’ (identity), see the documentation of spdep::nb2listw for details

grid_shape A vector of length 2 indicating the shape of the grid to use for splitting the
dataset. Default is c(1,1), so all the calculation is done in one go. It might be
necessary to split it if the dataset is large.

verbose A Boolean indicating if the function should print its progress
digits The number of digits to retain in the spatial coordinates (simplification used to

reduce risk of topological error)
tol A float indicating the spatial tolerance when points are added as vertices to lines.

64 network_listw.mc

Value

A listw object (spdep like) if matrice_type is "B" or "W". If matrice_type is I, then a list with a
nblist object and a list of weights is returned.

Examples

data(mtl_network)
listw <- network_listw(mtl_network,

mtl_network,
maxdistance = 500,
method = "centroid",
line_weight = "length",
dist_func = 'squared inverse',
matrice_type='B',
grid_shape = c(2,2))

network_listw.mc Network distance listw (multicore)

Description

Generate listw object (spdep like) based on network distances with multicore support.

Usage

network_listw.mc(
origins,
lines,
maxdistance,
method = "centroid",
point_dist = NULL,
snap_dist = Inf,
line_weight = "length",
mindist = 10,
direction = NULL,
dist_func = "inverse",
matrice_type = "B",
grid_shape = c(1, 1),
verbose = FALSE,
digits = 3,
tol = 0.1

)

network_listw.mc 65

Arguments

origins A feature collection of linestrings, points or polygons for which the spatial
neighbouring list will be built.

lines A feature collection of linestrings representing the network

maxdistance The maximum distance between two observations to consider them as neigh-
bours.

method A string indicating how the starting points will be built. If ’centroid’ is used,
then the centre of lines or polygons is used. If ’pointsalong’ is used, then points
will be placed along polygons’ borders or along lines as starting and end points.
If ’ends’ is used (only for lines) the first and last vertices of lines are used as
starting and ending points.

point_dist A float, defining the distance between points when the method pointsalong is
selected.

snap_dist the maximum distance to snap the start and end points on the network.

line_weight The weights to use for lines. Default is "length" (the geographical length), but
can be the name of a column. The value is considered proportional with the
geographical length of the lines.

mindist The minimum distance between two different observations. It is important for it
to be different from 0 when a W style is used.

direction Indicates a field giving information about authorized travelling direction on
lines. if NULL, then all lines can be used in both directions. Must be the name
of a column otherwise. The values of the column must be "FT" (From - To),
"TF" (To - From) or "Both".

dist_func Indicates the function to use to convert the distance between observation in spa-
tial weights. Can be ’identity’, ’inverse’, ’squared inverse’ or a function with
one parameter x that will be vectorized internally

matrice_type The type of the weighting scheme. Can be ’B’ for Binary, ’W’ for row weighted,
or ’I’ (identity) see the documentation of spdep::nb2listw for details

grid_shape A vector of length 2 indicating the shape of the grid to use for splitting the
dataset. Default is c(1,1), so all the calculation is done in one go. It might be
necessary to split it if the dataset is large.

verbose A Boolean indicating if the function should print its progress

digits The number of digits to retain in the spatial coordinates (simplification used to
reduce risk of topological error)

tol A float indicating the spatial tolerance when points are added as vertices to lines.

Value

A listw object (spdep like) if matrice_type is "B" or "W". If matrice_type is I, then a list with a
nblist object and a list of weights is returned.

66 nkde

Examples

data(mtl_network)
future::plan(future::multisession(workers=1))
listw <- network_listw.mc(mtl_network,mtl_network,maxdistance=500,

method = "centroid", line_weight = "length",
dist_func = 'squared inverse', matrice_type='B', grid_shape = c(2,2))

make sure any open connections are closed afterward
if (!inherits(future::plan(), "sequential")) future::plan(future::sequential)

nkde Network Kernel density estimate

Description

Calculate the Network Kernel Density Estimate based on a network of lines, sampling points, and
events

Usage

nkde(
lines,
events,
w,
samples,
kernel_name,
bw,
adaptive = FALSE,
trim_bw = NULL,
method,
div = "bw",
diggle_correction = FALSE,
study_area = NULL,
max_depth = 15,
digits = 5,
tol = 0.1,
agg = NULL,
sparse = TRUE,
grid_shape = c(1, 1),
verbose = TRUE,
check = TRUE

)

Arguments

lines A feature collection of linestrings representing the underlying network. The ge-
ometries must be simple Linestrings (may crash if some geometries are invalid)
without MultiLineSring.

nkde 67

events events A feature collection of points representing the events on the network. The
points will be snapped on the network to their closest line.

w A vector representing the weight of each event

samples A feature collection of points representing the locations for which the densities
will be estimated.

kernel_name The name of the kernel to use. Must be one of triangle, gaussian, tricube, cosine,
triweight, quartic, epanechnikov or uniform.

bw The kernel bandwidth (using the scale of the lines), can be a single float or a
numeric vector if a different bandwidth must be used for each event.

adaptive A Boolean, indicating if an adaptive bandwidth must be used

trim_bw A float, indicating the maximum value for the adaptive bandwidth

method The method to use when calculating the NKDE, must be one of simple / discon-
tinuous / continuous (see nkde details for more information)

div The divisor to use for the kernel. Must be "n" (the number of events within the
radius around each sampling point), "bw" (the bandwidth) "none" (the simple
sum).

diggle_correction

A Boolean indicating if the correction factor for edge effect must be used.

study_area A feature collection of polygons representing the limits of the study area.

max_depth when using the continuous and discontinuous methods, the calculation time and
memory use can go wild if the network has many small edges (area with many of
intersections and many events). To avoid it, it is possible to set here a maximum
depth. Considering that the kernel is divided at intersections, a value of 10
should yield good estimates in most cases. A larger value can be used without
a problem for the discontinuous method. For the continuous method, a larger
value will strongly impact calculation speed.

digits The number of digits to retain from the spatial coordinates. It ensures that topol-
ogy is good when building the network. Default is 3. Too high a precision (high
number of digits) might break some connections

tol A float indicating the minimum distance between the events and the lines’ ex-
tremities when adding the point to the network. When points are closer, they are
added at the extremity of the lines.

agg A double indicating if the events must be aggregated within a distance. If NULL,
the events are aggregated only by rounding the coordinates.

sparse A Boolean indicating if sparse or regular matrices should be used by the Rcpp
functions. These matrices are used to store edge indices between two nodes in
a graph. Regular matrices are faster, but require more memory, in particular
with multiprocessing. Sparse matrices are slower (a bit), but require much less
memory.

grid_shape A vector of two values indicating how the study area must be split when per-
forming the calculus. Default is c(1,1) (no split). A finer grid could reduce
memory usage and increase speed when a large dataset is used. When using
multiprocessing, the work in each grid is dispatched between the workers.

verbose A Boolean, indicating if the function should print messages about the process.

68 nkde

check A Boolean indicating if the geometry checks must be run before the operation.
This might take some times, but it will ensure that the CRS of the provided
objects are valid and identical, and that geometries are valid.

Details

The three NKDE methods
Estimating the density of a point process is commonly done by using an ordinary two-dimensional
kernel density function. However, there are numerous cases for which the events do not occur in a
two-dimensional space but on a network (like car crashes, outdoor crimes, leaks in pipelines, etc.).
New methods were developed to adapt the methodology to networks, three of them are available in
this package.

• The simple method: This first method was presented by (Xie and Yan 2008) and proposes an
intuitive solution. The distances between events and sampling points are replaced by network
distances, and the formula of the kernel is adapted to calculate the density over a linear unit
instead of an areal unit.

• The discontinuous method: The previous method has been criticized by (Okabe et al. 2009),
arguing that the estimator proposed is biased, leading to an overestimation of density in events
hot-spots. More specifically, the simple method does not conserve mass and the induced kernel
is not a probability density along the network. They thus proposed a discontinuous version
of the kernel function on network, which equally "divides" the mass density of an event at
intersections.

• The continuous method: If the discontinuous method is unbiased, it leads to a discontinuous
kernel function which is a bit counter-intuitive. Okabe et al. (2009) proposed another version
of the kernel, which divides the mass of the density at intersections but adjusts the density
before the intersection to make the function continuous.

The three methods are available because, even though that the simple method is less precise statis-
tically speaking, it might be more intuitive. From a purely geographical view, it might be seen as a
sort of distance decay function as used in Geographically Weighted Regression.

adaptive bandwidth
It is possible to use adaptive bandwidth instead of fixed bandwidth. Adaptive bandwidths are cal-
culated using the Abramson’s smoothing regimen (Abramson 1982). To do so, an original fixed
bandwidth must be specified (bw parameter), and is used to estimate the priory densitiy at event
locations. These densities are then used to calculate local bandwidth. The maximum size of the
local bandwidth can be limited with the parameter trim_bw. For more details, see the vignettes.

Optimization parameters
The grid_shape parameter allows to split the calculus of the NKDE according to a grid dividing the
study area. It might be necessary for big dataset to reduce the memory used. If the grid_shape is
c(1,1), then a full network is built for the area. If the grid_shape is c(2,2), then the area is split in 4
rectangles. For each rectangle, the sample points falling in the rectangle are used, the events and the
lines in a radius of the bandwidth length are used. The results are combined at the end and ordered
to match the original order of the samples.

The geographical coordinates of the start and end of lines are used to build the network. To avoid

nkde 69

troubles with digits, we truncate the coordinates according to the digit parameter. A minimal loss
of precision is expected but results in a fast construction of the network.

To calculate the distances on the network, all the events are added as vertices. To reduce the size of
the network, it is possible to reduce the number of vertices by adding the events at the extremity of
the lines if they are close to them. This is controlled by the parameter tol.

In the same way, it is possible to limit the number of vertices by aggregating the events that are
close to each other. In that case, the weights of the aggregated events are summed. According to
an aggregation distance, a buffer is drawn around the fist event, all events falling in that buffer are
aggregated to the first event, forming a new event. The coordinates of this new event are the means
of the original events coordinates. This procedure is repeated until no events are aggregated. The
aggregation distance can be fixed with the parameter agg.

When using the continuous and discontinuous kernel, the density is reduced at each intersection
crossed. In the discontinuous case, after 5 intersections with four directions each, the density value
is divided by 243 leading to very small values. In the same situation but with the continuous NKDE,
the density value is divided by approximately 7.6. The max_depth parameters allows the user to
control the maximum depth of these two NKDE. The base value is 15, but a value of 10 would yield
very close estimates. A lower value might have a critical impact on speed when the bandwidth is
large.

When using the continuous and discontinuous kernel, the connections between graph nodes are
stored in a matrix. This matrix is typically sparse, and so a sparse matrix object is used to limit
memory use. If the network is small (typically when the grid used to split the data has small rectan-
gles) then a classical matrix could be used instead of a sparse one. It significantly increases speed,
but could lead to memory issues.

Value

A vector of values, they are the density estimates at sampling points

References

Abramson IS (1982). “On bandwidth variation in kernel estimates-a square root law.” The annals
of Statistics, 1217–1223.

Okabe A, Satoh T, Sugihara K (2009). “A kernel density estimation method for networks, its
computational method and a GIS-based tool.” International Journal of Geographical Information
Science, 23(1), 7–32.

Xie Z, Yan J (2008). “Kernel density estimation of traffic accidents in a network space.” Com-
puters, environment and urban systems, 32(5), 396–406.

Examples

data(mtl_network)
data(bike_accidents)
lixels <- lixelize_lines(mtl_network,200,mindist = 50)

70 nkde.mc

samples <- lines_center(lixels)
densities <- nkde(mtl_network,

events = bike_accidents,
w = rep(1,nrow(bike_accidents)),
samples = samples,
kernel_name = "quartic",
bw = 300, div= "bw",
adaptive = FALSE,
method = "discontinuous", digits = 1, tol = 1,
agg = 15,
grid_shape = c(1,1),
verbose=FALSE)

nkde.mc Network Kernel density estimate (multicore)

Description

Calculate the Network Kernel Density Estimate based on a network of lines, sampling points, and
events with multicore support.

Usage

nkde.mc(
lines,
events,
w,
samples,
kernel_name,
bw,
adaptive = FALSE,
trim_bw = NULL,
method,
div = "bw",
diggle_correction = FALSE,
study_area = NULL,
max_depth = 15,
digits = 5,
tol = 0.1,
agg = NULL,
sparse = TRUE,
grid_shape = c(1, 1),
verbose = TRUE,
check = TRUE

)

nkde.mc 71

Arguments

lines A feature collection of linestrings representing the underlying network. The ge-
ometries must be simple Linestrings (may crash if some geometries are invalid)
without MultiLineSring.

events events A feature collection of points representing the events on the network. The
points will be snapped on the network to their closest line.

w A vector representing the weight of each event

samples A feature collection of points representing the locations for which the densities
will be estimated.

kernel_name The name of the kernel to use. Must be one of triangle, gaussian, tricube, cosine,
triweight, quartic, epanechnikov or uniform.

bw The kernel bandwidth (using the scale of the lines), can be a single float or a
numeric vector if a different bandwidth must be used for each event.

adaptive A Boolean, indicating if an adaptive bandwidth must be used

trim_bw A float, indicating the maximum value for the adaptive bandwidth

method The method to use when calculating the NKDE, must be one of simple / discon-
tinuous / continuous (see nkde details for more information)

div The divisor to use for the kernel. Must be "n" (the number of events within the
radius around each sampling point), "bw" (the bandwidth) "none" (the simple
sum).

diggle_correction

A Boolean indicating if the correction factor for edge effect must be used.

study_area A feature collection of polygons representing the limits of the study area.

max_depth when using the continuous and discontinuous methods, the calculation time and
memory use can go wild if the network has many small edges (area with many of
intersections and many events). To avoid it, it is possible to set here a maximum
depth. Considering that the kernel is divided at intersections, a value of 10
should yield good estimates in most cases. A larger value can be used without
a problem for the discontinuous method. For the continuous method, a larger
value will strongly impact calculation speed.

digits The number of digits to retain from the spatial coordinates. It ensures that topol-
ogy is good when building the network. Default is 3. Too high a precision (high
number of digits) might break some connections

tol A float indicating the minimum distance between the events and the lines’ ex-
tremities when adding the point to the network. When points are closer, they are
added at the extremity of the lines.

agg A double indicating if the events must be aggregated within a distance. If NULL,
the events are aggregated only by rounding the coordinates.

sparse A Boolean indicating if sparse or regular matrices should be used by the Rcpp
functions. These matrices are used to store edge indices between two nodes in
a graph. Regular matrices are faster, but require more memory, in particular
with multiprocessing. Sparse matrices are slower (a bit), but require much less
memory.

72 nkde_get_loo_values

grid_shape A vector of two values indicating how the study area must be split when per-
forming the calculus. Default is c(1,1) (no split). A finer grid could reduce
memory usage and increase speed when a large dataset is used. When using
multiprocessing, the work in each grid is dispatched between the workers.

verbose A Boolean, indicating if the function should print messages about the process.

check A Boolean indicating if the geometry checks must be run before the operation.
This might take some times, but it will ensure that the CRS of the provided
objects are valid and identical, and that geometries are valid.

Details

For more details, see help(nkde)

Value

A vector of values, they are the density estimates at sampling points

Examples

data(mtl_network)
data(bike_accidents)
future::plan(future::multisession(workers=1))
lixels <- lixelize_lines(mtl_network,200,mindist = 50)
samples <- lines_center(lixels)
densities <- nkde.mc(mtl_network,

events = bike_accidents,
w = rep(1,nrow(bike_accidents)),
samples = samples,
kernel_name = "quartic",
bw = 300, div= "bw",
adaptive = FALSE, agg = 15,
method = "discontinuous", digits = 1, tol = 1,
grid_shape = c(3,3),
verbose=TRUE)

make sure any open connections are closed afterward
if (!inherits(future::plan(), "sequential")) future::plan(future::sequential)

nkde_get_loo_values The exposed function to calculate NKDE likelihood cv

Description

The exposed function to calculate NKDE likelihood cv (INTERNAL)

nkde_get_loo_values 73

Usage

nkde_get_loo_values(
method,
neighbour_list,
sel_events,
sel_events_wid,
events,
events_wid,
weights,
bws_net,
kernel_name,
line_list,
max_depth,
cvl

)

Arguments

method a string, one of "simple", "continuous", "discontinuous"

neighbour_list a List, giving for each node an IntegerVector with its neighbours

sel_events a Numeric vector indicating the selected events (id of nodes)

sel_events_wid a Numeric Vector indicating the unique if of the selected events

events a NumericVector indicating the nodes in the graph being events

events_wid a NumericVector indicating the unique id of all the events

weights a matrix with the weights associated with each event (row) for each bws_net
(cols).

bws_net an arma::mat with the network bandwidths to consider for each event

kernel_name a string with the name of the kernel to use

line_list a DataFrame describing the lines

max_depth the maximum recursion depth

cvl a boolean indicating if the Cronie (TRUE) or CV likelihood (FALSE) must be
used

Value

a vector with the CV score for each bandwidth and the densities if required

Examples

no example provided, this is an internal function

74 simple_lines

quartic_kernel Quartic kernel

Description

Function implementing the quartic kernel.

Usage

quartic_kernel(d, bw)

Arguments

d The distance from the event
bw The bandwidth used for the kernel

Value

The estimated density

Examples

#This is an internal function, no example provided

simple_lines LineString to simple Line

Description

Split the polylines of a feature collection of linestrings in simple segments at each vertex. The
values of the columns are duplicated for each segment.

Usage

simple_lines(lines)

Arguments

lines The featue collection of linestrings to modify

Value

An featue collection of linestrings

Examples

data(mtl_network)
new_lines <- simple_lines(mtl_network)

simplify_network 75

simplify_network Simplify a network

Description

Simplify a network by applying two corrections: Healing edges and Removing mirror edges (ex-
perimental).

Usage

simplify_network(
lines,
digits = 3,
heal = TRUE,
mirror = TRUE,
keep_shortest = TRUE,
verbose = TRUE

)

Arguments

lines A feature collection of linestrings

digits An integer indicating the number of digits to keep in coordinates

heal A boolean indicating if the healing operation must be performed

mirror A boolean indicating if the mirror edges must be removed

keep_shortest A boolean, if TRUE, then the shortest line is kept from mirror edges. if FALSE,
then the longest line is kept.

verbose A boolean indicating if messages and a progress bar should be displayed

Details

Healing is the operation to merge two connected linestring if the are intersecting at one extremity
and do not intersect any other linestring. It helps to reduce the complexity of the network and thus
can reduce calculation time. Removing mirror edges is the operation to remove edges that have the
same extremities. If two edges start at the same point and end at the same point, they do not add
information in the network and one can be removed to simplify the network. One can decide to
keep the longest of the two edges or the shortest. NOTE: the edge healing does not consider lines
directions currently!

Value

A feature collection of linestrings

76 split_graph_components

Examples

data(mtl_network)
edited_lines <- simplify_network(mtl_network, digits = 3, verbose = FALSE)

small_mtl_network Smaller subset road network of Montreal

Description

A feature collection (sf object) representing the road network of Montreal. The EPSG is 3797, and
the data comes from the Montreal OpenData website. It is only a small extract in central districts
used to demonstrate the main functions of spNetwork. It is mainly used internally for tests.

Usage

small_mtl_network

Format

A sf object with 1244 rows and 2 variables

TYPE the type of road

geom the geometry (linestrings)

Source

https://donnees.montreal.ca/dataset/geobase

split_graph_components

Split graph components

Description

Function to split the results of build_graph and build_graph_directed into their sub components

Usage

split_graph_components(graph_result)

Arguments

graph_result A list typically obtained from the function build_graph or build_graph_directed

https://donnees.montreal.ca/dataset/geobase

split_lines_at_vertex 77

Value

A list of lists, the graph_result split for each graph component

Examples

data(mtl_network)
mtl_network$length <- as.numeric(sf::st_length(mtl_network))
graph_result <- build_graph(mtl_network, 2, "length", attrs = TRUE)
sub_elements <- split_graph_components(graph_result)

split_lines_at_vertex Split lines at vertices in a feature collection of linestrings

Description

Split lines (feature collection of linestrings) at their nearest vertices (feature collection of points),
may fail if the line geometries are self intersecting.

Usage

split_lines_at_vertex(lines, points, nearest_lines_idx, mindist)

Arguments

lines The feature collection of linestrings to split

points The feature collection of points to add to as vertex to the lines
nearest_lines_idx

For each point, the index of the nearest line

mindist The minimum distance between one point and the extremity of the line to add
the point as a vertex.

Value

A feature collection of linestrings

Examples

reading the data
data(mtl_network)
data(bike_accidents)
aggregating points within a 5 metres radius
bike_accidents$weight <- 1
agg_points <- aggregate_points(bike_accidents, 5)
mtl_network$LineID <- 1:nrow(mtl_network)
snapping point to lines
snapped_points <- snapPointsToLines2(agg_points,

mtl_network,
"LineID"

78 tkde

)
splitting lines
new_lines <- split_lines_at_vertex(mtl_network, snapped_points,

snapped_points$nearest_line_id, 1)

st_bbox_by_feature Obtain all the bounding boxes of a feature collection

Description

Obtain all the bounding boxes of a feature collection (INTERNAL).

Usage

st_bbox_by_feature(x)

Arguments

x a feature collection

Value

a matrix (xmin, ymin, xmax, ymax)

Examples

#This is an internal function, no example provided

tkde Temporal Kernel density estimate

Description

Calculate the Temporal kernel density estimate based on sampling points in time and events

Usage

tkde(events, w, samples, bw, kernel_name, adaptive = FALSE)

Arguments

events A numeric vector representing the moments of occurrence of events
w The weight of the events
samples A numeric vector representing the moments to sample
bw A float, the bandwidth to use
kernel_name The name of the kernel to use
adaptive Boolean

tnkde 79

Value

A numeric vector with the density values at the requested timestamps

Examples

data(bike_accidents)
bike_accidents$Date <- as.POSIXct(bike_accidents$Date, format = "%Y/%m/%d")
start <- min(bike_accidents$Date)
diff <- as.integer(difftime(bike_accidents$Date , start, units = "days"))
density <- tkde(diff, rep(1,length(diff)), seq(0,max(diff),1), 2, "quartic")

tnkde Temporal Network Kernel density estimate

Description

Calculate the Temporal Network Kernel Density Estimate based on a network of lines, sampling
points in space and times, and events in space and time.

Usage

tnkde(
lines,
events,
time_field,
w,
samples_loc,
samples_time,
kernel_name,
bw_net,
bw_time,
adaptive = FALSE,
adaptive_separate = TRUE,
trim_bw_net = NULL,
trim_bw_time = NULL,
method,
div = "bw",
diggle_correction = FALSE,
study_area = NULL,
max_depth = 15,
digits = 5,
tol = 0.1,
agg = NULL,
sparse = TRUE,
grid_shape = c(1, 1),
verbose = TRUE,
check = TRUE

)

80 tnkde

Arguments

lines A feature collection of linestrings representing the underlying network. The ge-
ometries must be simple Linestrings (may crash if some geometries are invalid)
without MultiLineSring.

events events A feature collection of points representing the events on the network. The
points will be snapped on the network to their closest line.

time_field The name of the field in events indicating when the events occurred. It must be
a numeric field

w A vector representing the weight of each event

samples_loc A feature collection of points representing the locations for which the densities
will be estimated.

samples_time A numeric vector indicating when the densities will be sampled

kernel_name The name of the kernel to use. Must be one of triangle, gaussian, tricube, cosine,
triweight, quartic, epanechnikov or uniform.

bw_net The network kernel bandwidth (using the scale of the lines), can be a single float
or a numeric vector if a different bandwidth must be used for each event.

bw_time The time kernel bandwidth, can be a single float or a numeric vector if a different
bandwidth must be used for each event.

adaptive A Boolean, indicating if an adaptive bandwidth must be used. Both spatial and
temporal bandwidths are adapted but separately.

adaptive_separate

A boolean indicating if the adaptive bandwidths for the time and the network
dimensions must be calculated separately (TRUE) or in interaction (FALSE)

trim_bw_net A float, indicating the maximum value for the adaptive network bandwidth

trim_bw_time A float, indicating the maximum value for the adaptive time bandwidth

method The method to use when calculating the NKDE, must be one of simple / discon-
tinuous / continuous (see nkde details for more information)

div The divisor to use for the kernel. Must be "n" (the number of events within
the radius around each sampling point), "bw" (the bandwith) "none" (the simple
sum).

diggle_correction

A Boolean indicating if the correction factor for edge effect must be used.

study_area A feature collection of polygons representing the limits of the study area.

max_depth when using the continuous and discontinuous methods, the calculation time and
memory use can go wild if the network has many small edges (area with many of
intersections and many events). To avoid it, it is possible to set here a maximum
depth. Considering that the kernel is divided at intersections, a value of 10
should yield good estimates in most cases. A larger value can be used without
a problem for the discontinuous method. For the continuous method, a larger
value will strongly impact calculation speed.

digits The number of digits to retain from the spatial coordinates. It ensures that topol-
ogy is good when building the network. Default is 3. Too high a precision (high
number of digits) might break some connections

tnkde 81

tol A float indicating the minimum distance between the events and the lines’ ex-
tremities when adding the point to the network. When points are closer, they are
added at the extremity of the lines.

agg A double indicating if the events must be aggregated within a distance. If NULL,
the events are aggregated only by rounding the coordinates.

sparse A Boolean indicating if sparse or regular matrices should be used by the Rcpp
functions. These matrices are used to store edge indices between two nodes in
a graph. Regular matrices are faster, but require more memory, in particular
with multiprocessing. Sparse matrices are slower (a bit), but require much less
memory.

grid_shape A vector of two values indicating how the study area must be split when per-
forming the calculus. Default is c(1,1) (no split). A finer grid could reduce
memory usage and increase speed when a large dataset is used. When using
multiprocessing, the work in each grid is dispatched between the workers.

verbose A Boolean, indicating if the function should print messages about the process.

check A Boolean indicating if the geometry checks must be run before the operation.
This might take some times, but it will ensure that the CRS of the provided
objects are valid and identical, and that geometries are valid.

Details

Temporal Network Kernel Density Estimate
The TNKDE is an extension of the NKDE considering both the location of events on the network
and in time. Thus, density estimation (density sampling) can be done along lines of the network
and at different time. It can be used with the three NKDE (simple, discontinuous and continuous).

density in time and space
Two bandwidths must be provided, one for the network distance and one for the time distance. They
are both used to calculate the contribution of each event to each sampling point. Let us consider
one event E and a sample S. dnet(E,S) is the contribution to network density of E at S location and
dtime(E,S) is the contribution to time density of E at S time. The total contribution is thus dnet(E,S)
* dtime(E,S). If one of the two densities is 0, then the total density is 0 because the sampling point
is out of the covered area by the event in time or in the network space.

adaptive bandwidth
It is possible to use an adaptive bandwidth both on the network and in time. Adaptive bandwidths
are calculated using the Abramson’s smoothing regimen (Abramson 1982). To do so, the original
fixed bandwidths must be specified (bw_net and bw_time parameters). The maximum size of the
two local bandwidths can be limited with the parameters trim_bw_net and trim_bw_time.

Diggle correction factor
A set of events can be limited in both space (limits of the study area) and time (beginning and
ending of the data collection period). These limits induce lower densities at the border of the set of
events, because they are not sampled outside the limits. It is possible to apply the Diggle correction
factor (Diggle 1985) in both the network and time spaces to minimize this effect.

82 tnkde

Separated or simultaneous adaptive bandwidth
When the parameter adaptive is TRUE, one can choose between using separated calculation of
network and temporal bandwidths, and calculating them simultaneously. In the first case (default),
the network bandwidths are determined for each event by considering only their locations and the
time bandwidths are determined by considering only there time stamps. In the second case, for each
event, the spatio-temporal density at its location on the network and in time is estimated and used
to determine both the network and temporal bandwidths. This second approach must be preferred
if the events are characterized by a high level of spatio-temporal autocorrelation.

Value

A matrix with the estimated density for each sample point (rows) at each timestamp (columns). If
adaptive = TRUE, the function returns a list with two slots: k (the matrix with the density values)
and events (a feature collection of points with the local bandwidths).

Examples

loading the data
data(mtl_network)
data(bike_accidents)

converting the Date field to a numeric field (counting days)
bike_accidents$Time <- as.POSIXct(bike_accidents$Date, format = "%Y/%m/%d")
start <- as.POSIXct("2016/01/01", format = "%Y/%m/%d")
bike_accidents$Time <- difftime(bike_accidents$Time, start, units = "days")
bike_accidents$Time <- as.numeric(bike_accidents$Time)

creating sample points
lixels <- lixelize_lines(mtl_network, 50)
sample_points <- lines_center(lixels)

choosing sample in times (every 10 days)
sample_time <- seq(0, max(bike_accidents$Time), 10)

calculating the densities
tnkde_densities <- tnkde(lines = mtl_network,

events = bike_accidents, time_field = "Time",
w = rep(1, nrow(bike_accidents)),
samples_loc = sample_points,
samples_time = sample_time,
kernel_name = "quartic",
bw_net = 700, bw_time = 60, adaptive = TRUE,
trim_bw_net = 900, trim_bw_time = 80,
method = "discontinuous", div = "bw",
max_depth = 10, digits = 2, tol = 0.01,
agg = 15, grid_shape = c(1,1),
verbose = FALSE)

tnkde.mc 83

tnkde.mc Temporal Network Kernel density estimate (multicore)

Description

Calculate the Temporal Network Kernel Density Estimate based on a network of lines, sampling
points in space and times, and events in space and time with multicore support.

Usage

tnkde.mc(
lines,
events,
time_field,
w,
samples_loc,
samples_time,
kernel_name,
bw_net,
bw_time,
adaptive = FALSE,
adaptive_separate = TRUE,
trim_bw_net = NULL,
trim_bw_time = NULL,
method,
div = "bw",
diggle_correction = FALSE,
study_area = NULL,
max_depth = 15,
digits = 5,
tol = 0.1,
agg = NULL,
sparse = TRUE,
grid_shape = c(1, 1),
verbose = TRUE,
check = TRUE

)

Arguments

lines A feature collection of linestrings representing the underlying network. The ge-
ometries must be simple Linestrings (may crash if some geometries are invalid)
without MultiLineSring.

events events A feature collection of points representing the events on the network. The
points will be snapped on the network to their closest line.

time_field The name of the field in events indicating when the events occurred. It must be
a numeric field

84 tnkde.mc

w A vector representing the weight of each event
samples_loc A feature collection of points representing the locations for which the densities

will be estimated.
samples_time A numeric vector indicating when the densities will be sampled
kernel_name The name of the kernel to use. Must be one of triangle, gaussian, tricube, cosine,

triweight, quartic, epanechnikov or uniform.
bw_net The network kernel bandwidth (using the scale of the lines), can be a single float

or a numeric vector if a different bandwidth must be used for each event.
bw_time The time kernel bandwidth, can be a single float or a numeric vector if a different

bandwidth must be used for each event.
adaptive A Boolean, indicating if an adaptive bandwidth must be used. Both spatial and

temporal bandwidths are adapted but separately.
adaptive_separate

A boolean indicating if the adaptive bandwidths for the time and the network
dimensions must be calculated separately (TRUE) or in interaction (FALSE)

trim_bw_net A float, indicating the maximum value for the adaptive network bandwidth
trim_bw_time A float, indicating the maximum value for the adaptive time bandwidth
method The method to use when calculating the NKDE, must be one of simple / discon-

tinuous / continuous (see nkde details for more information)
div The divisor to use for the kernel. Must be "n" (the number of events within

the radius around each sampling point), "bw" (the bandwith) "none" (the simple
sum).

diggle_correction

A Boolean indicating if the correction factor for edge effect must be used.
study_area A feature collection of polygons representing the limits of the study area.
max_depth when using the continuous and discontinuous methods, the calculation time and

memory use can go wild if the network has many small edges (area with many of
intersections and many events). To avoid it, it is possible to set here a maximum
depth. Considering that the kernel is divided at intersections, a value of 10
should yield good estimates in most cases. A larger value can be used without
a problem for the discontinuous method. For the continuous method, a larger
value will strongly impact calculation speed.

digits The number of digits to retain from the spatial coordinates. It ensures that topol-
ogy is good when building the network. Default is 3. Too high a precision (high
number of digits) might break some connections

tol A float indicating the minimum distance between the events and the lines’ ex-
tremities when adding the point to the network. When points are closer, they are
added at the extremity of the lines.

agg A double indicating if the events must be aggregated within a distance. If NULL,
the events are aggregated only by rounding the coordinates.

sparse A Boolean indicating if sparse or regular matrices should be used by the Rcpp
functions. These matrices are used to store edge indices between two nodes in
a graph. Regular matrices are faster, but require more memory, in particular
with multiprocessing. Sparse matrices are slower (a bit), but require much less
memory.

tnkde.mc 85

grid_shape A vector of two values indicating how the study area must be split when per-
forming the calculus. Default is c(1,1) (no split). A finer grid could reduce
memory usage and increase speed when a large dataset is used. When using
multiprocessing, the work in each grid is dispatched between the workers.

verbose A Boolean, indicating if the function should print messages about the process.

check A Boolean indicating if the geometry checks must be run before the operation.
This might take some times, but it will ensure that the CRS of the provided
objects are valid and identical, and that geometries are valid.

Details

For details, see help(tnkde) and help(nkde)

Value

A matrix with the estimated density for each sample point (rows) at each timestamp (columns). If
adaptive = TRUE, the function returns a list with two slots: k (the matrix with the density values)
and events (a feature collection of points with the local bandwidths).

Examples

loading the data
data(mtl_network)
data(bike_accidents)

converting the Date field to a numeric field (counting days)
bike_accidents$Time <- as.POSIXct(bike_accidents$Date, format = "%Y/%m/%d")
start <- as.POSIXct("2016/01/01", format = "%Y/%m/%d")
bike_accidents$Time <- difftime(bike_accidents$Time, start, units = "days")
bike_accidents$Time <- as.numeric(bike_accidents$Time)

creating sample points
lixels <- lixelize_lines(mtl_network, 50)
sample_points <- lines_center(lixels)

choosing sample in times (every 10 days)
sample_time <- seq(0, max(bike_accidents$Time), 10)

future::plan(future::multisession(workers=1))

calculating the densities
tnkde_densities <- tnkde.mc(lines = mtl_network,

events = bike_accidents, time_field = "Time",
w = rep(1, nrow(bike_accidents)),
samples_loc = sample_points,
samples_time = sample_time,
kernel_name = "quartic",
bw_net = 700, bw_time = 60, adaptive = TRUE,
trim_bw_net = 900, trim_bw_time = 80,
method = "discontinuous", div = "bw",
max_depth = 10, digits = 2, tol = 0.01,

86 tnkde_get_loo_values

agg = 15, grid_shape = c(1,1),
verbose = FALSE)

make sure any open connections are closed afterward
if (!inherits(future::plan(), "sequential")) future::plan(future::sequential)

tnkde_get_loo_values The exposed function to calculate TNKDE likelihood cv

Description

The exposed function to calculate TNKDE likelihood cv (INTERNAL)

Usage

tnkde_get_loo_values(
method,
neighbour_list,
sel_events,
sel_events_wid,
sel_events_time,
events,
events_wid,
events_time,
weights,
bws_net,
bws_time,
kernel_name,
line_list,
max_depth,
min_tol

)

Arguments

method a string, one of "simple", "continuous", "discontinuous"

neighbour_list a List, giving for each node an IntegerVector with its neighbours

sel_events a Numeric vector indicating the selected events (id of nodes)

sel_events_wid a Numeric Vector indicating the unique if of the selected events
sel_events_time

a Numeric Vector indicating the time of the selected events

events a NumericVector indicating the nodes in the graph being events

events_wid a NumericVector indicating the unique id of all the events

events_time a NumericVector indicating the timestamp of each event

tnkde_get_loo_values2 87

weights a cube with the weights associated with each event for each bws_net and bws_time.

bws_net an arma::vec with the network bandwidths to consider

bws_time an arma::vec with the time bandwidths to consider

kernel_name a string with the name of the kernel to use

line_list a DataFrame describing the lines

max_depth the maximum recursion depth

min_tol a double indicating by how much 0 in density values must be replaced

Value

a matrix with the CV score for each pair of bandiwdths

Examples

no example provided, this is an internal function

tnkde_get_loo_values2 The exposed function to calculate TNKDE likelihood cv

Description

The exposed function to calculate TNKDE likelihood cv (INTERNAL) when an adaptive bandwidth
is used

Usage

tnkde_get_loo_values2(
method,
neighbour_list,
sel_events,
sel_events_wid,
sel_events_time,
events,
events_wid,
events_time,
weights,
bws_net,
bws_time,
kernel_name,
line_list,
max_depth,
min_tol

)

88 tnkde_worker_bw_sel

Arguments

method a string, one of "simple", "continuous", "discontinuous"

neighbour_list a List, giving for each node an IntegerVector with its neighbours

sel_events a Numeric vector indicating the selected events (id of nodes)

sel_events_wid a Numeric Vector indicating the unique if of the selected events

sel_events_time

a Numeric Vector indicating the time of the selected events

events a NumericVector indicating the nodes in the graph being events

events_wid a NumericVector indicating the unique id of all the events

events_time a NumericVector indicating the timestamp of each event

weights a cube with the weights associated with each event for each bws_net and bws_time.

bws_net an arma::cube of three dimensions with the network bandwidths calculated for
each observation for each global time and network bandwidths

bws_time an arma::cube of three dimensions with the time bandwidths calculated for each
observation for each global time and network bandwidths

kernel_name a string with the name of the kernel to use

line_list a DataFrame describing the lines

max_depth the maximum recursion depth

min_tol a double indicating by how much 0 in density values must be replaced

Value

a matrix with the CV score for each pair of global bandiwdths

Examples

no example provided, this is an internal function

tnkde_worker_bw_sel Worker function fo Bandwidth selection by likelihood cross validation
for temporal NKDE

Description

Calculate for multiple network and time bandwidths the cross validation likelihood to select an
appropriate bandwidth in a data-driven approach (INTERNAL)

tnkde_worker_bw_sel 89

Usage

tnkde_worker_bw_sel(
lines,
quad_events,
events_loc,
events,
w,
kernel_name,
bws_net,
bws_time,
method,
div,
digits,
tol,
sparse,
max_depth,
verbose = FALSE,
cvl = FALSE

)

Arguments

lines A feature collection of linestrings representing the underlying network

quad_events a feature collection of points indicating for which events the densities must be
calculated

events_loc A feature collection of points representing the location of the events

events A feature collection of points representing the events. Multiple events can share
the same location. They are linked by the goid column

w A numeric array with the weight of the events for each pair of bandwidth

kernel_name The name of the kernel to use (string)

bws_net A numeric vector with the network bandwidths. Could also be an array if an
adaptive bandwidth is calculated.

bws_time A numeric vector with the time bandwidths. Could also be an array if an adaptive
bandwidth is calculated.

method The type of NKDE to use (string)

div The type of divisor (not used currently)

digits The number of digits to retain from the spatial coordinates. It ensures that topol-
ogy is good when building the network. Default is 3. Too high a precision (high
number of digits) might break some connections

tol A float indicating the minimum distance between the events and the lines’ ex-
tremities when adding the point to the network. When points are closer, they are
added at the extremity of the lines.

sparse A Boolean indicating if sparse or regular matrices should be used by the Rcpp
functions. These matrices are used to store edge indices between two nodes in
a graph. Regular matrices are faster, but require more memory, in particular

90 triangle_kernel

with multiprocessing. Sparse matrices are slower (a bit), but require much less
memory.

max_depth The maximum depth of recursion

verbose A boolean

cvl A boolean indicating if the cvl method (TRUE) or the loo (FALSE) method must
be used

Value

An array with the CV score for each pair of bandiwdths (rows and lines) for each event (slices)

Examples

no example provided, this is an internal function

triangle_kernel triangle kernel

Description

Function implementing the triangle kernel.

Usage

triangle_kernel(d, bw)

Arguments

d The distance from the event

bw The bandwidth used for the kernel

Value

The estimated density

Examples

#This is an internal function, no example provided

tricube_kernel 91

tricube_kernel Tricube kernel

Description

Function implementing the tricube kernel.

Usage

tricube_kernel(d, bw)

Arguments

d The distance from the event
bw The bandwidth used for the kernel

Value

The estimated density

Examples

#This is an internal function, no example provided

triweight_kernel Triweight kernel

Description

Function implementing the triweight kernel.

Usage

triweight_kernel(d, bw)

Arguments

d The distance from the event
bw The bandwidth used for the kernel

Value

The estimated density

Examples

#This is an internal function, no example provided

92 worker_adaptive_bw_tnkde

uniform_kernel Uniform kernel

Description

Function implementing the uniform kernel.

Usage

uniform_kernel(d, bw)

Arguments

d The distance from the event

bw The bandwidth used for the kernel

Value

The estimated density

Examples

#This is an internal function, no example provided

worker_adaptive_bw_tnkde

Worker function for adaptive bandwidth for TNDE

Description

The worker function to calculate Adaptive bandwidths according to Abramson’s smoothing regimen
for TNKDE with a space-time interaction (INTERNAL).

Usage

worker_adaptive_bw_tnkde(
lines,
quad_events,
events_loc,
events,
w,
kernel_name,
bw_net,
bw_time,
method,

worker_adaptive_bw_tnkde 93

div,
digits,
tol,
sparse,
max_depth,
verbose = FALSE

)

Arguments

lines A feature collection of linestrings representing the underlying network
quad_events a feature collection of points indicating for which events the densities must be

calculated
events_loc A feature collection of points representing the location of the events
events A feature collection of points representing the events. Multiple events can share

the same location. They are linked by the goid column
w A numeric vector with the weight of the events
kernel_name The name of the kernel to use (string)
bw_net The fixed kernel bandwidth for the network dimension. Can also be a vector if

several bandwidth must be used.
bw_time The fixed kernel bandwidth for the time dimension. Can also be a vector if

several bandwidth must be used.
method The type of NKDE to use (string)
div The divisor to use for the kernel. Must be "n" (the number of events within the

radius around each sampling point), "bw" (the bandwidth) "none" (the simple
sum).

digits The number of digits to retain from the spatial coordinates. It ensures that topol-
ogy is good when building the network. Default is 3. Too high a precision (high
number of digits) might break some connections

tol A float indicating the minimum distance between the events and the lines’ ex-
tremities when adding the point to the network. When points are closer, they are
added at the extremity of the lines.

sparse A Boolean indicating if sparse or regular matrices should be used by the Rcpp
functions. These matrices are used to store edge indices between two nodes in
a graph. Regular matrices are faster, but require more memory, in particular
with multiprocessing. Sparse matrices are slower (a bit), but require much less
memory.

max_depth An integer, the maximum depth to reach for continuous and discontinuous NKDE
verbose A Boolean, indicating if the function should print messages about the process.

Value

A vector with the local bandwidths or an array if bw_net and bw_time are vectors

Examples

#This is an internal function, no example provided

Index

∗ datasets
bike_accidents, 8
main_network_mtl, 57
mtl_libraries, 58
mtl_network, 58
mtl_theatres, 59
small_mtl_network, 76

adaptive_bw_tnkde_cpp, 4
adaptive_bw_tnkde_cpp2, 6
aggregate_points, 7

bike_accidents, 8
build_graph, 8
build_graph_directed, 9
bw_cv_likelihood_calc, 16
bw_cv_likelihood_calc.mc, 18
bw_cv_likelihood_calc_tkde, 21
bw_cvl_calc, 10
bw_cvl_calc.mc, 13
bw_tnkde_cv_likelihood_calc, 22
bw_tnkde_cv_likelihood_calc.mc, 25

calc_isochrones, 29
closest_points, 30
cosine_kernel, 31
cross_gfunc_cpp, 32
cross_kfunc_cpp, 36
cross_kfunctions, 32
cross_kfunctions.mc, 34

epanechnikov_kernel, 37
esc_kernel_loo_nkde, 38
esc_kernel_loo_tnkde, 38
esd_kernel_loo_nkde, 39
esd_kernel_loo_tnkde, 40

gaussian_kernel, 40
gaussian_kernel_scaled, 41
gfunc_cpp, 41
graph_checking, 42

k_nt_functions, 48
k_nt_functions.mc, 50
kfunc_cpp, 47
kfunctions, 43
kfunctions.mc, 45

lines_center, 53
lines_direction, 53
lines_extremities, 54
lines_points_along, 55
lixelize_lines, 55
lixelize_lines.mc, 56

main_network_mtl, 57
mtl_libraries, 58
mtl_network, 58
mtl_theatres, 59

network_knn, 59
network_knn.mc, 61
network_listw, 62
network_listw.mc, 64
nkde, 66
nkde.mc, 70
nkde_get_loo_values, 72

quartic_kernel, 74

simple_lines, 74
simplify_network, 75
small_mtl_network, 76
split_graph_components, 76
split_lines_at_vertex, 77
spNetwork-package, 3
st_bbox_by_feature, 78

tkde, 78
tnkde, 79
tnkde.mc, 83
tnkde_get_loo_values, 86
tnkde_get_loo_values2, 87

94

INDEX 95

tnkde_worker_bw_sel, 88
triangle_kernel, 90
tricube_kernel, 91
triweight_kernel, 91

uniform_kernel, 92

worker_adaptive_bw_tnkde, 92

	spNetwork-package
	adaptive_bw_tnkde_cpp
	adaptive_bw_tnkde_cpp2
	aggregate_points
	bike_accidents
	build_graph
	build_graph_directed
	bw_cvl_calc
	bw_cvl_calc.mc
	bw_cv_likelihood_calc
	bw_cv_likelihood_calc.mc
	bw_cv_likelihood_calc_tkde
	bw_tnkde_cv_likelihood_calc
	bw_tnkde_cv_likelihood_calc.mc
	calc_isochrones
	closest_points
	cosine_kernel
	cross_gfunc_cpp
	cross_kfunctions
	cross_kfunctions.mc
	cross_kfunc_cpp
	epanechnikov_kernel
	esc_kernel_loo_nkde
	esc_kernel_loo_tnkde
	esd_kernel_loo_nkde
	esd_kernel_loo_tnkde
	gaussian_kernel
	gaussian_kernel_scaled
	gfunc_cpp
	graph_checking
	kfunctions
	kfunctions.mc
	kfunc_cpp
	k_nt_functions
	k_nt_functions.mc
	lines_center
	lines_direction
	lines_extremities
	lines_points_along
	lixelize_lines
	lixelize_lines.mc
	main_network_mtl
	mtl_libraries
	mtl_network
	mtl_theatres
	network_knn
	network_knn.mc
	network_listw
	network_listw.mc
	nkde
	nkde.mc
	nkde_get_loo_values
	quartic_kernel
	simple_lines
	simplify_network
	small_mtl_network
	split_graph_components
	split_lines_at_vertex
	st_bbox_by_feature
	tkde
	tnkde
	tnkde.mc
	tnkde_get_loo_values
	tnkde_get_loo_values2
	tnkde_worker_bw_sel
	triangle_kernel
	tricube_kernel
	triweight_kernel
	uniform_kernel
	worker_adaptive_bw_tnkde
	Index

