Package ‘spacetime’

February 13, 2025

Version 1.3-3

Title Classes and Methods for Spatio-Temporal Data

Depends R (>=3.0.0)

Imports graphics, utils, stats, methods, lattice, sp (>= 1.1-0), zoo
(>=1.7-9), xts (>= 0.8-8), intervals

Suggests adehabitatLT, cshapes (>= 2.0), foreign, googleVis, gstat (>=
1.0-16), maps, mapdata, plm, raster, RColorBrewer, rmarkdown,
RPostgreSQL, knitr, ISOcodes, markdown, sf, sftime, spdep

LazyData no

Description Classes and methods for spatio-temporal data, including space-time regular lat-
tices, sparse lattices, irregular data, and trajectories; utility functions for plotting data as map se-
quences (lattice or animation) or multiple time series; methods for spatial and temporal selec-
tion and subsetting, as well as for spatial/temporal/spatio-temporal matching or aggregation, re-
trieving coordinates, print, summary, etc.

License GPL (>=2)
URL https://github.com/edzer/spacetime

BugReports https://github.com/edzer/spacetime/issues
Encoding UTF-8
VignetteBuilder knitr

Collate Class-xts.R Class-ST.R Class-STFDFE.R Class-STSDE.R
Class-STIDER Class-STTDER interval R endtime.R ST-methods.R
STFDF-methods.R STSDF-methods.R STIDF-methods.R STTDF-methods.R
apply.R coerce.R stconstruct.R plot.R stplot.R timematch.R
over.R aggregate.R eof.R mnf.R bind.R na.R raster.R tgrass.R
stinteraction.R

NeedsCompilation no

Author Edzer Pebesma [aut, cre] (<https://orcid.org/0000-0001-8049-7069>),
Benedikt Graeler [ctb],
Tom Gottfried [ctb],
Robert J. Hijmans [ctb]

Maintainer Edzer Pebesma <edzer.pebesma@uni-muenster.de>

1

https://github.com/edzer/spacetime
https://github.com/edzer/spacetime/issues
https://orcid.org/0000-0001-8049-7069

air

Repository CRAN
Date/Publication 2025-02-13 16:30:02 UTC

Contents
AT . . o e e e e e e e 2
delta e e e 3
EOF . . . e 4
fires e e e e 5
mnf . . e e e e e e 6
naldoct e e e e 8
nbMult e e e e e 10
over-methods 11
1ead.tErass e e e e e e e e 12
ST-class e e e e 13
StbOX . . . e e 15
StCONSIIUCt o e e e e e e e e 15
STEDF-class e e e e e 18
STIDF-class e e 20
stinteraction L L e 22
Stplot . . e 23
STSDF-class e e e e e e 25
STTDF-class e e e e e e e e e 27
timelsInterval 29
timeMatch e 30
unstack . .. oL L L e e e 31

Index 33

air Air quality data, rural background PM10 in Germany, daily averages
1998-2009
Description

Air quality data obtained from the airBase European air quality data base. Daily averages for rural
background stations in Germany, 1998-2009. In addition, NUTSI1 regions (states, or Bundeslaen-
der) for Germany to illustrate spatial aggregation over irregular regions.

Usage

data(air)

Note

see vignette on overlay and spatio-temporal aggregation in this package; the vignette on using
google charts shows where the ISO_3166_2_DE table comes from.

delta 3

Author(s)

air quality data compiled for R by Benedict Graeler; NUTS1 level data obtained from https://www.gadm.org/

References

https://www.eionet.europa.eu/etcs/etc-acm/databases/airbase

Examples

data(air)

rural = STFDF(stations, dates, data.frame(PM10 = as.vector(air)))
how DE was created from DE_NUTS1:

#if (require(rgeos))

DE = gUnionCascaded(DE_NUTST)

#

delta find default time interval end points when intervals are regular

Description

find default time interval end points when intervals are regular

Usage
delta(x)

Arguments
X object of class xts, or of another class that can be coerced into POSIXct
Details
to find the interval size for the last observation (which has no next observation), x needs to be at
least of length 2.
Value
sequence of POSIXct time stamps, indicating the end of the time interval, given by the next obser-
vation in x. The last interval gets the same width of the one-but-last interval.
Author(s)

Edzer Pebesma

4 EOF

References

https://www.jstatsoft.org/v51/i07/

Examples

X = as.POSIXct("2000-01-01") + (0:9) * 3600
delta(x)

EOF Compute spatial or temporal empirical orthogonal function (EOF)

Description

Compute spatial or temporal empirical orthogonal function (EOF)

Usage
eof (x, how = c("spatial”, "temporal"), returnEOFs = TRUE, ...)
EOF(x, how = c("spatial”, "temporal”), returnPredictions = TRUE, ...)
Arguments
X object of class STFDF
how character; choose "spatial” or "temporal” mode
returnEOFs logical; if TRUE, the eigenvectors (EOFs) are returned in the form of a Spatial
or xts object; if FALSE, the object returned by prcomp is returned, which can
be printed, or from which a summary can be computed; see examples.
returnPredictions
logical; if TRUE, the functions are returned (i.e., predicted principle compo-
nents, or PC scores); if FALSE, the object returned by prcomp is returned, which
can be printed, or from which a summary can be computed; see examples (dep-
recated, see below).
arguments passed on to function prcomp; note that scale.=TRUE needs to be
specified to obtain EOFs based on correlation (default: covariance)
Value

In spatial mode, the appropriate Spatial#* object. In temporal mode, an object of class xts.

Note

EOF is deprecated: it mixes up spatial and temporal EOFs, and returns projections (PC scores)
instead of EOFs (eigenvectors); to compute EOFs, use eof.

fires

Examples

if (require(gstat)) {

data(wind)

library(sp)

wind.loc$y = as.numeric(char2dms(as.character(wind.loc[["Latitude"]])))
wind.loc$x = as.numeric(char2dms(as.character(wind.loc[["Longitude”]11)))
coordinates(wind.loc) = ~x+y

proj4string(wind.loc) = "+proj=longlat +datum=WGS84"

match station order to names in wide table:

stations = 4:15

wind.loc = wind.loc[match(names(wind[stations]), wind.loc$Code),]
row.names(wind.loc) = wind.loc$Station

wind$time = ISOdate(wind$year+1900, wind$month, wind$day, @)
space = list(values = names(wind)[stations])

wind.st = stConstruct(wind[stations], space, wind$time, SpatialObj = wind.loc)
select firt 500 time steps, to limit run time:

wind.st = wind.st[,1:500]

wind.eof.1 = eof(wind.st)

wind.eof.2 = eof(wind.st, "temporal”)

wind.eof.1.PCs = eof (wind.st, returnEOFs = FALSE)

eof (wind.st, "temporal”, returnEOFs = FALSE)

summary (eof (wind.st, returnEOFs = FALSE))

summary (eof (wind.st, "temporal”, returnEOFs = FALSE))

plot(eof (wind.st, "temporal”, returnEOFs = FALSE))

3

fires Northern Los Angeles County Fires

Description

Wildfire occurrences in Northern Los Angeles County, California between 1976 and 2000. The
spatial units are in scaled feet, taken from the NAD 83 state-plane coordinate system. One unit
is equivalent to 100,000 feet or 18.9 miles. The times for the points were produced by the date
package and represent the number of days since January 1, 1960.

Usage

data(fires)

Format

A data frame with 313 observations with day of occurrence, x and y coordinates.

Author(s)

Roger Peng, taken from (non-CRAN) package ptproc,
https://www.biostat. jhsph.edu/~rpeng/software/index.html;

example code by Roger Bivand.

https://www.biostat.jhsph.edu/~rpeng/software/index.html

6 mnf

Examples

data(fires)
fires$X <- fires$Xx100000
fires$Y <- fires$Y*100000
library(sp)
coordinates(fires) <- c("X", "Y")
proj4string(fires) <- CRS("+init=epsg:2229 +ellps=GRS80")
dates <- as.Date("1960-01-01")+(fires$Time-1)
Fires <- STIDF(as(fires, "SpatialPoints"”), dates, data.frame(time=fires$Time))
library(mapdata)
if (require(sf)) {
m <- map("county”, "california”, xlim=c(-119.1, -117.5),
ylim=c(33.7, 35.0), plot=FALSE, fill=TRUE)
m.sf <- st_transform(st_as_sfc(m), "EPSG:2229")
cc <- as(m.sf, "Spatial”)
plot(cc, x1im=c(6300000, 6670000), ylim=c(1740000, 2120000))
plot(slot(Fires, "sp"), pch=3, add=TRUE)
stplot(Fires, sp.layout=list("sp.lines"”, cc))

mnf Generic mnf method

Description

Compute mnf from spatial, temporal, or spatio-temporal data

Usage
mnf(x, ...)
S3 method for class 'matrix'
mnf(x, ..., Sigma.Noise, use = "complete.obs")
S3 method for class 'mts'
mnf(x, ..., use = "complete.obs")
S3 method for class 'zoo'
mnf(x, ..., use = "complete.obs")
S3 method for class 'SpatialPixelsDataFrame'
mnf(x, ..., use = "complete.obs")
S3 method for class 'SpatialGridDataFrame'
mnf(x, ..., Sigma.Noise, use = "complete.obs")
S3 method for class 'RasterStack'
mnf(x, ..., use = "complete.obs")
S3 method for class 'RasterBrick'
mnf(x, ..., use = "complete.obs")
S3 method for class 'STSDF'
mnf(x, ..., use = "complete.obs”, mode = "temporal")

S3 method for class 'STFDF'
mnf(x, ..., use = "complete.obs”, mode = "temporal”)

mnf 7

Arguments
X object for which an mnf method is available
ignored
Sigma.Noise Noise covariance matrix; when missing, estimated from the data by using the
covariance of lag-one spatial or temporal differences (MAF)
use method to deal with missing values when computing covariances; see cov
mode for ST objects: if "temporal”, compute covariances in time dimension, if "spatial”,
compute them in spatial dimension.
Details

Uses MAF (Min/max Autocorrelation Factors) to estimate the noise covariance. This implementa-
tion estimates the noise covariance by 0.5Cov(Z(s) — Z(s+A)), so that eigenvalues can be directly
interpreted as approximate estimates of the noice covariance.

Value

object of class (c("mnf", "prcomp”); see prcomp. Additional elements are values, containing
the eigenvalues.

See Also
https://r-spatial.org/r/2016/03/09/MNF-PCA-EOF.html

Examples

temporal data:

set.seed(13531) # make reproducible

s1 = arima.sim(list(ma = rep(1,20)), 500)
s2 = arima.sim(list(ma = rep(1,20)), 500)
s3 = arima.sim(list(ma rep(1,20)), 500)
s3 = s3 + rnorm(500, sd = 10)

d = cbind(s1,s2,s3)

plot(d)

m = mnf(d)

m

summary (m)

plot(predict(m))

spatial example:

Not run:

library(sp)

grd = SpatialPoints(expand.grid(x=1:100, y=1:100))
gridded(grd) = TRUE

fullgrid(grd) = TRUE

pts = spsample(grd, 50, "random")

pts$z = rnorm(50)

library(gstat)

v = vgm(1, "Sph", 90)

out = krige(z~1, pts, grd, v, nmax = 20, nsim = 4)

8 na.locf

out[[3]] = ©.5 * out[[3]] + ©.5 * rnorm(1e4)
out[[4]] = rnorm(1e4)

spplot(out, as.table = TRUE)

m = mnf(out)

m

summary (m)

End(Not run)

if (require(gstat)) {

data(wind)

library(sp)

wind.loc$y = as.numeric(char2dms(as.character(wind.loc[["Latitude"]1)))
wind.loc$x = as.numeric(char2dms(as.character(wind.loc[["Longitude”]])))
coordinates(wind.loc) = ~x+y

proj4string(wind.loc) = "+proj=longlat +datum=WGS84"

match station order to names in wide table:

stations = 4:15

wind.loc = wind.loc[match(names(wind[stations]), wind.loc$Code),]

row.names(wind.loc) = wind.loc$Station

wind$time = ISOdate(wind$year+1900, wind$month, wind$day, @)

space = list(values = names(wind)[stations])

wind.st = stConstruct(wind[stations], space, wind$time, SpatialObj = wind.loc, interval = TRUE)
m = mnf(wind.st)

m
plot(m)
stplot(predict(m), mode = "tp")
3
na.locf replace NA attribute values; disaggregation time series
Description

replace NA attribute values in time series, using last or next observation, or using (temporal) inter-
polation, and disaggregation

Usage
S3 method for class 'STFDF'
na.locf(object, na.rm = FALSE, ...)
S3 method for class 'STFDF'
na.approx(object, x = time(object), xout, ..., na.rm = TRUE)
S3 method for class 'STFDF'
na.spline(object, x = time(object), xout, ..., na.rm = TRUE)

na.locf 9

Arguments
object object of class STFDF, with potentially NA values
na.rm logical; need non-replaced NA values be removed?
X times at which observations are taken; should not be modified
xout if present, new times at which the time series should be approximated (disag-
gregated)
passed on to underlying zoo functions; see details
Details

details are found in na.locf, na.approx, na.spline.

Value

object of class STFDF, with NA values replaced.

Author(s)

Edzer Pebesma

References

https://www.jstatsoft.org/v51/i07/

Examples

toy example:

library(sp)

pts = SpatialPoints(cbind(c(@,1),c(0,1)))
Sys.setenv(TZ="GMT")

tm = seq(as.POSIXct("2012-11-25"), as.POSIXct("2012-11-30"), "1 day")
df = data.frame(a = c(NA,NA,2,3,NA,NA,NA, 2 ,NA ,NA,4,NA), b = c(NA,2,3,4,5,1,2,NA,NA,NA,NA,3))
x = STFDF(pts, tm, df)

as(x, "xts")

as(na.locf(x), "xts")

as(na.locf(x, fromLast = TRUE), "xts")
as(na.locf(na.locf(x), fromLast = TRUE), "xts")
drops first record:

as(na.approx(x[,,11), "xts")

keep it:

cbind(as(na.approx(x[,,1], na.rm=FALSE), "xts"),
as(na.approx(x[,,21), "xts"))
chbind(as(na.spline(x[,,1]1), "xts"),
as(na.spline(x[,,2]1), "xts"))

#disaggregate:

xout = seq(start(x), end(x), "6 hours")
as(na.approx(x[,,1], xout = xout), "xts")
as(na.spline(x[,,1], xout = xout), "xts")
as(na.spline(x[,,2], xout = xout), "xts")

10 nbMult

larger/real data:

data(air)

rural = STFDF(stations, dates, data.frame(PM1@ = as.vector(air)))
fill NA's with last non-NA

r = na.locf(rural)

sample (NOT aggregate) to monthly:

m = seq(start(rural), end(rural), "1 month")
stplot(na.approx(rural[1:20,"2003::2005"], xout = m), mode = 'ts')

nbMult convert a spatial nb object to a matching STF object

Description

convert a spatial nb object to a matching STF object

Usage

nbMult(nb, st, addT = TRUE, addST = FALSE)

Arguments
nb object of class nb (see package spdep), which is valid for the spatial slot of object
st: length(nb) should equal length(st@sp)
st object of class STF
addT logical; should temporal neighbours be added?
addsT logical; should spatio-temporal neighbours be added?
Details

if both addT and addST are false, only spatial neighbours are added for each time replicate.
details are found in
Giovana M. de Espindola, Edzer Pebesma, Gilberto Camara, 2011. Spatio-temporal regression

models for deforestation in the Brazilian Amazon. STDM 2011, The International Symposium on
Spatial-Temporal Analysis and Data Mining, University College London - 18th-20th July 2011.

Value

object of class nb

Author(s)

Edzer Pebesma

over-methods 11

over-methods consistent spatio-temporal overlay for objects inheriting from ST

Description

consistent spatio-temporal overlay for STF, STS and STI objects, as well as their *DF counterpart:
retrieves the indexes or attributes from one geometry at the spatio-temporal points of another

Usage
S4 method for signature 'STF,STF'
over(x, y, returnList = FALSE, fn = NULL, ...)
S4 method for signature 'xts,xts'
over(x, y, returnList = FALSE, fn = NULL, ...)
S4 method for signature 'ST'
aggregate(x, by, FUN, ..., simplify = TRUE)
Arguments
X geometry (S/T locations) of the queries
y layer from which the geometries or attributes are queried
returnList logical; determines whether a list is returned, or an index vector
fn (optional) a function; see value
by geometry over which attributes in x are aggregated (this can be a Spatialx

geometry, or a ST* geometry), or temporal aggregation, such as "month", "10
minutes", or a function such as as.yearmon; see aggregate.zoo. In case x is of
class STFDF, argument by may be "time" or "space", in which cases aggregation
over all time or all space is carried out.

FUN aggregation function

simplify boolean; if TRUE, and space or time dimensions can be dropped, the simpler
(Spatial or xts) object will be returned

arguments passed on to function fn or FUN

Value

an object of length length(x), or a data.frame with number of rows equal to length(x). If
returnList is FALSE, a vector with indices of y for each geometry (point, grid cell centre, polygon
or lines x time point) in x. if returnList is TRUE, a list of length length(x), with list element i
the vector of indices of the geometries in y that correspond to the i-th geometry in x.

The aggregate method for ST objects aggregates the attribute values of x over the geometry (space,
time, or space-time) of by, using aggregation function FUN.

For the matching of time intervals, see timeMatch.

For setting, or retrieving whether time represents intervals, see timelsInterval.

12 read.tgrass

Methods
X - llSTF”, y - IISTFII

x ="xts",y ="xts" finds the row index of the instance or interval of time instances of x matching
to y. Only if timeIsInterval(x) == TRUE, intervals are sought. In that case, time intervals
start at the time instance of a record, and end at the next. The last time interval length is set to
the interval length of the one-but-last (non-zero) interval. In case of a single time instance for
y, its interval is right-open.

Note
See also over; methods intersecting SpatialLines with anything else, or SpatialPolygons with Spa-
tialPolygons, need rgeos to be loaded first.

Author(s)

Edzer Pebesma, <edzer.pebesma@uni-muenster.de>

References

https://www.jstatsoft.org/article/view/v051i07

See Also

over; vignette('sto'), vignette('over'), timeMatch, timelsInterval

read.tgrass read or write tgrass (time-enabled grass) files

Description

read or write tgrass (time-enabled grass) files

Usage
read.tgrass(fname, localName = TRUE, useTempDir = TRUE, isGeoTiff = TRUE)
write.tgrass(obj, fname, ...)
Arguments
fname file name to read from, or write to
localName logical; if TRUE, fname is a local file, else it is a the full path name to the file
useTempDir logical: use a temporary directory for extraction?
isGeoTiff logical: are the files in the tar.gz file GeoTIFFs?
obj object to export, of class STFDF or RasterStack

arguments passed on to writeRaster

ST-class 13

Details

The tgrass format is a gzip’ed tar file (.tar.gz) that has geotiff files (with suffix .tif), and three files
(list.txt, proj.txt and init.txt) describing the file names and time slices, coordinate reference system,
and dimensions

Value

read. tgrass returns an object of class RasterStack, writegrass returns nothing

Author(s)

Edzer Pebesma; time-enabled grass by Soeren Gebbert

References

https://dx.doi.org/10.1016/j.envsoft.2013.11.001

Examples

Not run:

library(spacetime)

r = read.tgrass("precipitation_1950_2011_yearly.tar.gz", useTempDir = FALSE)
write.tgrass(r, "myfile.tar.gz")

End(Not run)

ST-class Class "ST"

Description

An abstract class from which useful spatio-temporal classes are derived

Usage
ST(sp, time, endTime)

Arguments
sp an object deriving from class Spatial, such as a SpatialPoints or SpatialPolygons
time an object of class xts, or a time vector (currently: Date, POSIXct, timeDate,
yearmon and yearqtr; are supported; see xts); in the latter case, it should be in
time order
endTime vector of class POSIXct holding end points of time intervals
Objects from the Class

Objects of this class are not meant to be useful; only derived classes can be meaningful

14 ST-class

Slots

sp: Object deriving from class "Spatial”

time: Object of class "xts”

Methods

[[signature(obj ="ST"): retrieves the attribute element
$ signature(obj = "ST"): retrieves the attribute element
[[<- signature(obj ="ST"): sets or replaces the attribute element

$<- signature(obj = "ST"): sets or replaces the attribute element

Note

argument (and object slot) sp can be pure geometry, or geometry with attributes. In the latter case,
the geometries are kept with the sp slot, and only replicated (when needed) on coercion to the long
format, with as.data.frame.

Slot time needs to be of class xts; if a time or date vector is passed as argument to SP, it will be
converted into an xts object.

When endTime is missing, an error is thrown.

ST is meant as a super-class, and is not to be used for representing data, similar to Spatial in the sp
package.

Author(s)

Edzer Pebesma, <edzer.pebesma@uni-muenster.de>

References

https://www.jstatsoft.org/v51/i07/

Examples

time = as.Date('2008-01-01')+1:2
library(sp)

sp = SpatialPoints(cbind(c(@,1),c(0,1)))
ST(sp, time, delta(time))

stbox 15

stbox obtain ranges of space and time coordinates

Description

obtain ranges of space and time coordinates

Usage

stbox(obj)
bbox (obj)

Arguments

obj object of a class deriving from ST

Value

stbox returns a data.frame, with three columns representing x-, y- and time-coordinates, and
two rows containing min and max values. bbox gives a matrix with coordinate min/max values,
compatible to bbox

Methods

stbox signature(x ="ST"): obtain st range from object

stConstruct create ST* objects from long or wide tables

Description

create ST* objects from long or wide tables

Usage

stConstruct(x, space, time, SpatialObj = NULL, TimeObj = NULL,
crs = CRS(as.character(NA)), interval, endTime)

16

Arguments

X

space

time

SpatialObj

TimeObj

crs

interval

endTime

Details

stConstruct

object of class matrix or data.frame, holding the long, space-wide or time-
wide table; see details.

in case x is a long table, character or integer holding the column index in x where
the spatial coordinates are (if length(space)==2) or where the ID of the spatial
location is (if (length(space)==1). If x is a space-wide table, a list with each
(named) list element a set of columns that together form a variable

in case x is a long table, character or integer indicating the column in x with
times;

object of class Spatial-class, containing the locations of a time-wide table, or the
locations of a long table

in case of space-wide table, object of class xts, containing the times for each of
the columns in a list element of space

object of class CRS-class; only used when coordinates are in x and no CRS can
be taken from SpatialObj

logical; specifies whether time should reflect time instance (FALSE) or time
intervals (TRUE). If omitted, defaults values depend on the class

vector of POSIXct, specifying (if present) the end points of observation time
intervals

For examples, see below.

A long table is a data.frame with each row holding a single observation in space-time, and particular
columns in this table indicate the space (location or location ID) and time.

A space-wide table is a table in which different columns refer to different locations, and each row
reflects a particular observation time.

A time-wide table is a table where different times of a particular characteristic are represented as
different colunns; rows in the table represent particular locations or location IDs.

Value

Depending on the arguments, an object of class STIDF or STFDF.

References

https://www.jstatsoft.org/v51/i07/

Examples

stConstruct multivariable, time-wide
if (require(maps) && require(plm) && require(sf)) {

library(sp)

states.m <- map('state', plot=FALSE, fill=TRUE)
IDs <- sapply(strsplit(states.m$names, ":"), function(x) x[1])

stConstruct

sf = st_as_sf(states.m, IDs=IDs)

row.names(sf) = sf$ID # not needed if sf >= 1.0-13
states <- as(sf, "Spatial”)
states=geometry(states)

yrs = 1970:1986

time = as.POSIXct(paste(yrs, "-01-01", sep=""), tz = "GMT")

data("Produc")
deselect District of Columbia, polygon 8, which is not present in Produc:
Produc.st <- STFDF(states[-8], time, Produc[order(Produc[,2], Produc[,1]1),1)

stplot(Produc.st[,,"unemp”], yrs, col.regions = brewer.pal(9, "Y1OrRd"),cuts=9)

example 1: st from long table, with states as Spatial object:
use Date format for time:

Produc$time = as.Date(paste(yrs, "01", "@1", sep = "-"))

take centroids of states:

xy = coordinates(states[-8])

Produc$x = xy[,1]

Produc$y = xy[,2]

#using stConstruct, use polygon centroids for location:

x = stConstruct(Produc, c("x", "y"), "time", interval = TRUE)
class(x)

stplot(x[,,"unemp”])

alternatively, pass states as SpatialObj:
Produc$state = gsub("TENNESSE"”, "TENNESSEE", Produc$state)

Produc$State = gsub(”"_", " ", tolower(Produc$state))
x = stConstruct(Produc, "State”, "time", states)
class(x)

all.equal(x, Produc.st, check.attributes = FALSE)

3

if (require(sf)) {

fname = system.file("shape/nc.shp"”, package="sf")[1]

nc = as(st_read(fname), "Spatial”)

timesList = list(

BIR=c("BIR74", "BIR79"), # sets of variables that belong together
NWBIR=c("NWBIR74", "NWBIR79"), # only separated by space
SID=c("SID74", "SID79")

)

t = as.Date(c("1974-01-01","1979-01-01"))

nc.st = stConstruct(as(nc, "data.frame"), geometry(nc), timesList,
TimeObj = t, interval = TRUE)

3

stConstruct multivariable, space-wide

if (require(gstat)) {

data(wind)

wind.loc$y = as.numeric(char2dms(as.character(wind.loc[["Latitude”"]])))
wind.loc$x = as.numeric(char2dms(as.character(wind.loc[["Longitude”]1])))
coordinates(wind.loc) = ~x+y

proj4string(wind.loc) = "+proj=longlat +datum=WGS84"

17

18 STFDF-class

match station order to names in wide table:

stations = 4:15

wind.loc = wind.loc[match(names(wind[stations]), wind.loc$Code),]
row.names(wind.loc) = wind.loc$Station

convert to utm zone 29, to be able to do interpolation in

proper Euclidian (projected) space:

create time variable
wind$time = ISOdate(wind$year+1900, wind$month, wind$day, @)

w = STFDF(wind.loc, wind$time,

data.frame(values = as.vector(t(wind[stations]))))

space = list(values = names(wind)[stations])

wind.st = stConstruct(wind[stations], space, wind$time, SpatialObj = wind.loc, interval = TRUE)
all.equal(w, wind.st)

class(wind.st)

}

STFDF-class Class "STFDF"

Description

A class for spatio-temporal data with full space-time grid; for n spatial locations and m times, n x
m observations are available

Usage

STF(sp, time, endTime = delta(time))
STFDF(sp, time, data, endTime = delta(time))
S4 method for signature 'STFDF'
x[i, j, ..., drop = is(x, "STFDF")]
S4 method for signature 'STFDF,xts'
coerce(from, to, strict=TRUE)
S4 method for signature 'STFDF,Spatial'
coerce(from, to)

Arguments

sp object of class Spatial, having n elements

time object holding time information, of length m; see ST for details

endTime vector of class POSIXct, holding end points of time intervals; by default, time
intervals equal the time step width, see delta

data data frame with nxm rows corresponding to the observations (spatial index mov-
ing fastest)

X an object of class STFDF

i selection of spatial entities

STFDF-class

drop

from
to

strict

Value

19

selection of temporal entities (see syntax in package xts)
selection of attribute(s)

if TRUE and a single spatial entity is selected, an object of class xts is returned;
if TRUE and a single temporal entity is selected, and object of the appropriate
Spatial class is returned; if FALSE, no coercion to reduced classes takes place

object of class STFDF
target class

ignored

the as.data.frame coercion returns the full long table, with purely spatial attributes and purely
time attributes replicated appropriately.

Objects from the Class

Objects of this class represent full space/time data with a full grid (or lattice) layout

Slots

sp: spatial object; see ST-class

time: temporal object; see ST-class

data: Object of class data.frame, which holds the measured values; space index cycling first,
time order preserved

Methods

[signature(x = "STFDF"): selects spatial entities, temporal entities, and attributes

coerce STFDEFxts

coerce STFDF,Spatial(from) coerces to (wide form) SpatialXxDataFrame, where SpatialXx is the
spatial class of from@sp

plot signature(x ="STF", y = "missing"): plots space-time layout

plot signature(x = "STFDF", y = "missing"”): plots space-time layout, indicating full missing
valued records

Author(s)

Edzer Pebesma, <edzer .pebesma@uni-muenster.de>

References

https://www.jstatsoft.org/v51/i07/

20 STIDF-class

Examples

sp = cbind(x = c(0,0,1), y = c(0,1,1))

row.names(sp) = paste(”point”, 1:nrow(sp), sep="")
library(sp)

sp = SpatialPoints(sp)

time = as.POSIXct("2010-08-05")+3600*(10:13)

m = c(10,20,30) # means for each of the 3 point locations
mydata = rnorm(length(sp)*length(time),mean=rep(m, 4))
IDs = paste("ID",1:1length(mydata))

mydata = data.frame(values = signif(mydata,3), ID=IDs)
stfdf = STFDF(sp, time, mydata)

stfdf

stfdf[1:2,]

stfdf[,1:2]

stfdf[,,2]

stfdf[,,"values"]

stfdf[1,]

stfdf[, 2]

as(stfdf[,,1], "xts")

as(stfdf[,,2], "xts")

examples for [[, [[<-, $ and $<-

stfdf[[1]1]

stfdf[["values"]]

stfdf[["newVal”]] <- rnorm(12)

stfdf$ID

stfdf$ID = paste("”01dIDs", 1:12, sep="")

stfdf$NewID = paste(”NewIDs", 12:1, sep="")

stfdf

x = stfdf[stfdf[1:2,],]

all.equal(x, stfdf[1:2,1)

all.equal(stfdf, stfdf[stfdf,]) # converts character to factor...

STIDF-class Class "STIDF"

Description

A class for unstructured spatio-temporal data; for n spatial locations and times, n observations are
available

Usage

STI(sp, time, endTime)

STIDF(sp, time, data, endTime)

S4 method for signature 'STIDF'
x[i, j, ..., drop = FALSE]

S4 method for signature 'STIDF,STSDF'
coerce(from, to, strict=TRUE)

STIDF-class 21

Arguments

sp object of class Spatial

time object holding time information; when STIDF is called, a non-ordered vector
with times, e.g. POSIXct will also work, and rearrange the sp and data slots
according to the ordering of time; for this to work no ties should exist.

endTime vector of class POSIXct, indicating the end points of time intervals for the obser-
vations. By default, for STI objects time is taken, indicating that time intervals
have zero width (time instances)

data data frame with appropriate number of rows

X an object of class STFDF

i selection of record index (spatial/temporal/spatio-temporal entities)

J or character string with temporal selection
first element is taken as column (variable) selector

drop if TRUE and a single spatial entity is selected, an object of class xts is returned
(NOT yet implemented); if TRUE and a single temporal entity is selected, and
object of the appropriate Spatial class is returned; if FALSE, no coercion to
reduced classes takes place

from object of class STFDF

to target class

strict ignored

Objects from the Class

Objects of this class carry full space/time grid data

Slots

sp: Object of class "Spatial”
time: Object holding time information, see ST-class

data: Object of class data. frame, which holds the measured values

Methods

[signature(x = "STIDF"): selects spatial-temporal entities, and attributes

Note

arguments sp, time and data need to have the same number of records, and regardless of the
class of time (xts or POSIXct) have to be in correspoinding order: the triple sp[i], time[i] and
datali,] refer to the same observation

Author(s)

Edzer Pebesma, <edzer.pebesma@uni-muenster.de>

22 stlnteraction

References

https://www.jstatsoft.org/v51/i07/

Examples

sp = cbind(x = ¢c(0,0,1), y = c(0,1,1))

row.names(sp) = paste(”point”, 1:nrow(sp), sep="")
library(sp)

sp = SpatialPoints(sp)

time = as.POSIXct("2010-08-05")+3600*(10:13)

m = c(10,20,30) # means for each of the 3 point locations
mydata = rnorm(length(sp)*length(time),mean=rep(m, 4))
IDs = paste("ID",1:1length(mydata))

mydata = data.frame(values = signif(mydata,3), ID=IDs)
stidf = as(STFDF(sp, time, mydata), "STIDF")
stidf[1:2,]

all.equal(stidf, stidf[stidf,])

stInteraction subtract marginal (spatial and temporal) means from observations

Description

subtract marginal (spatial and temporal) means from observations

Usage
stInteraction(x, ...)
Arguments
X object of class STFDF
arguments passed to rowMeans, colMeans and mean, such as na. rm=TRUE
Value

object of class STFDF with each attribute replaced by its residual, computed by y;; = x;; —
m. jmi. /m with m the grand mean, m.; the temporal mean, m;, the spatial mean and m the grand
mean.

Examples

if (require(gstat)) {

library(sp)

data(wind)

wind.loc$y = as.numeric(char2dms(as.character(wind.loc[["Latitude”]1)))
wind.loc$x = as.numeric(char2dms(as.character(wind.loc[["Longitude”]])))
coordinates(wind.loc) = ~x+y

stplot 23

proj4string(wind.loc) = "+proj=longlat +datum=WGS84"

match station order to names in wide table:

stations = 4:15

wind.loc = wind.loc[match(names(wind[stations]), wind.loc$Code),]
row.names(wind.loc) = wind.loc$Station

wind$time = ISOdate(wind$year+1900, wind$month, wind$day, @)

space = list(values = names(wind)[stations])

wind.st = stConstruct(wind[stations], space, wind$time, SpatialObj = wind.loc)

wind.sti = stInteraction(wind.st)

temporal means for any station should be zero:
c(mean(wind.sti[3,1]),

spatial mean for each time step should be zero:
mean(wind.stil[,51[[1]11))

}

stplot produce trellis plot for STxDF object

Description

create trellis plot for ST objects

Usage

stplot(obj, ...)
stplot.STFDF (obj, names.attr = trimDates(obj), ...,
as.table = TRUE, at, cuts = 15, scales = list(draw = FALSE),

animate = @, mode = "xy", scaleX = 0, auto.key = list(space = key.space),
main, key.space = "right", type = "1", do.repeat = TRUE, range.expand = 0.001)
stplot.STIDF(obj, ..., names.attr = NULL, as.table = TRUE,

scales = list(draw = FALSE), xlab = NULL, ylab = NULL,
type = "p”, number = 6, tcuts, sp.layout = NULL, xlim =
bbox(obj)[1, 1, ylim = bbox(obj)[2, 1)

Arguments
obj object of a class deriving from ST
names.attr names that will be used in the strip; trimDates(obj) trims "-01" ending(s) from
printed Dates
as.table logical; if TRUE, time will increas from top to bottom; if FALSE, time will
increase from bottom to top
at values at which colours will change; see levelplot

cuts number of levels the range of the attribute would be divided into

24

animate

mode

scaleX

auto.key
main
key.space
scales
xlab

ylab

type
do.repeat

range.expand

number
tcuts

sp.layout

x1lim

ylim

Value

stplot

numeric; if larger than 0, the number of seconds between subsequent animated
time steps (loop; press ctrl-C or Esc to stop)

plotting mode; if "xy", maps for time steps are plotted; if "xt", a space-time plot
is constructed (see argument scaleX, but read details below); if "ts", multiple-
locations time series are plotted in a single plot, or in a separate panel for each
attribute; if "tp" single- or multi-attribute time series are plotted in multiple pan-
els, one panel per location.

integer: 0, 1 or 2; when mode is "xt", used to determine whether the index of the
spatial location is shown (0), the x coordinate (1) or the y coordinate (2).

see the auto.key argument in xyplot

character; plot title, use NULL to omit title

character; see xyplot

scales drawing; see scales argument of xyplot

x-axis label

y-axis label

character; use '’ for lines, 'p’ for symbols, b’ for both lines and symbols
logical; repeat the animation in an infinite loop?

numeric; if at is not specified, expand the data range with this factor to cover
all values

number of time intervals, equally spaced
time cuts in units of index (obj); this overrides number
list or NULL,; see spplot

arguments passed on to spplot in case of plotting objects of class STFDF or
STIDF, or to xyplot in case of stplot. STIDF

numeric, X range

numeric, y range

In non-animation and "xy" mode, stplot is a wrapper around spplot, that automically plots each
time stamp in a panel. The returned value is is a lattice plot.

In "xt" mode, a space-time plot with space on the x-axis and time on the y-axis is plotted. By
default, the space ID is plotted on the x-axis, as space can be anything (points, polygons, grid cells
etc). When scaleX is set to 1 or 2, the x- resp. y-coordinates of the spatial locations, obtained by
coordinates, is used instead. Beware: when the x-coordinate is plotted, and for each (x,t) element
multiple y-coordinates are sent to the plot, it is not clear which (X,y,t) value becomes the plotted
value, so slicing single y values is adviced — no checking is done. The returned value is is a lattice

plot.

In animation mode (animate > 0), single maps are animated in an endless loop, with animate
seconds between each. No proper value is returned: the loop needs to be interrupted by the user.

STSDF-class 25

Methods

stplot signature(x = "STFDF"): plots object of class STFDF
stplot signature(x = "STSDF"): plots object of class STSDF
stplot signature(x ="STI"): plots object of class STI
stplot signature(x = "STIDF"): plots object of class STIDF
stplot signature(x = "STT"): plots object of class STT
stplot signature(x = "STTDF"): plots object of class STTDF

Note

vignette("spacetime") contains several examples

References

https://www.jstatsoft.org/v51/i07/

STSDF-class Class "STSDF"

Description

A class for spatio-temporal data with partial space-time grids; for n spatial locations and m times,
an index table is kept for which nodes observations are available

Usage

STS(sp, time, index, endTime = delta(time))
STSDF(sp, time, data, index, endTime = delta(time))
S4 method for signature 'STSDF'
x[i, j, ..., drop = is(x, "STSDF")]
S4 method for signature 'STSDF,STFDF'
coerce(from, to, strict=TRUE)
S4 method for signature 'STSDF,STIDF'
coerce(from, to, strict=TRUE)

Arguments
sp object of class Spatial
time object holding time information; see ST-class
data data frame with rows corresponding to the observations (spatial index moving
faster than temporal)
index two-column matrix: rows corresponding to the nodes for which observations

are available, first column giving spatial index, second column giving temporal
index

26 STSDF-class

endTime vector of class POSIXct with end points of time intervals for the observations
X an object of class STFDF

i selection of spatial entities

j selection of temporal entities (see syntax in package xts)

selection of attribute(s)

drop if TRUE and a single spatial entity is selected, an object of class xts is returned;
if TRUE and a single temporal entity is selected, and object of the appropriate
Spatial class is returned; if FALSE, no coercion to reduced classes takes place

from object of class STFDF
to target class
strict ignored

Objects from the Class

Objects of this class carry sparse space/time grid data

Slots

sp: Object of class "Spatial”
time: Object holding time information; see ST-class for permitted types
index: matrix of dimension n x 2, where n matches the number of rows in slot data

data: Object of class data. frame, which holds the measured values

Methods

[signature(x = "STSDF"): selects spatial entities, temporal entities, and attributes
plot signature(x ="STS", y ="missing"): plots space-time layout

plot signature(x ="STSDF", y = "missing”): plots space-time layout, indicating records par-
tially NA

Author(s)

Edzer Pebesma, <edzer .pebesma@uni-muenster.de>

References

https://www.jstatsoft.org/v51/i07/

See Also

delta

STTDF-class

Examples

sp = cbind(x = ¢c(0,0,1), y = c(0,1,1))

row.names(sp) = paste(”"point”, 1:nrow(sp), sep="")
library(sp)

sp = SpatialPoints(sp)

library(xts)

time = xts(1:4, as.POSIXct("2010-08-05")+3600%(10:13))
m = c(10,20,30) # means for each of the 3 point locations
mydata = rnorm(length(sp)*length(time),mean=rep(m, 4))
IDs = paste("ID"”,1:1length(mydata))

mydata = data.frame(values = signif(mydata,3), ID=IDs)
stfdf = STFDF(sp, time, mydata)

stfdf

stsdf = as(stfdf, "STSDF")

stsdf[1:2,]

stsdf[,1:2]

stsdf[,,2]

stsdf[,,"values"]

stsdf[1,]

stsdf[, 2]

examples for [[, [[<-, $ and $<-

stsdf[[1]]

stsdf[["values"]]

stsdf[["newVal”1] <- rnorm(12)

stsdf$ID

stsdf$ID = paste("”01dIDs", 1:12, sep="")

stsdf$NewID = paste(”NewIDs", 12:1, sep="")

stsdf

x = stsdf[stsdf,]

x = stsdf[stsdf[1:2,],]

all.equal(x, stsdf[1:2,])

27

STTDF-class Class "STTDF"

Description

A class for spatio-temporal trajectory data

Usage

S4 method for signature 'STTDF,ltraj’
coerce(from, to, strict=TRUE)

S4 method for signature 'ltraj,STTDF'
coerce(from, to, strict=TRUE)

Arguments

from from object

28 STTDF-class

to target class
strict ignored
Objects from the Class

Objects of this class carry sparse (irregular) space/time data

Slots

sp: Object of class "Spatial”, containing the bounding box of all trajectories
time: Object of class "xts", containing the temporal bounding box of all trajectories
traj: Object of class 1ist, each element holding an STI object reflecting a single trajectory;

data: Object of class data. frame, which holds the data values for each feature in each trajectory

Methods

[signature(x ="STTDF"): select trajectories, based on index, or spatial and/or temporal predi-
cates

Note

The data. frame needs to have a column called burst which is a factor (or character) and contains
the grouping of observations that come from a continuous sequence of observations. In addition, a
column id is used to identify individual items.

Author(s)

Edzer Pebesma, <edzer .pebesma@uni-muenster.de>

References

https://www.jstatsoft.org/v51/i07/

Examples

library(sp)
m = 3# nr of trajectories
n = 100 # length of each
1 = vector("list", m)
t0 = as.POSIXct("2013-05-05",tz="GMT")
set.seed(1331) # fix randomness
for (i in 1:m) {
x = cumsum(rnorm(n))
y = cumsum(rnorm(n))
sp = SpatialPoints(cbind(x,y))
#t = t0 + (0:(n-1) + (i-1)*n) * 60
t =1t0 + (0:(n-1) + (i-1)*n/2) * 60
1[[i1]1 = STI(sp, t)

3
stt= STT(1)

timelsInterval 29

sttdf = STTDF(stt, data.frame(attr = rnorm(n*m), id = paste("ID", rep(1:m, each=n))))
x = as(stt, "STI")

stplot(sttdf, col=1:m, scales=list(draw=TRUE))

stplot(sttdf, by = "id")

stplot(sttdf[1])

stplot(sttdf[1])

select a trajectory that intersect with a polygon
p = Polygon(cbind(x=c(-20,-15,-15,-20,-20),y=c(10,10,15,15,10)))
pol=SpatialPolygons(list(Polygons(list(p), "ID")))
#if (require(rgeos)) {

stplot(sttdflpoll)

names(sttdf[poll@traj)
stplot(sttdf[1:2],col=1:2)

stplot(sttdf[,t0])

stplot(sttdf[,"”2013"])

stplot(sttdf[pol,"2013"1)

is.null(sttdf[pol,t@])

Y

timeIsInterval retrieve, or set, information whether time reflects instance (FALSE) or
intervals (TRUE)

Description

retrieve, or set, information whether time reflects instance (FALSE) or intervals (TRUE)

Usage

timeIsInterval(x, ...)
timeIsInterval(x) <- value

Arguments
X object, of any class
ignored
value logical; sets the timelsInterval value
Value

logical; this function sets or retrieves the attribute timeIsInterval of x, UNLESS x is of class ST,
in which case it sets or retrieves this attribute for the time slot of the object, i.e. timeIsInterval(x@time)
<-value

Note

From spacetime 0.8-0 on, timelsInterval is dropped in favour of a more generic time intervals by
specifying endTime of each observation

30 timeMatch

See Also

over, timelsInterval

timeMatch match two (time) sequences

Description

match two (time) sequences, where each can be intervals or instances.

Usage
timeMatch(x, y, returnList = FALSE, ...)
Arguments
X ordered sequence, e.g. of time stamps
y ordered sequence, e.g. of time stamps
returnList boolean; should a list be returned with all matches (TRUE), or a vector with
single matches (FALSE)?
end.x and end.y can be specified for xts and POSIXct methods
Details

When x and y are of class xts or POSIXct, end. x and end.y need to specify endpoint of intervals.
In case x and y are both not intervals, matching is done on equality of values, using match.

If x represents intervals, then the first interval is from x[1] to x[2], with x[1] included but x[2]
not (left-closed, right-open). In case of zero-width intervals (e.g. x[1]==x[2]), nothing will match

and a warning is raised. Package intervals is used to check overlap of intervals, using, inter-
val_overlap.

Value

if returnList = FALSE: integer vector of length length(x) with indexes of y matching to each of
the elements of x, or NA if there is no match. See section details for definition of match.

if returnList = TRUE: list of length 1length(x), with each list element an integer vector with all
the indexes of y matching to that element of x.

Author(s)

Edzer Pebesma

References

https://www.jstatsoft.org/v51/i07/

unstack

See Also

over, timelsInterval, interval_overlap

Examples

t0 = as.POSIXct("1999-10-10")

X = t0 +c(0.5+c(2,2.1,4),5)*3600

y = t0 + 1:5 * 3600

X

y

#timeIsInterval(x) = FALSE

#timeIsInterval(y) = FALSE

timeMatch(x,y, returnList = FALSE)

timeMatch(x,y, returnList = TRUE)

#timeIsInterval(y) = TRUE

timeMatch(x,y, returnList = FALSE, end.y = delta(y))

timeMatch(x,y, returnList = TRUE, end.y = delta(y))
#timeIsInterval(x) = TRUE

timeMatch(x,y, returnList = FALSE, end.x = delta(x), end.y = delta(y))
timeMatch(x,y, returnList = TRUE, end.x = delta(x), end.y = delta(y))
#timeIsInterval(y) = FALSE

timeMatch(x,y, returnList = FALSE, end.x = delta(x))

timeMatch(x,y, returnList = TRUE, end.x = delta(x))

X = as.POSIXct("2000-01-01") + (0:9) * 3600

y =x+1

y[1]1 = y[2]

X

y

TI = function(x, ti) {

timeIsInterval(x) = ti

X

3

#timeMatch(TI(y,FALSE),TI(y,FALSE))
#timeMatch(TI(y,TRUE), TI(y,TRUE))

#

#timeMatch(TI(x,FALSE),TI(y,FALSE))
#timeMatch(TI(x,FALSE),TI(y,TRUE))
#timeMatch(TI(x,TRUE), TI(y,FALSE))
#timeMatch(TI(x,TRUE), TI(y,TRUE))

#

#timeMatch(TI(x,FALSE),TI(y,FALSE), returnList = TRUE)
#timeMatch(TI(x,FALSE),TI(y,TRUE), returnList = TRUE)
#timeMatch(TI(x,TRUE), TI(y,FALSE), returnList = TRUE)
#timeMatch(TI(x,TRUE), TI(y,TRUE), returnList = TRUE)

unstack write STFDF to table forms

32 unstack
Description
create table forms of STFDF objects
Usage
S3 method for class 'STFDF'
unstack(x, form, which =1, ...)
S3 method for class 'STFDF'
as.data.frame(x, row.names, ...)
Arguments
X object of class STFDF
form formula; can be omitted
which column name or number to have unstacked
row.names row.names for the data.frame returned
arguments passed on to the functions unstack or as.data.frame
Value
unstack returns the data in wide format, with each row representing a spatial entity and each
column a time; see unstack for details and default behaviour.
as.data. frame returns the data.frame in long format, where the coordinates of the spatial locations
(or line starting coordinates, or polygon center points) and time stamps are recycled accordingly.
Examples

sp = cbind(x = ¢(0,0,1), vy = c(0,1,1))

row.names(sp) = paste("point”, 1:nrow(sp), sep="")
library(sp)

sp = SpatialPoints(sp)

library(xts)

time = xts(1:4, as.POSIXct("2010-08-05")+3600%(10:13))
m = c(10,20,30) # means for each of the 3 point locations
mydata = rnorm(length(sp)*length(time),mean=rep(m, 4))
IDs = paste("ID",1:1length(mydata))

mydata = data.frame(values = signif(mydata,3), ID=IDs)
stfdf = STFDF(sp, time, mydata)

as.data.frame(stfdf, row.names = IDs)

unstack(stfdf)

t(unstack(stfdf))

unstack(stfdf, which = 2)

Index

* classes
ST-class, 13
STFDF-class, 18
STIDF-class, 20
STSDF-class, 25
STTDF-class, 27
+ datasets
air, 2
fires, 5
* dplot
stbox, 15
stplot, 23
timeIsInterval, 29
* manip
delta, 3
EOF, 4
na.locf, 8
nbMult, 10
read. tgrass, 12
stConstruct, 15
stInteraction, 22
timeMatch, 30
unstack, 31
+ methods
over-methods, 11
[,STF-method (STFDF-class), 18
[,STFDF-method (STFDF-class), 18
[,STI-method (STIDF-class), 20
[,STIDF-method (STIDF-class), 20
[,STS-method (STSDF-class), 25
[,STSDF-method (STSDF-class), 25
[,STT-method (STTDF-class), 27
[,STTDF-method (STTDF-class), 27
[[,ST,ANY,missing-method (ST-class), 13
[[<-,ST,ANY,missing-method (ST-class),
13
$,ST-method (ST-class), 13
$<-,ST-method (ST-class), 13

aggregate (over-methods), 11

33

aggregate,ST-method (over-methods), 11
aggregate.zoo, 11

air, 2

as.data.frame, 32

as.data.frame.STF (STFDF-class), 18
as.data.frame.STFDF (unstack), 31
as.data.frame.STI (STIDF-class), 20
as.data.frame.STIDF (STIDF-class), 20
as.data.frame.STS (STSDF-class), 25
as.data.frame.STSDF (STSDF-class), 25
as.yearmon, 11

as.zoo (STFDF-class), 18

bbox, 15
bbox (stbox), 15
bbox,ST-method (stbox), 15

cbind.ST (ST-class), 13

coerce,ltraj,STTDF-method
(STTDF-class), 27

coerce, STFDF, Spatial-method
(STFDF-class), 18

coerce, STFDF, xts-method (STFDF-class),
18

coerce, STIDF,STSDF-method
(STIDF-class), 20

coerce, STSDF, STFDF-method
(STSDF-class), 25

coerce, STSDF,STIDF-method
(STSDF-class), 25

coerce,STTDF,1traj-method
(STTDF-class), 27

colMeans, 22

coordinates, 24

cov, 7

CRS-class, 16

dates (air), 2
DE (air), 2
DE_NUTS1 (air), 2

34

delta, 3, 18, 26
dim.ST (ST-class), 13

EOF, 4
eof (EOF), 4

fires, 5

geometry,ST-method (ST-class), 13
geometry, STFDF-method (STFDF-class), 18
geometry,STI-method (STIDF-class), 20
geometry, STIDF-method (STIDF-class), 20
geometry, STSDF-method (STSDF-class), 25
geometry, STTDF-method (STTDF-class), 27

index (timeMatch), 30
interval_overlap, 30, 31
is.projected, ST-method (ST-class), 13

levelplot, 23
ltraj-class (STTDF-class), 27

MATCH (timeMatch), 30
match, 30

mean, 22

mnf, 6

na.approx, 9

na.approx (na.locf), 8
na.locf, 8, 9

na.omit.STFDF (STFDF-class), 18
na.spline, 9

na.spline (na.locf), 8
nbMult, 10

over, 12, 30, 31

over (over-methods), 11
over,ST,STS-method (over-methods), 11
over,STF,STF-method (over-methods), 11
over,STF,STFDF-method (over-methods), 11
over,STF,STI-method (over-methods), 11
over,STF,STIDF-method (over-methods), 11
over,STF,STS-method (over-methods), 11
over,STF,STSDF-method (over-methods), 11
over,STI,STF-method (over-methods), 11
over,STI,STFDF-method (over-methods), 11
over,STI,STI-method (over-methods), 11
over,STI,STIDF-method (over-methods), 11
over,STI,STS-method (over-methods), 11
over,STI,STSDF-method (over-methods), 11

INDEX

over,STS,STF-method (over-methods), 11
over,STS, STFDF-method (over-methods), 11
over,STS,STI-method (over-methods), 11
over,STS,STIDF-method (over-methods), 11
over,STS,STS-method (over-methods), 11
over,STS, STSDF-method (over-methods), 11
over,xts,xts-method (over-methods), 11
over-methods, 11

plot,STF,missing-method (STFDF-class),
18

plot,STFDF,missing-method
(STFDF-class), 18

plot,STI,missing-method (STIDF-class),
20

plot,STS,missing-method (STSDF-class),
25

plot,STSDF,missing-method
(STSDF-class), 25

plot,STT,missing-method (STTDF-class),
27

POSIXct, 21

prcomp, 4, 7

proj4string,ST-method (ST-class), 13

proj4string<-,ST,character-method
(ST-class), 13

proj4string<-,ST,CRS-method (ST-class),
13

rbind.STFDF (STFDF-class), 18
rbind.STIDF (STIDF-class), 20
rbind.STSDF (STSDF-class), 25
read.tgrass, 12

rowMeans, 22

rural (air), 2

segPanel (stplot), 23
Spatial, 4, 13,18, 21,25
Spatial-class, 16
SpatialPoints, /13
SpatialPolygons, 13
spplot, 24

ST, 18

ST (ST-class), 13
ST-class, 13, 19, 21, 25, 26
stack.STFDF (stplot), 23
stack.STIDF (stplot), 23
stack.STSDF (stplot), 23
stations (air), 2

INDEX

stbox, 15

stbox,ST-method (stbox), 15

stConstruct, 15

STF (STFDF-class), 18

STF-class (STFDF-class), 18

STFDF, 11, 22,25

STFDF (STFDF-class), 18

STFDF-class, 18

STI, 25, 28

STI (STIDF-class), 20

STI-class (STIDF-class), 20

STIDF, 25

STIDF (STIDF-class), 20

STIDF-class, 20

stInteraction, 22

stplot, 23

stplot,RasterStackBrick-method
(stplot), 23

stplot, STFDF-method (stplot), 23

stplot,STI-method (stplot), 23

stplot,STIDF-method (stplot), 23

stplot, STSDF-method (stplot), 23

stplot,STT-method (stplot), 23

stplot,STTDF-method (stplot), 23

stplot.STFDF (stplot), 23

stplot.STIDF (stplot), 23

STS (STSDF-class), 25

STS-class (STSDF-class), 25

STSDF, 25

STSDF (STSDF-class), 25

STSDF-class, 25

STT, 25

STT (STTDF-class), 27

STT-class (STTDF-class), 27

STTDF, 25

STTDF (STTDF-class), 27

STTDF-class, 27

timeIsInterval, 11, 12,29, 30, 31
timeIsInterval, ANY-method
(timeIsInterval), 29
timeIsInterval,ST-method
(timeIsInterval), 29
timeIsInterval<- (timeIsInterval), 29
timeIsInterval<-,ANY,logical-method
(timeIsInterval), 29
timeIsInterval<-,ST,logical-method
(timeIsInterval), 29

35

timeIsInterval<-,STT,logical-method

(timeIsInterval), 29
timeMatch, /1, 12, 30
timeMatch,Date,Date-method (timeMatch),

30
timeMatch,POSIXct,POSIXct-method

(timeMatch), 30
timeMatch,ST,ST-method (timeMatch), 30
timeMatch,xts,xts-method (timeMatch), 30
tracksPanel (stplot), 23

unstack, 31, 32
unstack.STFDF (unstack), 31

write.tgrass (read.tgrass), 12
writeRaster, 12

xts, 4, 13,16, 19,21, 26
xts-class (ST-class), 13
xyplot, 24

zoo-class (ST-class), 13

	air
	delta
	EOF
	fires
	mnf
	na.locf
	nbMult
	over-methods
	read.tgrass
	ST-class
	stbox
	stConstruct
	STFDF-class
	STIDF-class
	stInteraction
	stplot
	STSDF-class
	STTDF-class
	timeIsInterval
	timeMatch
	unstack
	Index

