
Deep Neural Networks for Survival Analysis Using torch
survdnn implements neural network-based models for
right-censored survival analysis using the native torch
backend in R. It supports multiple loss functions including Cox partial
likelihood, L2-penalized Cox, Accelerated Failure Time (AFT) objectives,
as well as time-dependent extension such as Cox-Time. The package
provides a formula interface, supports model evaluation using
time-dependent metrics (e.g., C-index, Brier score, IBS),
cross-validation, and hyperparameter tuning.
Surv() ~ . models"cox": Cox partial likelihood"cox_l2": penalized Cox"aft": Accelerated Failure Time"coxtime": deep time-dependent Cox (like DeepSurv)cv_survdnn() and
tune_survdnn()predict() and
plot()# Install from GitHub
# install.packages("remotes")
remotes::install_github("ielbadisy/survdnn")
# Or clone and install locally
# git clone https://github.com/ielbadisy/survdnn.git
# setwd("survdnn")
# devtools::install()library(survdnn)
library(survival, quietly = TRUE)
library(ggplot2)
veteran <- survival::veteran
mod <- survdnn(
  Surv(time, status) ~ age + karno + celltype,
  data = veteran,
  hidden = c(32, 16),
  epochs = 100,
  loss = "cox",
  verbose = TRUE
)## Epoch 50 - Loss: 3.987919
## Epoch 100 - Loss: 3.974391summary(mod)## 
## ── Summary of survdnn model ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## 
## Formula:
##   Surv(time, status) ~ age + karno + celltype
## <environment: 0x5b3739336aa0>
## 
## Model architecture:
##   Hidden layers:  32 : 16 
##   Activation:  relu 
##   Dropout:  0.3 
##   Final loss:  3.974391 
## 
## Training summary:
##   Epochs:  100 
##   Learning rate:  1e-04 
##   Loss function:  cox 
## 
## Data summary:
##   Observations:  137 
##   Predictors:  age, karno, celltypesmallcell, celltypeadeno, celltypelarge 
##   Time range: [ 1, 999 ]
##   Event rate:  93.4%plot(mod, group_by = "celltype", times = 1:300)# Cox partial likelihood
mod1 <- survdnn(
  Surv(time, status) ~ age + karno,
  data = veteran,
  loss = "cox",
  epochs = 100
  )## Epoch 50 - Loss: 4.216911
## Epoch 100 - Loss: 4.105076# Accelerated Failure Time
mod2 <- survdnn(
  Surv(time, status) ~ age + karno,
  data = veteran,
  loss = "aft",
  epochs = 100
  )## Epoch 50 - Loss: 21.136486
## Epoch 100 - Loss: 20.663244# Deep time-dependent Cox (Coxtime)
mod3 <- survdnn(
  Surv(time, status) ~ age + karno,
  data = veteran,
  loss = "coxtime",
  epochs = 100
  )## Epoch 50 - Loss: 4.856084
## Epoch 100 - Loss: 5.289982cv_results <- cv_survdnn(
  Surv(time, status) ~ age + karno + celltype,
  data = veteran,
  times = c(30, 90, 180),
  metrics = c("cindex", "ibs"),
  folds = 3,
  hidden = c(16, 8),
  loss = "cox",
  epochs = 100
)
print(cv_results)grid <- list(
  hidden     = list(c(16), c(32, 16)),
  lr         = c(1e-3),
  activation = c("relu"),
  epochs     = c(100, 300),
  loss       = c("cox", "aft", "coxtime")
  )
tune_res <- tune_survdnn(
  formula = Surv(time, status) ~ age + karno + celltype,
  data = veteran,
  times = c(90, 300),
  metrics = "cindex",
  param_grid = grid,
  folds = 3,
  refit = FALSE,
  return = "summary"
  )
print(tune_res)plot(mod1, group_by = "celltype", times = 1:300)
plot(mod1, group_by = "celltype", times = 1:300, plot_mean_only = TRUE)
help(package = "survdnn")
?survdnn
?tune_survdnn
?cv_survdnn
?plot.survdnn# Run all tests
devtools::test()The survdnn R package is available at: https://github.com/ielbadisy/survdnn
The package is currently under submission to CRAN.
Contributions, issues, and feature requests are welcome. Open an issue or submit a pull request!
MIT © Imad El Badisy